bcm_sf2.c 27.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Broadcom Starfighter 2 DSA switch driver
 *
 * Copyright (C) 2014, Broadcom Corporation
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

#include <linux/list.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/phy.h>
#include <linux/phy_fixed.h>
#include <linux/mii.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/of_address.h>
#include <net/dsa.h>
25
#include <linux/ethtool.h>
26
#include <linux/if_bridge.h>
27
#include <linux/brcmphy.h>
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134

#include "bcm_sf2.h"
#include "bcm_sf2_regs.h"

/* String, offset, and register size in bytes if different from 4 bytes */
static const struct bcm_sf2_hw_stats bcm_sf2_mib[] = {
	{ "TxOctets",		0x000, 8	},
	{ "TxDropPkts",		0x020		},
	{ "TxQPKTQ0",		0x030		},
	{ "TxBroadcastPkts",	0x040		},
	{ "TxMulticastPkts",	0x050		},
	{ "TxUnicastPKts",	0x060		},
	{ "TxCollisions",	0x070		},
	{ "TxSingleCollision",	0x080		},
	{ "TxMultipleCollision", 0x090		},
	{ "TxDeferredCollision", 0x0a0		},
	{ "TxLateCollision",	0x0b0		},
	{ "TxExcessiveCollision", 0x0c0		},
	{ "TxFrameInDisc",	0x0d0		},
	{ "TxPausePkts",	0x0e0		},
	{ "TxQPKTQ1",		0x0f0		},
	{ "TxQPKTQ2",		0x100		},
	{ "TxQPKTQ3",		0x110		},
	{ "TxQPKTQ4",		0x120		},
	{ "TxQPKTQ5",		0x130		},
	{ "RxOctets",		0x140, 8	},
	{ "RxUndersizePkts",	0x160		},
	{ "RxPausePkts",	0x170		},
	{ "RxPkts64Octets",	0x180		},
	{ "RxPkts65to127Octets", 0x190		},
	{ "RxPkts128to255Octets", 0x1a0		},
	{ "RxPkts256to511Octets", 0x1b0		},
	{ "RxPkts512to1023Octets", 0x1c0	},
	{ "RxPkts1024toMaxPktsOctets", 0x1d0	},
	{ "RxOversizePkts",	0x1e0		},
	{ "RxJabbers",		0x1f0		},
	{ "RxAlignmentErrors",	0x200		},
	{ "RxFCSErrors",	0x210		},
	{ "RxGoodOctets",	0x220, 8	},
	{ "RxDropPkts",		0x240		},
	{ "RxUnicastPkts",	0x250		},
	{ "RxMulticastPkts",	0x260		},
	{ "RxBroadcastPkts",	0x270		},
	{ "RxSAChanges",	0x280		},
	{ "RxFragments",	0x290		},
	{ "RxJumboPkt",		0x2a0		},
	{ "RxSymblErr",		0x2b0		},
	{ "InRangeErrCount",	0x2c0		},
	{ "OutRangeErrCount",	0x2d0		},
	{ "EEELpiEvent",	0x2e0		},
	{ "EEELpiDuration",	0x2f0		},
	{ "RxDiscard",		0x300, 8	},
	{ "TxQPKTQ6",		0x320		},
	{ "TxQPKTQ7",		0x330		},
	{ "TxPkts64Octets",	0x340		},
	{ "TxPkts65to127Octets", 0x350		},
	{ "TxPkts128to255Octets", 0x360		},
	{ "TxPkts256to511Ocets", 0x370		},
	{ "TxPkts512to1023Ocets", 0x380		},
	{ "TxPkts1024toMaxPktOcets", 0x390	},
};

#define BCM_SF2_STATS_SIZE	ARRAY_SIZE(bcm_sf2_mib)

static void bcm_sf2_sw_get_strings(struct dsa_switch *ds,
				   int port, uint8_t *data)
{
	unsigned int i;

	for (i = 0; i < BCM_SF2_STATS_SIZE; i++)
		memcpy(data + i * ETH_GSTRING_LEN,
		       bcm_sf2_mib[i].string, ETH_GSTRING_LEN);
}

static void bcm_sf2_sw_get_ethtool_stats(struct dsa_switch *ds,
					 int port, uint64_t *data)
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
	const struct bcm_sf2_hw_stats *s;
	unsigned int i;
	u64 val = 0;
	u32 offset;

	mutex_lock(&priv->stats_mutex);

	/* Now fetch the per-port counters */
	for (i = 0; i < BCM_SF2_STATS_SIZE; i++) {
		s = &bcm_sf2_mib[i];

		/* Do a latched 64-bit read if needed */
		offset = s->reg + CORE_P_MIB_OFFSET(port);
		if (s->sizeof_stat == 8)
			val = core_readq(priv, offset);
		else
			val = core_readl(priv, offset);

		data[i] = (u64)val;
	}

	mutex_unlock(&priv->stats_mutex);
}

static int bcm_sf2_sw_get_sset_count(struct dsa_switch *ds)
{
	return BCM_SF2_STATS_SIZE;
}

135
static char *bcm_sf2_sw_probe(struct device *host_dev, int sw_addr)
136 137 138 139
{
	return "Broadcom Starfighter 2";
}

140
static void bcm_sf2_imp_vlan_setup(struct dsa_switch *ds, int cpu_port)
141 142 143
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
	unsigned int i;
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
	u32 reg;

	/* Enable the IMP Port to be in the same VLAN as the other ports
	 * on a per-port basis such that we only have Port i and IMP in
	 * the same VLAN.
	 */
	for (i = 0; i < priv->hw_params.num_ports; i++) {
		if (!((1 << i) & ds->phys_port_mask))
			continue;

		reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(i));
		reg |= (1 << cpu_port);
		core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(i));
	}
}

static void bcm_sf2_imp_setup(struct dsa_switch *ds, int port)
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
	u32 reg, val;

	/* Enable the port memories */
	reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL);
	reg &= ~P_TXQ_PSM_VDD(port);
	core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL);

	/* Enable Broadcast, Multicast, Unicast forwarding to IMP port */
	reg = core_readl(priv, CORE_IMP_CTL);
	reg |= (RX_BCST_EN | RX_MCST_EN | RX_UCST_EN);
	reg &= ~(RX_DIS | TX_DIS);
	core_writel(priv, reg, CORE_IMP_CTL);

	/* Enable forwarding */
	core_writel(priv, SW_FWDG_EN, CORE_SWMODE);

	/* Enable IMP port in dumb mode */
	reg = core_readl(priv, CORE_SWITCH_CTRL);
	reg |= MII_DUMB_FWDG_EN;
	core_writel(priv, reg, CORE_SWITCH_CTRL);

	/* Resolve which bit controls the Broadcom tag */
	switch (port) {
	case 8:
		val = BRCM_HDR_EN_P8;
		break;
	case 7:
		val = BRCM_HDR_EN_P7;
		break;
	case 5:
		val = BRCM_HDR_EN_P5;
		break;
	default:
		val = 0;
		break;
	}

	/* Enable Broadcom tags for IMP port */
	reg = core_readl(priv, CORE_BRCM_HDR_CTRL);
	reg |= val;
	core_writel(priv, reg, CORE_BRCM_HDR_CTRL);

	/* Enable reception Broadcom tag for CPU TX (switch RX) to
	 * allow us to tag outgoing frames
	 */
	reg = core_readl(priv, CORE_BRCM_HDR_RX_DIS);
	reg &= ~(1 << port);
	core_writel(priv, reg, CORE_BRCM_HDR_RX_DIS);

	/* Enable transmission of Broadcom tags from the switch (CPU RX) to
	 * allow delivering frames to the per-port net_devices
	 */
	reg = core_readl(priv, CORE_BRCM_HDR_TX_DIS);
	reg &= ~(1 << port);
	core_writel(priv, reg, CORE_BRCM_HDR_TX_DIS);

	/* Force link status for IMP port */
	reg = core_readl(priv, CORE_STS_OVERRIDE_IMP);
	reg |= (MII_SW_OR | LINK_STS);
	core_writel(priv, reg, CORE_STS_OVERRIDE_IMP);
}

225 226 227 228 229 230 231 232 233 234 235 236 237
static void bcm_sf2_eee_enable_set(struct dsa_switch *ds, int port, bool enable)
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
	u32 reg;

	reg = core_readl(priv, CORE_EEE_EN_CTRL);
	if (enable)
		reg |= 1 << port;
	else
		reg &= ~(1 << port);
	core_writel(priv, reg, CORE_EEE_EN_CTRL);
}

238 239 240 241 242 243
static void bcm_sf2_gphy_enable_set(struct dsa_switch *ds, bool enable)
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
	u32 reg;

	reg = reg_readl(priv, REG_SPHY_CNTRL);
244 245 246 247 248 249 250 251 252 253 254 255 256
	if (enable) {
		reg |= PHY_RESET;
		reg &= ~(EXT_PWR_DOWN | IDDQ_BIAS | CK25_DIS);
		reg_writel(priv, reg, REG_SPHY_CNTRL);
		udelay(21);
		reg = reg_readl(priv, REG_SPHY_CNTRL);
		reg &= ~PHY_RESET;
	} else {
		reg |= EXT_PWR_DOWN | IDDQ_BIAS | PHY_RESET;
		reg_writel(priv, reg, REG_SPHY_CNTRL);
		mdelay(1);
		reg |= CK25_DIS;
	}
257
	reg_writel(priv, reg, REG_SPHY_CNTRL);
258 259 260 261 262 263 264

	/* Use PHY-driven LED signaling */
	if (!enable) {
		reg = reg_readl(priv, REG_LED_CNTRL(0));
		reg |= SPDLNK_SRC_SEL;
		reg_writel(priv, reg, REG_LED_CNTRL(0));
	}
265 266
}

267 268
static int bcm_sf2_port_setup(struct dsa_switch *ds, int port,
			      struct phy_device *phy)
269 270
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
271
	s8 cpu_port = ds->dst[ds->index].cpu_port;
272 273 274 275 276 277 278 279 280 281
	u32 reg;

	/* Clear the memory power down */
	reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL);
	reg &= ~P_TXQ_PSM_VDD(port);
	core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL);

	/* Clear the Rx and Tx disable bits and set to no spanning tree */
	core_writel(priv, 0, CORE_G_PCTL_PORT(port));

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
	/* Re-enable the GPHY and re-apply workarounds */
	if (port == 0 && priv->hw_params.num_gphy == 1) {
		bcm_sf2_gphy_enable_set(ds, true);
		if (phy) {
			/* if phy_stop() has been called before, phy
			 * will be in halted state, and phy_start()
			 * will call resume.
			 *
			 * the resume path does not configure back
			 * autoneg settings, and since we hard reset
			 * the phy manually here, we need to reset the
			 * state machine also.
			 */
			phy->state = PHY_READY;
			phy_init_hw(phy);
		}
	}

300 301 302 303
	/* Enable port 7 interrupts to get notified */
	if (port == 7)
		intrl2_1_mask_clear(priv, P_IRQ_MASK(P7_IRQ_OFF));

304 305 306 307
	/* Set this port, and only this one to be in the default VLAN,
	 * if member of a bridge, restore its membership prior to
	 * bringing down this port.
	 */
308 309 310
	reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(port));
	reg &= ~PORT_VLAN_CTRL_MASK;
	reg |= (1 << port);
311
	reg |= priv->port_sts[port].vlan_ctl_mask;
312
	core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(port));
313 314 315

	bcm_sf2_imp_vlan_setup(ds, cpu_port);

316 317 318 319
	/* If EEE was enabled, restore it */
	if (priv->port_sts[port].eee.eee_enabled)
		bcm_sf2_eee_enable_set(ds, port, true);

320
	return 0;
321 322
}

323 324
static void bcm_sf2_port_disable(struct dsa_switch *ds, int port,
				 struct phy_device *phy)
325 326 327 328
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
	u32 off, reg;

329 330 331
	if (priv->wol_ports_mask & (1 << port))
		return;

332 333 334 335 336
	if (port == 7) {
		intrl2_1_mask_set(priv, P_IRQ_MASK(P7_IRQ_OFF));
		intrl2_1_writel(priv, P_IRQ_MASK(P7_IRQ_OFF), INTRL2_CPU_CLEAR);
	}

337 338 339
	if (port == 0 && priv->hw_params.num_gphy == 1)
		bcm_sf2_gphy_enable_set(ds, false);

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
	if (dsa_is_cpu_port(ds, port))
		off = CORE_IMP_CTL;
	else
		off = CORE_G_PCTL_PORT(port);

	reg = core_readl(priv, off);
	reg |= RX_DIS | TX_DIS;
	core_writel(priv, reg, off);

	/* Power down the port memory */
	reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL);
	reg |= P_TXQ_PSM_VDD(port);
	core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL);
}

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
/* Returns 0 if EEE was not enabled, or 1 otherwise
 */
static int bcm_sf2_eee_init(struct dsa_switch *ds, int port,
			    struct phy_device *phy)
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
	struct ethtool_eee *p = &priv->port_sts[port].eee;
	int ret;

	p->supported = (SUPPORTED_1000baseT_Full | SUPPORTED_100baseT_Full);

	ret = phy_init_eee(phy, 0);
	if (ret)
		return 0;

	bcm_sf2_eee_enable_set(ds, port, true);

	return 1;
}

static int bcm_sf2_sw_get_eee(struct dsa_switch *ds, int port,
			      struct ethtool_eee *e)
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
	struct ethtool_eee *p = &priv->port_sts[port].eee;
	u32 reg;

	reg = core_readl(priv, CORE_EEE_LPI_INDICATE);
	e->eee_enabled = p->eee_enabled;
	e->eee_active = !!(reg & (1 << port));

	return 0;
}

static int bcm_sf2_sw_set_eee(struct dsa_switch *ds, int port,
			      struct phy_device *phydev,
			      struct ethtool_eee *e)
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
	struct ethtool_eee *p = &priv->port_sts[port].eee;

	p->eee_enabled = e->eee_enabled;

	if (!p->eee_enabled) {
		bcm_sf2_eee_enable_set(ds, port, false);
	} else {
		p->eee_enabled = bcm_sf2_eee_init(ds, port, phydev);
		if (!p->eee_enabled)
			return -EOPNOTSUPP;
	}

	return 0;
}

409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
/* Fast-ageing of ARL entries for a given port, equivalent to an ARL
 * flush for that port.
 */
static int bcm_sf2_sw_fast_age_port(struct dsa_switch  *ds, int port)
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
	unsigned int timeout = 1000;
	u32 reg;

	core_writel(priv, port, CORE_FAST_AGE_PORT);

	reg = core_readl(priv, CORE_FAST_AGE_CTRL);
	reg |= EN_AGE_PORT | FAST_AGE_STR_DONE;
	core_writel(priv, reg, CORE_FAST_AGE_CTRL);

	do {
		reg = core_readl(priv, CORE_FAST_AGE_CTRL);
		if (!(reg & FAST_AGE_STR_DONE))
			break;

		cpu_relax();
	} while (timeout--);

	if (!timeout)
		return -ETIMEDOUT;

	return 0;
}

static int bcm_sf2_sw_br_join(struct dsa_switch *ds, int port,
			      u32 br_port_mask)
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
	unsigned int i;
	u32 reg, p_ctl;

	p_ctl = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(port));

	for (i = 0; i < priv->hw_params.num_ports; i++) {
		if (!((1 << i) & br_port_mask))
			continue;

		/* Add this local port to the remote port VLAN control
		 * membership and update the remote port bitmask
		 */
		reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(i));
		reg |= 1 << port;
		core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(i));
		priv->port_sts[i].vlan_ctl_mask = reg;

		p_ctl |= 1 << i;
	}

	/* Configure the local port VLAN control membership to include
	 * remote ports and update the local port bitmask
	 */
	core_writel(priv, p_ctl, CORE_PORT_VLAN_CTL_PORT(port));
	priv->port_sts[port].vlan_ctl_mask = p_ctl;

	return 0;
}

static int bcm_sf2_sw_br_leave(struct dsa_switch *ds, int port,
			       u32 br_port_mask)
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
	unsigned int i;
	u32 reg, p_ctl;

	p_ctl = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(port));

	for (i = 0; i < priv->hw_params.num_ports; i++) {
		/* Don't touch the remaining ports */
		if (!((1 << i) & br_port_mask))
			continue;

		reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(i));
		reg &= ~(1 << port);
		core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(i));
		priv->port_sts[port].vlan_ctl_mask = reg;

		/* Prevent self removal to preserve isolation */
		if (port != i)
			p_ctl &= ~(1 << i);
	}

	core_writel(priv, p_ctl, CORE_PORT_VLAN_CTL_PORT(port));
	priv->port_sts[port].vlan_ctl_mask = p_ctl;

	return 0;
}

static int bcm_sf2_sw_br_set_stp_state(struct dsa_switch *ds, int port,
				       u8 state)
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
	u8 hw_state, cur_hw_state;
	int ret = 0;
	u32 reg;

	reg = core_readl(priv, CORE_G_PCTL_PORT(port));
	cur_hw_state = reg >> G_MISTP_STATE_SHIFT;

	switch (state) {
	case BR_STATE_DISABLED:
		hw_state = G_MISTP_DIS_STATE;
		break;
	case BR_STATE_LISTENING:
		hw_state = G_MISTP_LISTEN_STATE;
		break;
	case BR_STATE_LEARNING:
		hw_state = G_MISTP_LEARN_STATE;
		break;
	case BR_STATE_FORWARDING:
		hw_state = G_MISTP_FWD_STATE;
		break;
	case BR_STATE_BLOCKING:
		hw_state = G_MISTP_BLOCK_STATE;
		break;
	default:
		pr_err("%s: invalid STP state: %d\n", __func__, state);
		return -EINVAL;
	}

	/* Fast-age ARL entries if we are moving a port from Learning or
	 * Forwarding state to Disabled, Blocking or Listening state
	 */
	if (cur_hw_state != hw_state) {
		if (cur_hw_state & 4 && !(hw_state & 4)) {
			ret = bcm_sf2_sw_fast_age_port(ds, port);
			if (ret) {
				pr_err("%s: fast-ageing failed\n", __func__);
				return ret;
			}
		}
	}

	reg = core_readl(priv, CORE_G_PCTL_PORT(port));
	reg &= ~(G_MISTP_STATE_MASK << G_MISTP_STATE_SHIFT);
	reg |= hw_state;
	core_writel(priv, reg, CORE_G_PCTL_PORT(port));

	return 0;
}

554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
static irqreturn_t bcm_sf2_switch_0_isr(int irq, void *dev_id)
{
	struct bcm_sf2_priv *priv = dev_id;

	priv->irq0_stat = intrl2_0_readl(priv, INTRL2_CPU_STATUS) &
				~priv->irq0_mask;
	intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);

	return IRQ_HANDLED;
}

static irqreturn_t bcm_sf2_switch_1_isr(int irq, void *dev_id)
{
	struct bcm_sf2_priv *priv = dev_id;

	priv->irq1_stat = intrl2_1_readl(priv, INTRL2_CPU_STATUS) &
				~priv->irq1_mask;
	intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR);

	if (priv->irq1_stat & P_LINK_UP_IRQ(P7_IRQ_OFF))
		priv->port_sts[7].link = 1;
	if (priv->irq1_stat & P_LINK_DOWN_IRQ(P7_IRQ_OFF))
		priv->port_sts[7].link = 0;

	return IRQ_HANDLED;
}

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
static int bcm_sf2_sw_rst(struct bcm_sf2_priv *priv)
{
	unsigned int timeout = 1000;
	u32 reg;

	reg = core_readl(priv, CORE_WATCHDOG_CTRL);
	reg |= SOFTWARE_RESET | EN_CHIP_RST | EN_SW_RESET;
	core_writel(priv, reg, CORE_WATCHDOG_CTRL);

	do {
		reg = core_readl(priv, CORE_WATCHDOG_CTRL);
		if (!(reg & SOFTWARE_RESET))
			break;

		usleep_range(1000, 2000);
	} while (timeout-- > 0);

	if (timeout == 0)
		return -ETIMEDOUT;

	return 0;
}

604 605 606 607 608 609 610 611 612 613
static void bcm_sf2_intr_disable(struct bcm_sf2_priv *priv)
{
	intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_MASK_SET);
	intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
	intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
	intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_MASK_SET);
	intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
	intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
}

614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
static int bcm_sf2_sw_setup(struct dsa_switch *ds)
{
	const char *reg_names[BCM_SF2_REGS_NUM] = BCM_SF2_REGS_NAME;
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
	struct device_node *dn;
	void __iomem **base;
	unsigned int port;
	unsigned int i;
	u32 reg, rev;
	int ret;

	spin_lock_init(&priv->indir_lock);
	mutex_init(&priv->stats_mutex);

	/* All the interesting properties are at the parent device_node
	 * level
	 */
	dn = ds->pd->of_node->parent;

	priv->irq0 = irq_of_parse_and_map(dn, 0);
	priv->irq1 = irq_of_parse_and_map(dn, 1);

	base = &priv->core;
	for (i = 0; i < BCM_SF2_REGS_NUM; i++) {
		*base = of_iomap(dn, i);
		if (*base == NULL) {
			pr_err("unable to find register: %s\n", reg_names[i]);
641 642
			ret = -ENOMEM;
			goto out_unmap;
643 644 645 646
		}
		base++;
	}

647 648 649 650 651 652
	ret = bcm_sf2_sw_rst(priv);
	if (ret) {
		pr_err("unable to software reset switch: %d\n", ret);
		goto out_unmap;
	}

653
	/* Disable all interrupts and request them */
654
	bcm_sf2_intr_disable(priv);
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690

	ret = request_irq(priv->irq0, bcm_sf2_switch_0_isr, 0,
			  "switch_0", priv);
	if (ret < 0) {
		pr_err("failed to request switch_0 IRQ\n");
		goto out_unmap;
	}

	ret = request_irq(priv->irq1, bcm_sf2_switch_1_isr, 0,
			  "switch_1", priv);
	if (ret < 0) {
		pr_err("failed to request switch_1 IRQ\n");
		goto out_free_irq0;
	}

	/* Reset the MIB counters */
	reg = core_readl(priv, CORE_GMNCFGCFG);
	reg |= RST_MIB_CNT;
	core_writel(priv, reg, CORE_GMNCFGCFG);
	reg &= ~RST_MIB_CNT;
	core_writel(priv, reg, CORE_GMNCFGCFG);

	/* Get the maximum number of ports for this switch */
	priv->hw_params.num_ports = core_readl(priv, CORE_IMP0_PRT_ID) + 1;
	if (priv->hw_params.num_ports > DSA_MAX_PORTS)
		priv->hw_params.num_ports = DSA_MAX_PORTS;

	/* Assume a single GPHY setup if we can't read that property */
	if (of_property_read_u32(dn, "brcm,num-gphy",
				 &priv->hw_params.num_gphy))
		priv->hw_params.num_gphy = 1;

	/* Enable all valid ports and disable those unused */
	for (port = 0; port < priv->hw_params.num_ports; port++) {
		/* IMP port receives special treatment */
		if ((1 << port) & ds->phys_port_mask)
691
			bcm_sf2_port_setup(ds, port, NULL);
692 693 694
		else if (dsa_is_cpu_port(ds, port))
			bcm_sf2_imp_setup(ds, port);
		else
695
			bcm_sf2_port_disable(ds, port, NULL);
696 697 698 699 700
	}

	/* Include the pseudo-PHY address and the broadcast PHY address to
	 * divert reads towards our workaround
	 */
701
	ds->phys_mii_mask |= ((1 << BRCM_PSEUDO_PHY_ADDR) | (1 << 0));
702 703 704 705 706 707

	rev = reg_readl(priv, REG_SWITCH_REVISION);
	priv->hw_params.top_rev = (rev >> SWITCH_TOP_REV_SHIFT) &
					SWITCH_TOP_REV_MASK;
	priv->hw_params.core_rev = (rev & SF2_REV_MASK);

708 709 710
	rev = reg_readl(priv, REG_PHY_REVISION);
	priv->hw_params.gphy_rev = rev & PHY_REVISION_MASK;

711 712 713 714 715 716 717 718 719 720 721 722
	pr_info("Starfighter 2 top: %x.%02x, core: %x.%02x base: 0x%p, IRQs: %d, %d\n",
		priv->hw_params.top_rev >> 8, priv->hw_params.top_rev & 0xff,
		priv->hw_params.core_rev >> 8, priv->hw_params.core_rev & 0xff,
		priv->core, priv->irq0, priv->irq1);

	return 0;

out_free_irq0:
	free_irq(priv->irq0, priv);
out_unmap:
	base = &priv->core;
	for (i = 0; i < BCM_SF2_REGS_NUM; i++) {
723 724
		if (*base)
			iounmap(*base);
725 726 727 728 729 730 731 732 733 734
		base++;
	}
	return ret;
}

static int bcm_sf2_sw_set_addr(struct dsa_switch *ds, u8 *addr)
{
	return 0;
}

735 736 737 738 739 740 741 742 743 744 745 746
static u32 bcm_sf2_sw_get_phy_flags(struct dsa_switch *ds, int port)
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);

	/* The BCM7xxx PHY driver expects to find the integrated PHY revision
	 * in bits 15:8 and the patch level in bits 7:0 which is exactly what
	 * the REG_PHY_REVISION register layout is.
	 */

	return priv->hw_params.gphy_rev;
}

747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
static int bcm_sf2_sw_indir_rw(struct dsa_switch *ds, int op, int addr,
			       int regnum, u16 val)
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
	int ret = 0;
	u32 reg;

	reg = reg_readl(priv, REG_SWITCH_CNTRL);
	reg |= MDIO_MASTER_SEL;
	reg_writel(priv, reg, REG_SWITCH_CNTRL);

	/* Page << 8 | offset */
	reg = 0x70;
	reg <<= 2;
	core_writel(priv, addr, reg);

	/* Page << 8 | offset */
	reg = 0x80 << 8 | regnum << 1;
	reg <<= 2;

	if (op)
		ret = core_readl(priv, reg);
	else
		core_writel(priv, val, reg);

	reg = reg_readl(priv, REG_SWITCH_CNTRL);
	reg &= ~MDIO_MASTER_SEL;
	reg_writel(priv, reg, REG_SWITCH_CNTRL);

	return ret & 0xffff;
}

static int bcm_sf2_sw_phy_read(struct dsa_switch *ds, int addr, int regnum)
{
	/* Intercept reads from the MDIO broadcast address or Broadcom
	 * pseudo-PHY address
	 */
	switch (addr) {
	case 0:
786
	case BRCM_PSEUDO_PHY_ADDR:
787 788 789 790 791 792 793 794 795 796 797 798 799 800
		return bcm_sf2_sw_indir_rw(ds, 1, addr, regnum, 0);
	default:
		return 0xffff;
	}
}

static int bcm_sf2_sw_phy_write(struct dsa_switch *ds, int addr, int regnum,
				u16 val)
{
	/* Intercept writes to the MDIO broadcast address or Broadcom
	 * pseudo-PHY address
	 */
	switch (addr) {
	case 0:
801
	case BRCM_PSEUDO_PHY_ADDR:
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
		bcm_sf2_sw_indir_rw(ds, 0, addr, regnum, val);
		break;
	}

	return 0;
}

static void bcm_sf2_sw_adjust_link(struct dsa_switch *ds, int port,
				   struct phy_device *phydev)
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
	u32 id_mode_dis = 0, port_mode;
	const char *str = NULL;
	u32 reg;

	switch (phydev->interface) {
	case PHY_INTERFACE_MODE_RGMII:
		str = "RGMII (no delay)";
		id_mode_dis = 1;
	case PHY_INTERFACE_MODE_RGMII_TXID:
		if (!str)
			str = "RGMII (TX delay)";
		port_mode = EXT_GPHY;
		break;
	case PHY_INTERFACE_MODE_MII:
		str = "MII";
		port_mode = EXT_EPHY;
		break;
	case PHY_INTERFACE_MODE_REVMII:
		str = "Reverse MII";
		port_mode = EXT_REVMII;
		break;
	default:
835 836 837 838 839 840 841 842 843
		/* All other PHYs: internal and MoCA */
		goto force_link;
	}

	/* If the link is down, just disable the interface to conserve power */
	if (!phydev->link) {
		reg = reg_readl(priv, REG_RGMII_CNTRL_P(port));
		reg &= ~RGMII_MODE_EN;
		reg_writel(priv, reg, REG_RGMII_CNTRL_P(port));
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
		goto force_link;
	}

	/* Clear id_mode_dis bit, and the existing port mode, but
	 * make sure we enable the RGMII block for data to pass
	 */
	reg = reg_readl(priv, REG_RGMII_CNTRL_P(port));
	reg &= ~ID_MODE_DIS;
	reg &= ~(PORT_MODE_MASK << PORT_MODE_SHIFT);
	reg &= ~(RX_PAUSE_EN | TX_PAUSE_EN);

	reg |= port_mode | RGMII_MODE_EN;
	if (id_mode_dis)
		reg |= ID_MODE_DIS;

	if (phydev->pause) {
		if (phydev->asym_pause)
			reg |= TX_PAUSE_EN;
		reg |= RX_PAUSE_EN;
	}

	reg_writel(priv, reg, REG_RGMII_CNTRL_P(port));

	pr_info("Port %d configured for %s\n", port, str);

force_link:
	/* Force link settings detected from the PHY */
	reg = SW_OVERRIDE;
	switch (phydev->speed) {
	case SPEED_1000:
		reg |= SPDSTS_1000 << SPEED_SHIFT;
		break;
	case SPEED_100:
		reg |= SPDSTS_100 << SPEED_SHIFT;
		break;
	}

	if (phydev->link)
		reg |= LINK_STS;
	if (phydev->duplex == DUPLEX_FULL)
		reg |= DUPLX_MODE;

	core_writel(priv, reg, CORE_STS_OVERRIDE_GMIIP_PORT(port));
}

static void bcm_sf2_sw_fixed_link_update(struct dsa_switch *ds, int port,
					 struct fixed_phy_status *status)
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
893
	u32 duplex, pause;
894 895 896 897 898 899 900 901 902 903 904
	u32 reg;

	duplex = core_readl(priv, CORE_DUPSTS);
	pause = core_readl(priv, CORE_PAUSESTS);

	status->link = 0;

	/* Port 7 is special as we do not get link status from CORE_LNKSTS,
	 * which means that we need to force the link at the port override
	 * level to get the data to flow. We do use what the interrupt handler
	 * did determine before.
905 906 907
	 *
	 * For the other ports, we just force the link status, since this is
	 * a fixed PHY device.
908 909 910
	 */
	if (port == 7) {
		status->link = priv->port_sts[port].link;
911 912 913 914 915 916 917
		/* For MoCA interfaces, also force a link down notification
		 * since some version of the user-space daemon (mocad) use
		 * cmd->autoneg to force the link, which messes up the PHY
		 * state machine and make it go in PHY_FORCING state instead.
		 */
		if (!status->link)
			netif_carrier_off(ds->ports[port]);
918 919
		status->duplex = 1;
	} else {
920
		status->link = 1;
921 922 923
		status->duplex = !!(duplex & (1 << port));
	}

924 925 926 927 928 929 930 931
	reg = core_readl(priv, CORE_STS_OVERRIDE_GMIIP_PORT(port));
	reg |= SW_OVERRIDE;
	if (status->link)
		reg |= LINK_STS;
	else
		reg &= ~LINK_STS;
	core_writel(priv, reg, CORE_STS_OVERRIDE_GMIIP_PORT(port));

932 933 934 935 936 937 938 939 940 941
	if ((pause & (1 << port)) &&
	    (pause & (1 << (port + PAUSESTS_TX_PAUSE_SHIFT)))) {
		status->asym_pause = 1;
		status->pause = 1;
	}

	if (pause & (1 << port))
		status->pause = 1;
}

942 943 944 945 946
static int bcm_sf2_sw_suspend(struct dsa_switch *ds)
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
	unsigned int port;

947
	bcm_sf2_intr_disable(priv);
948 949 950 951 952 953 954 955

	/* Disable all ports physically present including the IMP
	 * port, the other ones have already been disabled during
	 * bcm_sf2_sw_setup
	 */
	for (port = 0; port < DSA_MAX_PORTS; port++) {
		if ((1 << port) & ds->phys_port_mask ||
		    dsa_is_cpu_port(ds, port))
956
			bcm_sf2_port_disable(ds, port, NULL);
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
	}

	return 0;
}

static int bcm_sf2_sw_resume(struct dsa_switch *ds)
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
	unsigned int port;
	int ret;

	ret = bcm_sf2_sw_rst(priv);
	if (ret) {
		pr_err("%s: failed to software reset switch\n", __func__);
		return ret;
	}

974 975
	if (priv->hw_params.num_gphy == 1)
		bcm_sf2_gphy_enable_set(ds, true);
976 977 978

	for (port = 0; port < DSA_MAX_PORTS; port++) {
		if ((1 << port) & ds->phys_port_mask)
979
			bcm_sf2_port_setup(ds, port, NULL);
980 981 982 983 984 985 986
		else if (dsa_is_cpu_port(ds, port))
			bcm_sf2_imp_setup(ds, port);
	}

	return 0;
}

987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
static void bcm_sf2_sw_get_wol(struct dsa_switch *ds, int port,
			       struct ethtool_wolinfo *wol)
{
	struct net_device *p = ds->dst[ds->index].master_netdev;
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
	struct ethtool_wolinfo pwol;

	/* Get the parent device WoL settings */
	p->ethtool_ops->get_wol(p, &pwol);

	/* Advertise the parent device supported settings */
	wol->supported = pwol.supported;
	memset(&wol->sopass, 0, sizeof(wol->sopass));

	if (pwol.wolopts & WAKE_MAGICSECURE)
		memcpy(&wol->sopass, pwol.sopass, sizeof(wol->sopass));

	if (priv->wol_ports_mask & (1 << port))
		wol->wolopts = pwol.wolopts;
	else
		wol->wolopts = 0;
}

static int bcm_sf2_sw_set_wol(struct dsa_switch *ds, int port,
			      struct ethtool_wolinfo *wol)
{
	struct net_device *p = ds->dst[ds->index].master_netdev;
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
	s8 cpu_port = ds->dst[ds->index].cpu_port;
	struct ethtool_wolinfo pwol;

	p->ethtool_ops->get_wol(p, &pwol);
	if (wol->wolopts & ~pwol.supported)
		return -EINVAL;

	if (wol->wolopts)
		priv->wol_ports_mask |= (1 << port);
	else
		priv->wol_ports_mask &= ~(1 << port);

	/* If we have at least one port enabled, make sure the CPU port
	 * is also enabled. If the CPU port is the last one enabled, we disable
	 * it since this configuration does not make sense.
	 */
	if (priv->wol_ports_mask && priv->wol_ports_mask != (1 << cpu_port))
		priv->wol_ports_mask |= (1 << cpu_port);
	else
		priv->wol_ports_mask &= ~(1 << cpu_port);

	return p->ethtool_ops->set_wol(p, wol);
}

1039
static struct dsa_switch_driver bcm_sf2_switch_driver = {
1040
	.tag_protocol		= DSA_TAG_PROTO_BRCM,
1041 1042 1043 1044
	.priv_size		= sizeof(struct bcm_sf2_priv),
	.probe			= bcm_sf2_sw_probe,
	.setup			= bcm_sf2_sw_setup,
	.set_addr		= bcm_sf2_sw_set_addr,
1045
	.get_phy_flags		= bcm_sf2_sw_get_phy_flags,
1046 1047 1048 1049 1050 1051 1052
	.phy_read		= bcm_sf2_sw_phy_read,
	.phy_write		= bcm_sf2_sw_phy_write,
	.get_strings		= bcm_sf2_sw_get_strings,
	.get_ethtool_stats	= bcm_sf2_sw_get_ethtool_stats,
	.get_sset_count		= bcm_sf2_sw_get_sset_count,
	.adjust_link		= bcm_sf2_sw_adjust_link,
	.fixed_link_update	= bcm_sf2_sw_fixed_link_update,
1053 1054
	.suspend		= bcm_sf2_sw_suspend,
	.resume			= bcm_sf2_sw_resume,
1055 1056
	.get_wol		= bcm_sf2_sw_get_wol,
	.set_wol		= bcm_sf2_sw_set_wol,
1057 1058
	.port_enable		= bcm_sf2_port_setup,
	.port_disable		= bcm_sf2_port_disable,
1059 1060
	.get_eee		= bcm_sf2_sw_get_eee,
	.set_eee		= bcm_sf2_sw_set_eee,
1061 1062 1063
	.port_join_bridge	= bcm_sf2_sw_br_join,
	.port_leave_bridge	= bcm_sf2_sw_br_leave,
	.port_stp_update	= bcm_sf2_sw_br_set_stp_state,
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
};

static int __init bcm_sf2_init(void)
{
	register_switch_driver(&bcm_sf2_switch_driver);

	return 0;
}
module_init(bcm_sf2_init);

static void __exit bcm_sf2_exit(void)
{
	unregister_switch_driver(&bcm_sf2_switch_driver);
}
module_exit(bcm_sf2_exit);

MODULE_AUTHOR("Broadcom Corporation");
MODULE_DESCRIPTION("Driver for Broadcom Starfighter 2 ethernet switch chip");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:brcm-sf2");