s5p-sss.c 21.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Cryptographic API.
 *
 * Support for Samsung S5PV210 HW acceleration.
 *
 * Copyright (C) 2011 NetUP Inc. All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 */

14 15 16
#include <linux/clk.h>
#include <linux/crypto.h>
#include <linux/dma-mapping.h>
17 18
#include <linux/err.h>
#include <linux/errno.h>
19 20 21
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
22
#include <linux/kernel.h>
23 24
#include <linux/module.h>
#include <linux/of.h>
25 26 27 28
#include <linux/platform_device.h>
#include <linux/scatterlist.h>

#include <crypto/ctr.h>
29 30
#include <crypto/aes.h>
#include <crypto/algapi.h>
31
#include <crypto/scatterwalk.h>
32 33 34 35 36

#define _SBF(s, v)                      ((v) << (s))

/* Feed control registers */
#define SSS_REG_FCINTSTAT               0x0000
37 38 39 40
#define SSS_FCINTSTAT_BRDMAINT          BIT(3)
#define SSS_FCINTSTAT_BTDMAINT          BIT(2)
#define SSS_FCINTSTAT_HRDMAINT          BIT(1)
#define SSS_FCINTSTAT_PKDMAINT          BIT(0)
41 42

#define SSS_REG_FCINTENSET              0x0004
43 44 45 46
#define SSS_FCINTENSET_BRDMAINTENSET    BIT(3)
#define SSS_FCINTENSET_BTDMAINTENSET    BIT(2)
#define SSS_FCINTENSET_HRDMAINTENSET    BIT(1)
#define SSS_FCINTENSET_PKDMAINTENSET    BIT(0)
47 48

#define SSS_REG_FCINTENCLR              0x0008
49 50 51 52
#define SSS_FCINTENCLR_BRDMAINTENCLR    BIT(3)
#define SSS_FCINTENCLR_BTDMAINTENCLR    BIT(2)
#define SSS_FCINTENCLR_HRDMAINTENCLR    BIT(1)
#define SSS_FCINTENCLR_PKDMAINTENCLR    BIT(0)
53 54

#define SSS_REG_FCINTPEND               0x000C
55 56 57 58
#define SSS_FCINTPEND_BRDMAINTP         BIT(3)
#define SSS_FCINTPEND_BTDMAINTP         BIT(2)
#define SSS_FCINTPEND_HRDMAINTP         BIT(1)
#define SSS_FCINTPEND_PKDMAINTP         BIT(0)
59 60

#define SSS_REG_FCFIFOSTAT              0x0010
61 62 63 64 65 66 67 68
#define SSS_FCFIFOSTAT_BRFIFOFUL        BIT(7)
#define SSS_FCFIFOSTAT_BRFIFOEMP        BIT(6)
#define SSS_FCFIFOSTAT_BTFIFOFUL        BIT(5)
#define SSS_FCFIFOSTAT_BTFIFOEMP        BIT(4)
#define SSS_FCFIFOSTAT_HRFIFOFUL        BIT(3)
#define SSS_FCFIFOSTAT_HRFIFOEMP        BIT(2)
#define SSS_FCFIFOSTAT_PKFIFOFUL        BIT(1)
#define SSS_FCFIFOSTAT_PKFIFOEMP        BIT(0)
69 70

#define SSS_REG_FCFIFOCTRL              0x0014
71
#define SSS_FCFIFOCTRL_DESSEL           BIT(2)
72 73 74 75 76 77 78
#define SSS_HASHIN_INDEPENDENT          _SBF(0, 0x00)
#define SSS_HASHIN_CIPHER_INPUT         _SBF(0, 0x01)
#define SSS_HASHIN_CIPHER_OUTPUT        _SBF(0, 0x02)

#define SSS_REG_FCBRDMAS                0x0020
#define SSS_REG_FCBRDMAL                0x0024
#define SSS_REG_FCBRDMAC                0x0028
79 80
#define SSS_FCBRDMAC_BYTESWAP           BIT(1)
#define SSS_FCBRDMAC_FLUSH              BIT(0)
81 82 83 84

#define SSS_REG_FCBTDMAS                0x0030
#define SSS_REG_FCBTDMAL                0x0034
#define SSS_REG_FCBTDMAC                0x0038
85 86
#define SSS_FCBTDMAC_BYTESWAP           BIT(1)
#define SSS_FCBTDMAC_FLUSH              BIT(0)
87 88 89 90

#define SSS_REG_FCHRDMAS                0x0040
#define SSS_REG_FCHRDMAL                0x0044
#define SSS_REG_FCHRDMAC                0x0048
91 92
#define SSS_FCHRDMAC_BYTESWAP           BIT(1)
#define SSS_FCHRDMAC_FLUSH              BIT(0)
93 94 95 96

#define SSS_REG_FCPKDMAS                0x0050
#define SSS_REG_FCPKDMAL                0x0054
#define SSS_REG_FCPKDMAC                0x0058
97 98 99 100
#define SSS_FCPKDMAC_BYTESWAP           BIT(3)
#define SSS_FCPKDMAC_DESCEND            BIT(2)
#define SSS_FCPKDMAC_TRANSMIT           BIT(1)
#define SSS_FCPKDMAC_FLUSH              BIT(0)
101 102 103 104

#define SSS_REG_FCPKDMAO                0x005C

/* AES registers */
105
#define SSS_REG_AES_CONTROL		0x00
106 107 108 109 110 111
#define SSS_AES_BYTESWAP_DI             BIT(11)
#define SSS_AES_BYTESWAP_DO             BIT(10)
#define SSS_AES_BYTESWAP_IV             BIT(9)
#define SSS_AES_BYTESWAP_CNT            BIT(8)
#define SSS_AES_BYTESWAP_KEY            BIT(7)
#define SSS_AES_KEY_CHANGE_MODE         BIT(6)
112 113 114
#define SSS_AES_KEY_SIZE_128            _SBF(4, 0x00)
#define SSS_AES_KEY_SIZE_192            _SBF(4, 0x01)
#define SSS_AES_KEY_SIZE_256            _SBF(4, 0x02)
115
#define SSS_AES_FIFO_MODE               BIT(3)
116 117 118
#define SSS_AES_CHAIN_MODE_ECB          _SBF(1, 0x00)
#define SSS_AES_CHAIN_MODE_CBC          _SBF(1, 0x01)
#define SSS_AES_CHAIN_MODE_CTR          _SBF(1, 0x02)
119
#define SSS_AES_MODE_DECRYPT            BIT(0)
120

121
#define SSS_REG_AES_STATUS		0x04
122 123 124
#define SSS_AES_BUSY                    BIT(2)
#define SSS_AES_INPUT_READY             BIT(1)
#define SSS_AES_OUTPUT_READY            BIT(0)
125

126 127 128 129 130
#define SSS_REG_AES_IN_DATA(s)		(0x10 + (s << 2))
#define SSS_REG_AES_OUT_DATA(s)		(0x20 + (s << 2))
#define SSS_REG_AES_IV_DATA(s)		(0x30 + (s << 2))
#define SSS_REG_AES_CNT_DATA(s)		(0x40 + (s << 2))
#define SSS_REG_AES_KEY_DATA(s)		(0x80 + (s << 2))
131 132 133 134 135

#define SSS_REG(dev, reg)               ((dev)->ioaddr + (SSS_REG_##reg))
#define SSS_READ(dev, reg)              __raw_readl(SSS_REG(dev, reg))
#define SSS_WRITE(dev, reg, val)        __raw_writel((val), SSS_REG(dev, reg))

136 137 138 139
#define SSS_AES_REG(dev, reg)           ((dev)->aes_ioaddr + SSS_REG_##reg)
#define SSS_AES_WRITE(dev, reg, val)    __raw_writel((val), \
						SSS_AES_REG(dev, reg))

140
/* HW engine modes */
141
#define FLAGS_AES_DECRYPT               BIT(0)
142 143 144 145 146 147 148
#define FLAGS_AES_MODE_MASK             _SBF(1, 0x03)
#define FLAGS_AES_CBC                   _SBF(1, 0x01)
#define FLAGS_AES_CTR                   _SBF(1, 0x02)

#define AES_KEY_LEN         16
#define CRYPTO_QUEUE_LEN    1

149 150 151 152 153 154 155 156 157 158 159 160
/**
 * struct samsung_aes_variant - platform specific SSS driver data
 * @aes_offset: AES register offset from SSS module's base.
 *
 * Specifies platform specific configuration of SSS module.
 * Note: A structure for driver specific platform data is used for future
 * expansion of its usage.
 */
struct samsung_aes_variant {
	unsigned int		    aes_offset;
};

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
struct s5p_aes_reqctx {
	unsigned long mode;
};

struct s5p_aes_ctx {
	struct s5p_aes_dev         *dev;

	uint8_t                     aes_key[AES_MAX_KEY_SIZE];
	uint8_t                     nonce[CTR_RFC3686_NONCE_SIZE];
	int                         keylen;
};

struct s5p_aes_dev {
	struct device              *dev;
	struct clk                 *clk;
	void __iomem               *ioaddr;
177
	void __iomem               *aes_ioaddr;
178 179 180 181 182 183 184
	int                         irq_fc;

	struct ablkcipher_request  *req;
	struct s5p_aes_ctx         *ctx;
	struct scatterlist         *sg_src;
	struct scatterlist         *sg_dst;

185 186 187 188
	/* In case of unaligned access: */
	struct scatterlist         *sg_src_cpy;
	struct scatterlist         *sg_dst_cpy;

189 190 191 192
	struct tasklet_struct       tasklet;
	struct crypto_queue         queue;
	bool                        busy;
	spinlock_t                  lock;
193 194

	struct samsung_aes_variant *variant;
195 196 197 198
};

static struct s5p_aes_dev *s5p_dev;

199 200 201 202 203 204 205 206
static const struct samsung_aes_variant s5p_aes_data = {
	.aes_offset	= 0x4000,
};

static const struct samsung_aes_variant exynos_aes_data = {
	.aes_offset	= 0x200,
};

207
static const struct of_device_id s5p_sss_dt_match[] = {
208 209 210 211 212 213 214 215
	{
		.compatible = "samsung,s5pv210-secss",
		.data = &s5p_aes_data,
	},
	{
		.compatible = "samsung,exynos4210-secss",
		.data = &exynos_aes_data,
	},
216 217 218 219
	{ },
};
MODULE_DEVICE_TABLE(of, s5p_sss_dt_match);

220 221 222 223 224
static inline struct samsung_aes_variant *find_s5p_sss_version
				   (struct platform_device *pdev)
{
	if (IS_ENABLED(CONFIG_OF) && (pdev->dev.of_node)) {
		const struct of_device_id *match;
225

226 227 228 229 230 231 232 233
		match = of_match_node(s5p_sss_dt_match,
					pdev->dev.of_node);
		return (struct samsung_aes_variant *)match->data;
	}
	return (struct samsung_aes_variant *)
			platform_get_device_id(pdev)->driver_data;
}

234 235 236 237 238 239 240 241 242 243 244 245
static void s5p_set_dma_indata(struct s5p_aes_dev *dev, struct scatterlist *sg)
{
	SSS_WRITE(dev, FCBRDMAS, sg_dma_address(sg));
	SSS_WRITE(dev, FCBRDMAL, sg_dma_len(sg));
}

static void s5p_set_dma_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg)
{
	SSS_WRITE(dev, FCBTDMAS, sg_dma_address(sg));
	SSS_WRITE(dev, FCBTDMAL, sg_dma_len(sg));
}

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
static void s5p_free_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist **sg)
{
	int len;

	if (!*sg)
		return;

	len = ALIGN(dev->req->nbytes, AES_BLOCK_SIZE);
	free_pages((unsigned long)sg_virt(*sg), get_order(len));

	kfree(*sg);
	*sg = NULL;
}

static void s5p_sg_copy_buf(void *buf, struct scatterlist *sg,
			    unsigned int nbytes, int out)
{
	struct scatter_walk walk;

	if (!nbytes)
		return;

	scatterwalk_start(&walk, sg);
	scatterwalk_copychunks(buf, &walk, nbytes, out);
	scatterwalk_done(&walk, out, 0);
}

273 274
static void s5p_aes_complete(struct s5p_aes_dev *dev, int err)
{
275 276 277 278 279 280 281 282 283 284
	if (dev->sg_dst_cpy) {
		dev_dbg(dev->dev,
			"Copying %d bytes of output data back to original place\n",
			dev->req->nbytes);
		s5p_sg_copy_buf(sg_virt(dev->sg_dst_cpy), dev->req->dst,
				dev->req->nbytes, 1);
	}
	s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
	s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);

285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
	/* holding a lock outside */
	dev->req->base.complete(&dev->req->base, err);
	dev->busy = false;
}

static void s5p_unset_outdata(struct s5p_aes_dev *dev)
{
	dma_unmap_sg(dev->dev, dev->sg_dst, 1, DMA_FROM_DEVICE);
}

static void s5p_unset_indata(struct s5p_aes_dev *dev)
{
	dma_unmap_sg(dev->dev, dev->sg_src, 1, DMA_TO_DEVICE);
}

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
static int s5p_make_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist *src,
			    struct scatterlist **dst)
{
	void *pages;
	int len;

	*dst = kmalloc(sizeof(**dst), GFP_ATOMIC);
	if (!*dst)
		return -ENOMEM;

	len = ALIGN(dev->req->nbytes, AES_BLOCK_SIZE);
	pages = (void *)__get_free_pages(GFP_ATOMIC, get_order(len));
	if (!pages) {
		kfree(*dst);
		*dst = NULL;
		return -ENOMEM;
	}

	s5p_sg_copy_buf(pages, src, dev->req->nbytes, 0);

	sg_init_table(*dst, 1);
	sg_set_buf(*dst, pages, len);

	return 0;
}

326 327 328 329
static int s5p_set_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg)
{
	int err;

330
	if (!sg->length) {
331 332 333 334 335 336 337 338 339 340 341 342 343
		err = -EINVAL;
		goto exit;
	}

	err = dma_map_sg(dev->dev, sg, 1, DMA_FROM_DEVICE);
	if (!err) {
		err = -ENOMEM;
		goto exit;
	}

	dev->sg_dst = sg;
	err = 0;

344
exit:
345 346 347 348 349 350 351
	return err;
}

static int s5p_set_indata(struct s5p_aes_dev *dev, struct scatterlist *sg)
{
	int err;

352
	if (!sg->length) {
353 354 355 356 357 358 359 360 361 362 363 364 365
		err = -EINVAL;
		goto exit;
	}

	err = dma_map_sg(dev->dev, sg, 1, DMA_TO_DEVICE);
	if (!err) {
		err = -ENOMEM;
		goto exit;
	}

	dev->sg_src = sg;
	err = 0;

366
exit:
367 368 369
	return err;
}

370 371 372 373 374 375
/*
 * Returns true if new transmitting (output) data is ready and its
 * address+length have to be written to device (by calling
 * s5p_set_dma_outdata()). False otherwise.
 */
static bool s5p_aes_tx(struct s5p_aes_dev *dev)
376 377
{
	int err = 0;
378
	bool ret = false;
379 380 381 382 383

	s5p_unset_outdata(dev);

	if (!sg_is_last(dev->sg_dst)) {
		err = s5p_set_outdata(dev, sg_next(dev->sg_dst));
384
		if (err)
385
			s5p_aes_complete(dev, err);
386 387
		else
			ret = true;
388
	} else {
389
		s5p_aes_complete(dev, err);
390 391 392 393

		dev->busy = true;
		tasklet_schedule(&dev->tasklet);
	}
394 395

	return ret;
396 397
}

398 399 400 401 402 403
/*
 * Returns true if new receiving (input) data is ready and its
 * address+length have to be written to device (by calling
 * s5p_set_dma_indata()). False otherwise.
 */
static bool s5p_aes_rx(struct s5p_aes_dev *dev)
404 405
{
	int err;
406
	bool ret = false;
407 408 409 410 411

	s5p_unset_indata(dev);

	if (!sg_is_last(dev->sg_src)) {
		err = s5p_set_indata(dev, sg_next(dev->sg_src));
412
		if (err)
413
			s5p_aes_complete(dev, err);
414 415
		else
			ret = true;
416
	}
417 418

	return ret;
419 420 421 422 423 424 425 426
}

static irqreturn_t s5p_aes_interrupt(int irq, void *dev_id)
{
	struct platform_device *pdev = dev_id;
	struct s5p_aes_dev     *dev  = platform_get_drvdata(pdev);
	uint32_t                status;
	unsigned long           flags;
427 428
	bool			set_dma_tx = false;
	bool			set_dma_rx = false;
429 430 431

	spin_lock_irqsave(&dev->lock, flags);

432 433
	status = SSS_READ(dev, FCINTSTAT);
	if (status & SSS_FCINTSTAT_BRDMAINT)
434
		set_dma_rx = s5p_aes_rx(dev);
435
	if (status & SSS_FCINTSTAT_BTDMAINT)
436
		set_dma_tx = s5p_aes_tx(dev);
437

438
	SSS_WRITE(dev, FCINTPEND, status);
439

440 441 442 443 444 445 446 447 448 449 450
	/*
	 * Writing length of DMA block (either receiving or transmitting)
	 * will start the operation immediately, so this should be done
	 * at the end (even after clearing pending interrupts to not miss the
	 * interrupt).
	 */
	if (set_dma_tx)
		s5p_set_dma_outdata(dev, dev->sg_dst);
	if (set_dma_rx)
		s5p_set_dma_indata(dev, dev->sg_src);

451 452 453 454 455 456 457 458 459 460
	spin_unlock_irqrestore(&dev->lock, flags);

	return IRQ_HANDLED;
}

static void s5p_set_aes(struct s5p_aes_dev *dev,
			uint8_t *key, uint8_t *iv, unsigned int keylen)
{
	void __iomem *keystart;

461
	if (iv)
462
		memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), iv, 0x10);
463 464

	if (keylen == AES_KEYSIZE_256)
465
		keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(0);
466
	else if (keylen == AES_KEYSIZE_192)
467
		keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(2);
468
	else
469
		keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(4);
470

471
	memcpy_toio(keystart, key, keylen);
472 473
}

474 475 476
static bool s5p_is_sg_aligned(struct scatterlist *sg)
{
	while (sg) {
477
		if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE))
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
			return false;
		sg = sg_next(sg);
	}

	return true;
}

static int s5p_set_indata_start(struct s5p_aes_dev *dev,
				struct ablkcipher_request *req)
{
	struct scatterlist *sg;
	int err;

	dev->sg_src_cpy = NULL;
	sg = req->src;
	if (!s5p_is_sg_aligned(sg)) {
		dev_dbg(dev->dev,
			"At least one unaligned source scatter list, making a copy\n");
		err = s5p_make_sg_cpy(dev, sg, &dev->sg_src_cpy);
		if (err)
			return err;

		sg = dev->sg_src_cpy;
	}

	err = s5p_set_indata(dev, sg);
	if (err) {
		s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
		return err;
	}

	return 0;
}

static int s5p_set_outdata_start(struct s5p_aes_dev *dev,
				struct ablkcipher_request *req)
{
	struct scatterlist *sg;
	int err;

	dev->sg_dst_cpy = NULL;
	sg = req->dst;
	if (!s5p_is_sg_aligned(sg)) {
		dev_dbg(dev->dev,
			"At least one unaligned dest scatter list, making a copy\n");
		err = s5p_make_sg_cpy(dev, sg, &dev->sg_dst_cpy);
		if (err)
			return err;

		sg = dev->sg_dst_cpy;
	}

	err = s5p_set_outdata(dev, sg);
	if (err) {
		s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
		return err;
	}

	return 0;
}

539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
static void s5p_aes_crypt_start(struct s5p_aes_dev *dev, unsigned long mode)
{
	struct ablkcipher_request  *req = dev->req;
	uint32_t                    aes_control;
	int                         err;
	unsigned long               flags;

	aes_control = SSS_AES_KEY_CHANGE_MODE;
	if (mode & FLAGS_AES_DECRYPT)
		aes_control |= SSS_AES_MODE_DECRYPT;

	if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CBC)
		aes_control |= SSS_AES_CHAIN_MODE_CBC;
	else if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CTR)
		aes_control |= SSS_AES_CHAIN_MODE_CTR;

	if (dev->ctx->keylen == AES_KEYSIZE_192)
		aes_control |= SSS_AES_KEY_SIZE_192;
	else if (dev->ctx->keylen == AES_KEYSIZE_256)
		aes_control |= SSS_AES_KEY_SIZE_256;

	aes_control |= SSS_AES_FIFO_MODE;

	/* as a variant it is possible to use byte swapping on DMA side */
	aes_control |= SSS_AES_BYTESWAP_DI
		    |  SSS_AES_BYTESWAP_DO
		    |  SSS_AES_BYTESWAP_IV
		    |  SSS_AES_BYTESWAP_KEY
		    |  SSS_AES_BYTESWAP_CNT;

	spin_lock_irqsave(&dev->lock, flags);

	SSS_WRITE(dev, FCINTENCLR,
		  SSS_FCINTENCLR_BTDMAINTENCLR | SSS_FCINTENCLR_BRDMAINTENCLR);
	SSS_WRITE(dev, FCFIFOCTRL, 0x00);

575
	err = s5p_set_indata_start(dev, req);
576 577 578
	if (err)
		goto indata_error;

579
	err = s5p_set_outdata_start(dev, req);
580 581 582
	if (err)
		goto outdata_error;

583
	SSS_AES_WRITE(dev, AES_CONTROL, aes_control);
584 585
	s5p_set_aes(dev, dev->ctx->aes_key, req->info, dev->ctx->keylen);

586 587
	s5p_set_dma_indata(dev,  dev->sg_src);
	s5p_set_dma_outdata(dev, dev->sg_dst);
588 589 590 591 592 593 594 595

	SSS_WRITE(dev, FCINTENSET,
		  SSS_FCINTENSET_BTDMAINTENSET | SSS_FCINTENSET_BRDMAINTENSET);

	spin_unlock_irqrestore(&dev->lock, flags);

	return;

596
outdata_error:
597 598
	s5p_unset_indata(dev);

599
indata_error:
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
	s5p_aes_complete(dev, err);
	spin_unlock_irqrestore(&dev->lock, flags);
}

static void s5p_tasklet_cb(unsigned long data)
{
	struct s5p_aes_dev *dev = (struct s5p_aes_dev *)data;
	struct crypto_async_request *async_req, *backlog;
	struct s5p_aes_reqctx *reqctx;
	unsigned long flags;

	spin_lock_irqsave(&dev->lock, flags);
	backlog   = crypto_get_backlog(&dev->queue);
	async_req = crypto_dequeue_request(&dev->queue);

615 616 617
	if (!async_req) {
		dev->busy = false;
		spin_unlock_irqrestore(&dev->lock, flags);
618
		return;
619 620
	}
	spin_unlock_irqrestore(&dev->lock, flags);
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638

	if (backlog)
		backlog->complete(backlog, -EINPROGRESS);

	dev->req = ablkcipher_request_cast(async_req);
	dev->ctx = crypto_tfm_ctx(dev->req->base.tfm);
	reqctx   = ablkcipher_request_ctx(dev->req);

	s5p_aes_crypt_start(dev, reqctx->mode);
}

static int s5p_aes_handle_req(struct s5p_aes_dev *dev,
			      struct ablkcipher_request *req)
{
	unsigned long flags;
	int err;

	spin_lock_irqsave(&dev->lock, flags);
639
	err = ablkcipher_enqueue_request(&dev->queue, req);
640 641 642 643 644 645 646 647 648 649
	if (dev->busy) {
		spin_unlock_irqrestore(&dev->lock, flags);
		goto exit;
	}
	dev->busy = true;

	spin_unlock_irqrestore(&dev->lock, flags);

	tasklet_schedule(&dev->tasklet);

650
exit:
651 652 653 654 655 656 657 658 659 660 661
	return err;
}

static int s5p_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
{
	struct crypto_ablkcipher   *tfm    = crypto_ablkcipher_reqtfm(req);
	struct s5p_aes_ctx         *ctx    = crypto_ablkcipher_ctx(tfm);
	struct s5p_aes_reqctx      *reqctx = ablkcipher_request_ctx(req);
	struct s5p_aes_dev         *dev    = ctx->dev;

	if (!IS_ALIGNED(req->nbytes, AES_BLOCK_SIZE)) {
662
		dev_err(dev->dev, "request size is not exact amount of AES blocks\n");
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
		return -EINVAL;
	}

	reqctx->mode = mode;

	return s5p_aes_handle_req(dev, req);
}

static int s5p_aes_setkey(struct crypto_ablkcipher *cipher,
			  const uint8_t *key, unsigned int keylen)
{
	struct crypto_tfm  *tfm = crypto_ablkcipher_tfm(cipher);
	struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);

	if (keylen != AES_KEYSIZE_128 &&
	    keylen != AES_KEYSIZE_192 &&
	    keylen != AES_KEYSIZE_256)
		return -EINVAL;

	memcpy(ctx->aes_key, key, keylen);
	ctx->keylen = keylen;

	return 0;
}

static int s5p_aes_ecb_encrypt(struct ablkcipher_request *req)
{
	return s5p_aes_crypt(req, 0);
}

static int s5p_aes_ecb_decrypt(struct ablkcipher_request *req)
{
	return s5p_aes_crypt(req, FLAGS_AES_DECRYPT);
}

static int s5p_aes_cbc_encrypt(struct ablkcipher_request *req)
{
	return s5p_aes_crypt(req, FLAGS_AES_CBC);
}

static int s5p_aes_cbc_decrypt(struct ablkcipher_request *req)
{
	return s5p_aes_crypt(req, FLAGS_AES_DECRYPT | FLAGS_AES_CBC);
}

static int s5p_aes_cra_init(struct crypto_tfm *tfm)
{
710
	struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
711 712 713 714 715 716 717 718 719 720 721 722 723

	ctx->dev = s5p_dev;
	tfm->crt_ablkcipher.reqsize = sizeof(struct s5p_aes_reqctx);

	return 0;
}

static struct crypto_alg algs[] = {
	{
		.cra_name		= "ecb(aes)",
		.cra_driver_name	= "ecb-aes-s5p",
		.cra_priority		= 100,
		.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
724 725
					  CRYPTO_ALG_ASYNC |
					  CRYPTO_ALG_KERN_DRIVER_ONLY,
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
		.cra_blocksize		= AES_BLOCK_SIZE,
		.cra_ctxsize		= sizeof(struct s5p_aes_ctx),
		.cra_alignmask		= 0x0f,
		.cra_type		= &crypto_ablkcipher_type,
		.cra_module		= THIS_MODULE,
		.cra_init		= s5p_aes_cra_init,
		.cra_u.ablkcipher = {
			.min_keysize	= AES_MIN_KEY_SIZE,
			.max_keysize	= AES_MAX_KEY_SIZE,
			.setkey		= s5p_aes_setkey,
			.encrypt	= s5p_aes_ecb_encrypt,
			.decrypt	= s5p_aes_ecb_decrypt,
		}
	},
	{
		.cra_name		= "cbc(aes)",
		.cra_driver_name	= "cbc-aes-s5p",
		.cra_priority		= 100,
		.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
745 746
					  CRYPTO_ALG_ASYNC |
					  CRYPTO_ALG_KERN_DRIVER_ONLY,
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
		.cra_blocksize		= AES_BLOCK_SIZE,
		.cra_ctxsize		= sizeof(struct s5p_aes_ctx),
		.cra_alignmask		= 0x0f,
		.cra_type		= &crypto_ablkcipher_type,
		.cra_module		= THIS_MODULE,
		.cra_init		= s5p_aes_cra_init,
		.cra_u.ablkcipher = {
			.min_keysize	= AES_MIN_KEY_SIZE,
			.max_keysize	= AES_MAX_KEY_SIZE,
			.ivsize		= AES_BLOCK_SIZE,
			.setkey		= s5p_aes_setkey,
			.encrypt	= s5p_aes_cbc_encrypt,
			.decrypt	= s5p_aes_cbc_decrypt,
		}
	},
};

static int s5p_aes_probe(struct platform_device *pdev)
{
	int                 i, j, err = -ENODEV;
	struct s5p_aes_dev *pdata;
	struct device      *dev = &pdev->dev;
	struct resource    *res;
770
	struct samsung_aes_variant *variant;
771 772 773 774 775 776 777 778

	if (s5p_dev)
		return -EEXIST;

	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
	if (!pdata)
		return -ENOMEM;

779 780 781 782
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(pdata->ioaddr))
		return PTR_ERR(pdata->ioaddr);
783

784 785
	variant = find_s5p_sss_version(pdev);

786
	pdata->clk = devm_clk_get(dev, "secss");
787 788 789 790 791
	if (IS_ERR(pdata->clk)) {
		dev_err(dev, "failed to find secss clock source\n");
		return -ENOENT;
	}

792 793 794 795 796
	err = clk_prepare_enable(pdata->clk);
	if (err < 0) {
		dev_err(dev, "Enabling SSS clk failed, err %d\n", err);
		return err;
	}
797 798 799

	spin_lock_init(&pdata->lock);

800 801
	pdata->aes_ioaddr = pdata->ioaddr + variant->aes_offset;

802 803 804 805
	pdata->irq_fc = platform_get_irq(pdev, 0);
	if (pdata->irq_fc < 0) {
		err = pdata->irq_fc;
		dev_warn(dev, "feed control interrupt is not available.\n");
806 807
		goto err_irq;
	}
808
	err = devm_request_irq(dev, pdata->irq_fc, s5p_aes_interrupt,
809 810
			       IRQF_SHARED, pdev->name, pdev);
	if (err < 0) {
811
		dev_warn(dev, "feed control interrupt is not available.\n");
812 813 814
		goto err_irq;
	}

815
	pdata->busy = false;
816
	pdata->variant = variant;
817 818 819 820 821 822 823 824 825 826 827 828 829
	pdata->dev = dev;
	platform_set_drvdata(pdev, pdata);
	s5p_dev = pdata;

	tasklet_init(&pdata->tasklet, s5p_tasklet_cb, (unsigned long)pdata);
	crypto_init_queue(&pdata->queue, CRYPTO_QUEUE_LEN);

	for (i = 0; i < ARRAY_SIZE(algs); i++) {
		err = crypto_register_alg(&algs[i]);
		if (err)
			goto err_algs;
	}

830
	dev_info(dev, "s5p-sss driver registered\n");
831 832 833

	return 0;

834
err_algs:
835 836 837 838 839 840 841
	dev_err(dev, "can't register '%s': %d\n", algs[i].cra_name, err);

	for (j = 0; j < i; j++)
		crypto_unregister_alg(&algs[j]);

	tasklet_kill(&pdata->tasklet);

842
err_irq:
843
	clk_disable_unprepare(pdata->clk);
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862

	s5p_dev = NULL;

	return err;
}

static int s5p_aes_remove(struct platform_device *pdev)
{
	struct s5p_aes_dev *pdata = platform_get_drvdata(pdev);
	int i;

	if (!pdata)
		return -ENODEV;

	for (i = 0; i < ARRAY_SIZE(algs); i++)
		crypto_unregister_alg(&algs[i]);

	tasklet_kill(&pdata->tasklet);

863
	clk_disable_unprepare(pdata->clk);
864 865 866 867 868 869 870 871 872 873 874

	s5p_dev = NULL;

	return 0;
}

static struct platform_driver s5p_aes_crypto = {
	.probe	= s5p_aes_probe,
	.remove	= s5p_aes_remove,
	.driver	= {
		.name	= "s5p-secss",
875
		.of_match_table = s5p_sss_dt_match,
876 877 878
	},
};

879
module_platform_driver(s5p_aes_crypto);
880 881 882 883

MODULE_DESCRIPTION("S5PV210 AES hw acceleration support.");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Vladimir Zapolskiy <vzapolskiy@gmail.com>");