i915_gem_ttm.c 26.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// SPDX-License-Identifier: MIT
/*
 * Copyright © 2021 Intel Corporation
 */

#include <drm/ttm/ttm_bo_driver.h>
#include <drm/ttm/ttm_placement.h>

#include "i915_drv.h"
#include "intel_memory_region.h"
#include "intel_region_ttm.h"

#include "gem/i915_gem_object.h"
#include "gem/i915_gem_region.h"
#include "gem/i915_gem_ttm.h"
16
#include "gem/i915_gem_mman.h"
17

18 19 20
#include "gt/intel_migrate.h"
#include "gt/intel_engine_pm.h"

21 22 23 24 25 26 27 28 29
#define I915_PL_LMEM0 TTM_PL_PRIV
#define I915_PL_SYSTEM TTM_PL_SYSTEM
#define I915_PL_STOLEN TTM_PL_VRAM
#define I915_PL_GGTT TTM_PL_TT

#define I915_TTM_PRIO_PURGE     0
#define I915_TTM_PRIO_NO_PAGES  1
#define I915_TTM_PRIO_HAS_PAGES 2

30 31 32 33 34
/*
 * Size of struct ttm_place vector in on-stack struct ttm_placement allocs
 */
#define I915_TTM_MAX_PLACEMENTS INTEL_REGION_UNKNOWN

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
/**
 * struct i915_ttm_tt - TTM page vector with additional private information
 * @ttm: The base TTM page vector.
 * @dev: The struct device used for dma mapping and unmapping.
 * @cached_st: The cached scatter-gather table.
 *
 * Note that DMA may be going on right up to the point where the page-
 * vector is unpopulated in delayed destroy. Hence keep the
 * scatter-gather table mapped and cached up to that point. This is
 * different from the cached gem object io scatter-gather table which
 * doesn't have an associated dma mapping.
 */
struct i915_ttm_tt {
	struct ttm_tt ttm;
	struct device *dev;
	struct sg_table *cached_st;
};

53 54 55 56 57
static const struct ttm_place sys_placement_flags = {
	.fpfn = 0,
	.lpfn = 0,
	.mem_type = I915_PL_SYSTEM,
	.flags = 0,
58 59 60 61
};

static struct ttm_placement i915_sys_placement = {
	.num_placement = 1,
62
	.placement = &sys_placement_flags,
63
	.num_busy_placement = 1,
64
	.busy_placement = &sys_placement_flags,
65 66
};

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
static int i915_ttm_err_to_gem(int err)
{
	/* Fastpath */
	if (likely(!err))
		return 0;

	switch (err) {
	case -EBUSY:
		/*
		 * TTM likes to convert -EDEADLK to -EBUSY, and wants us to
		 * restart the operation, since we don't record the contending
		 * lock. We use -EAGAIN to restart.
		 */
		return -EAGAIN;
	case -ENOSPC:
		/*
		 * Memory type / region is full, and we can't evict.
		 * Except possibly system, that returns -ENOMEM;
		 */
		return -ENXIO;
	default:
		break;
	}

	return err;
}

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
static bool gpu_binds_iomem(struct ttm_resource *mem)
{
	return mem->mem_type != TTM_PL_SYSTEM;
}

static bool cpu_maps_iomem(struct ttm_resource *mem)
{
	/* Once / if we support GGTT, this is also false for cached ttm_tts */
	return mem->mem_type != TTM_PL_SYSTEM;
}

static enum i915_cache_level
i915_ttm_cache_level(struct drm_i915_private *i915, struct ttm_resource *res,
		     struct ttm_tt *ttm)
{
	return ((HAS_LLC(i915) || HAS_SNOOP(i915)) && !gpu_binds_iomem(res) &&
		ttm->caching == ttm_cached) ? I915_CACHE_LLC :
		I915_CACHE_NONE;
}

114 115
static void i915_ttm_adjust_lru(struct drm_i915_gem_object *obj);

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
static enum ttm_caching
i915_ttm_select_tt_caching(const struct drm_i915_gem_object *obj)
{
	/*
	 * Objects only allowed in system get cached cpu-mappings.
	 * Other objects get WC mapping for now. Even if in system.
	 */
	if (obj->mm.region->type == INTEL_MEMORY_SYSTEM &&
	    obj->mm.n_placements <= 1)
		return ttm_cached;

	return ttm_write_combined;
}

static void
i915_ttm_place_from_region(const struct intel_memory_region *mr,
132 133
			   struct ttm_place *place,
			   unsigned int flags)
134 135 136
{
	memset(place, 0, sizeof(*place));
	place->mem_type = intel_region_to_ttm_type(mr);
137 138 139

	if (flags & I915_BO_ALLOC_CONTIGUOUS)
		place->flags = TTM_PL_FLAG_CONTIGUOUS;
140 141 142 143 144 145 146 147 148
}

static void
i915_ttm_placement_from_obj(const struct drm_i915_gem_object *obj,
			    struct ttm_place *requested,
			    struct ttm_place *busy,
			    struct ttm_placement *placement)
{
	unsigned int num_allowed = obj->mm.n_placements;
149
	unsigned int flags = obj->flags;
150 151 152 153
	unsigned int i;

	placement->num_placement = 1;
	i915_ttm_place_from_region(num_allowed ? obj->mm.placements[0] :
154
				   obj->mm.region, requested, flags);
155 156 157 158

	/* Cache this on object? */
	placement->num_busy_placement = num_allowed;
	for (i = 0; i < placement->num_busy_placement; ++i)
159
		i915_ttm_place_from_region(obj->mm.placements[i], busy + i, flags);
160 161 162 163 164 165 166 167 168 169

	if (num_allowed == 0) {
		*busy = *requested;
		placement->num_busy_placement = 1;
	}

	placement->placement = requested;
	placement->busy_placement = busy;
}

170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
static struct ttm_tt *i915_ttm_tt_create(struct ttm_buffer_object *bo,
					 uint32_t page_flags)
{
	struct ttm_resource_manager *man =
		ttm_manager_type(bo->bdev, bo->resource->mem_type);
	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
	struct i915_ttm_tt *i915_tt;
	int ret;

	i915_tt = kzalloc(sizeof(*i915_tt), GFP_KERNEL);
	if (!i915_tt)
		return NULL;

	if (obj->flags & I915_BO_ALLOC_CPU_CLEAR &&
	    man->use_tt)
		page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;

187 188
	ret = ttm_tt_init(&i915_tt->ttm, bo, page_flags,
			  i915_ttm_select_tt_caching(obj));
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
	if (ret) {
		kfree(i915_tt);
		return NULL;
	}

	i915_tt->dev = obj->base.dev->dev;

	return &i915_tt->ttm;
}

static void i915_ttm_tt_unpopulate(struct ttm_device *bdev, struct ttm_tt *ttm)
{
	struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);

	if (i915_tt->cached_st) {
		dma_unmap_sgtable(i915_tt->dev, i915_tt->cached_st,
				  DMA_BIDIRECTIONAL, 0);
		sg_free_table(i915_tt->cached_st);
		kfree(i915_tt->cached_st);
		i915_tt->cached_st = NULL;
	}
	ttm_pool_free(&bdev->pool, ttm);
}

static void i915_ttm_tt_destroy(struct ttm_device *bdev, struct ttm_tt *ttm)
{
	struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);

217
	ttm_tt_fini(ttm);
218 219 220 221 222 223 224 225 226
	kfree(i915_tt);
}

static bool i915_ttm_eviction_valuable(struct ttm_buffer_object *bo,
				       const struct ttm_place *place)
{
	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);

	/* Will do for now. Our pinned objects are still on TTM's LRU lists */
227
	return i915_gem_object_evictable(obj);
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
}

static void i915_ttm_evict_flags(struct ttm_buffer_object *bo,
				 struct ttm_placement *placement)
{
	*placement = i915_sys_placement;
}

static int i915_ttm_move_notify(struct ttm_buffer_object *bo)
{
	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
	int ret;

	ret = i915_gem_object_unbind(obj, I915_GEM_OBJECT_UNBIND_ACTIVE);
	if (ret)
		return ret;

	ret = __i915_gem_object_put_pages(obj);
	if (ret)
		return ret;

	return 0;
}

static void i915_ttm_free_cached_io_st(struct drm_i915_gem_object *obj)
{
254 255 256 257 258 259 260 261 262 263 264 265 266 267
	struct radix_tree_iter iter;
	void __rcu **slot;

	if (!obj->ttm.cached_io_st)
		return;

	rcu_read_lock();
	radix_tree_for_each_slot(slot, &obj->ttm.get_io_page.radix, &iter, 0)
		radix_tree_delete(&obj->ttm.get_io_page.radix, iter.index);
	rcu_read_unlock();

	sg_free_table(obj->ttm.cached_io_st);
	kfree(obj->ttm.cached_io_st);
	obj->ttm.cached_io_st = NULL;
268 269
}

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
static void
i915_ttm_adjust_domains_after_move(struct drm_i915_gem_object *obj)
{
	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);

	if (cpu_maps_iomem(bo->resource) || bo->ttm->caching != ttm_cached) {
		obj->write_domain = I915_GEM_DOMAIN_WC;
		obj->read_domains = I915_GEM_DOMAIN_WC;
	} else {
		obj->write_domain = I915_GEM_DOMAIN_CPU;
		obj->read_domains = I915_GEM_DOMAIN_CPU;
	}
}

static void i915_ttm_adjust_gem_after_move(struct drm_i915_gem_object *obj)
{
	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
	unsigned int cache_level;
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
	unsigned int i;

	/*
	 * If object was moved to an allowable region, update the object
	 * region to consider it migrated. Note that if it's currently not
	 * in an allowable region, it's evicted and we don't update the
	 * object region.
	 */
	if (intel_region_to_ttm_type(obj->mm.region) != bo->resource->mem_type) {
		for (i = 0; i < obj->mm.n_placements; ++i) {
			struct intel_memory_region *mr = obj->mm.placements[i];

			if (intel_region_to_ttm_type(mr) == bo->resource->mem_type &&
			    mr != obj->mm.region) {
				i915_gem_object_release_memory_region(obj);
				i915_gem_object_init_memory_region(obj, mr);
				break;
			}
		}
	}
308 309 310 311 312 313 314 315 316 317 318

	obj->mem_flags &= ~(I915_BO_FLAG_STRUCT_PAGE | I915_BO_FLAG_IOMEM);

	obj->mem_flags |= cpu_maps_iomem(bo->resource) ? I915_BO_FLAG_IOMEM :
		I915_BO_FLAG_STRUCT_PAGE;

	cache_level = i915_ttm_cache_level(to_i915(bo->base.dev), bo->resource,
					   bo->ttm);
	i915_gem_object_set_cache_coherency(obj, cache_level);
}

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
static void i915_ttm_purge(struct drm_i915_gem_object *obj)
{
	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
	struct ttm_operation_ctx ctx = {
		.interruptible = true,
		.no_wait_gpu = false,
	};
	struct ttm_placement place = {};
	int ret;

	if (obj->mm.madv == __I915_MADV_PURGED)
		return;

	/* TTM's purge interface. Note that we might be reentering. */
	ret = ttm_bo_validate(bo, &place, &ctx);
	if (!ret) {
335 336 337
		obj->write_domain = 0;
		obj->read_domains = 0;
		i915_ttm_adjust_gem_after_move(obj);
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
		i915_ttm_free_cached_io_st(obj);
		obj->mm.madv = __I915_MADV_PURGED;
	}
}

static void i915_ttm_swap_notify(struct ttm_buffer_object *bo)
{
	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
	int ret = i915_ttm_move_notify(bo);

	GEM_WARN_ON(ret);
	GEM_WARN_ON(obj->ttm.cached_io_st);
	if (!ret && obj->mm.madv != I915_MADV_WILLNEED)
		i915_ttm_purge(obj);
}

static void i915_ttm_delete_mem_notify(struct ttm_buffer_object *bo)
{
	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);

	if (likely(obj)) {
		/* This releases all gem object bindings to the backend. */
360
		i915_ttm_free_cached_io_st(obj);
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
		__i915_gem_free_object(obj);
	}
}

static struct intel_memory_region *
i915_ttm_region(struct ttm_device *bdev, int ttm_mem_type)
{
	struct drm_i915_private *i915 = container_of(bdev, typeof(*i915), bdev);

	/* There's some room for optimization here... */
	GEM_BUG_ON(ttm_mem_type != I915_PL_SYSTEM &&
		   ttm_mem_type < I915_PL_LMEM0);
	if (ttm_mem_type == I915_PL_SYSTEM)
		return intel_memory_region_lookup(i915, INTEL_MEMORY_SYSTEM,
						  0);

	return intel_memory_region_lookup(i915, INTEL_MEMORY_LOCAL,
					  ttm_mem_type - I915_PL_LMEM0);
}

static struct sg_table *i915_ttm_tt_get_st(struct ttm_tt *ttm)
{
	struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
	struct sg_table *st;
	int ret;

	if (i915_tt->cached_st)
		return i915_tt->cached_st;

	st = kzalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		return ERR_PTR(-ENOMEM);

394 395 396 397 398
	ret = sg_alloc_table_from_pages_segment(st,
			ttm->pages, ttm->num_pages,
			0, (unsigned long)ttm->num_pages << PAGE_SHIFT,
			i915_sg_segment_size(), GFP_KERNEL);
	if (ret) {
399
		kfree(st);
400
		return ERR_PTR(ret);
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
	}

	ret = dma_map_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL, 0);
	if (ret) {
		sg_free_table(st);
		kfree(st);
		return ERR_PTR(ret);
	}

	i915_tt->cached_st = st;
	return st;
}

static struct sg_table *
i915_ttm_resource_get_st(struct drm_i915_gem_object *obj,
			 struct ttm_resource *res)
{
	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);

420
	if (!gpu_binds_iomem(res))
421 422
		return i915_ttm_tt_get_st(bo->ttm);

423 424 425 426 427
	/*
	 * If CPU mapping differs, we need to add the ttm_tt pages to
	 * the resulting st. Might make sense for GGTT.
	 */
	GEM_WARN_ON(!cpu_maps_iomem(res));
428
	return intel_region_ttm_resource_to_st(obj->mm.region, res);
429 430
}

431 432 433 434 435 436 437 438 439 440 441
static int i915_ttm_accel_move(struct ttm_buffer_object *bo,
			       struct ttm_resource *dst_mem,
			       struct sg_table *dst_st)
{
	struct drm_i915_private *i915 = container_of(bo->bdev, typeof(*i915),
						     bdev);
	struct ttm_resource_manager *src_man =
		ttm_manager_type(bo->bdev, bo->resource->mem_type);
	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
	struct sg_table *src_st;
	struct i915_request *rq;
442 443
	struct ttm_tt *ttm = bo->ttm;
	enum i915_cache_level src_level, dst_level;
444 445 446 447 448
	int ret;

	if (!i915->gt.migrate.context)
		return -EINVAL;

449 450
	dst_level = i915_ttm_cache_level(i915, dst_mem, ttm);
	if (!ttm || !ttm_tt_is_populated(ttm)) {
451 452 453
		if (bo->type == ttm_bo_type_kernel)
			return -EINVAL;

454
		if (ttm && !(ttm->page_flags & TTM_PAGE_FLAG_ZERO_ALLOC))
455 456 457 458
			return 0;

		intel_engine_pm_get(i915->gt.migrate.context->engine);
		ret = intel_context_migrate_clear(i915->gt.migrate.context, NULL,
459 460
						  dst_st->sgl, dst_level,
						  gpu_binds_iomem(dst_mem),
461 462 463 464 465 466 467 468
						  0, &rq);

		if (!ret && rq) {
			i915_request_wait(rq, 0, MAX_SCHEDULE_TIMEOUT);
			i915_request_put(rq);
		}
		intel_engine_pm_put(i915->gt.migrate.context->engine);
	} else {
469 470
		src_st = src_man->use_tt ? i915_ttm_tt_get_st(ttm) :
			obj->ttm.cached_io_st;
471

472
		src_level = i915_ttm_cache_level(i915, bo->resource, ttm);
473 474
		intel_engine_pm_get(i915->gt.migrate.context->engine);
		ret = intel_context_migrate_copy(i915->gt.migrate.context,
475 476 477 478
						 NULL, src_st->sgl, src_level,
						 gpu_binds_iomem(bo->resource),
						 dst_st->sgl, dst_level,
						 gpu_binds_iomem(dst_mem),
479 480 481 482 483 484 485 486 487
						 &rq);
		if (!ret && rq) {
			i915_request_wait(rq, 0, MAX_SCHEDULE_TIMEOUT);
			i915_request_put(rq);
		}
		intel_engine_pm_put(i915->gt.migrate.context->engine);
	}

	return ret;
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
}

static int i915_ttm_move(struct ttm_buffer_object *bo, bool evict,
			 struct ttm_operation_ctx *ctx,
			 struct ttm_resource *dst_mem,
			 struct ttm_place *hop)
{
	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
	struct ttm_resource_manager *dst_man =
		ttm_manager_type(bo->bdev, dst_mem->mem_type);
	struct intel_memory_region *dst_reg, *src_reg;
	union {
		struct ttm_kmap_iter_tt tt;
		struct ttm_kmap_iter_iomap io;
	} _dst_iter, _src_iter;
	struct ttm_kmap_iter *dst_iter, *src_iter;
	struct sg_table *dst_st;
	int ret;

	dst_reg = i915_ttm_region(bo->bdev, dst_mem->mem_type);
	src_reg = i915_ttm_region(bo->bdev, bo->resource->mem_type);
	GEM_BUG_ON(!dst_reg || !src_reg);

	/* Sync for now. We could do the actual copy async. */
	ret = ttm_bo_wait_ctx(bo, ctx);
	if (ret)
		return ret;

	ret = i915_ttm_move_notify(bo);
	if (ret)
		return ret;

	if (obj->mm.madv != I915_MADV_WILLNEED) {
		i915_ttm_purge(obj);
		ttm_resource_free(bo, &dst_mem);
		return 0;
	}

	/* Populate ttm with pages if needed. Typically system memory. */
	if (bo->ttm && (dst_man->use_tt ||
			(bo->ttm->page_flags & TTM_PAGE_FLAG_SWAPPED))) {
		ret = ttm_tt_populate(bo->bdev, bo->ttm, ctx);
		if (ret)
			return ret;
	}

	dst_st = i915_ttm_resource_get_st(obj, dst_mem);
	if (IS_ERR(dst_st))
		return PTR_ERR(dst_st);

538 539 540
	ret = i915_ttm_accel_move(bo, dst_mem, dst_st);
	if (ret) {
		/* If we start mapping GGTT, we can no longer use man::use_tt here. */
541
		dst_iter = !cpu_maps_iomem(dst_mem) ?
542 543 544 545
			ttm_kmap_iter_tt_init(&_dst_iter.tt, bo->ttm) :
			ttm_kmap_iter_iomap_init(&_dst_iter.io, &dst_reg->iomap,
						 dst_st, dst_reg->region.start);

546
		src_iter = !cpu_maps_iomem(bo->resource) ?
547 548 549 550 551 552 553
			ttm_kmap_iter_tt_init(&_src_iter.tt, bo->ttm) :
			ttm_kmap_iter_iomap_init(&_src_iter.io, &src_reg->iomap,
						 obj->ttm.cached_io_st,
						 src_reg->region.start);

		ttm_move_memcpy(bo, dst_mem->num_pages, dst_iter, src_iter);
	}
554
	/* Below dst_mem becomes bo->resource. */
555
	ttm_bo_move_sync_cleanup(bo, dst_mem);
556
	i915_ttm_adjust_domains_after_move(obj);
557 558
	i915_ttm_free_cached_io_st(obj);

559
	if (gpu_binds_iomem(dst_mem) || cpu_maps_iomem(dst_mem)) {
560
		obj->ttm.cached_io_st = dst_st;
561 562 563
		obj->ttm.get_io_page.sg_pos = dst_st->sgl;
		obj->ttm.get_io_page.sg_idx = 0;
	}
564

565
	i915_ttm_adjust_gem_after_move(obj);
566 567 568
	return 0;
}

569 570
static int i915_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem)
{
571
	if (!cpu_maps_iomem(mem))
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
		return 0;

	mem->bus.caching = ttm_write_combined;
	mem->bus.is_iomem = true;

	return 0;
}

static unsigned long i915_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
					 unsigned long page_offset)
{
	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
	unsigned long base = obj->mm.region->iomap.base - obj->mm.region->region.start;
	struct scatterlist *sg;
	unsigned int ofs;

	GEM_WARN_ON(bo->ttm);

590
	sg = __i915_gem_object_get_sg(obj, &obj->ttm.get_io_page, page_offset, &ofs, true);
591 592 593 594

	return ((base + sg_dma_address(sg)) >> PAGE_SHIFT) + ofs;
}

595 596 597 598 599 600 601 602 603
static struct ttm_device_funcs i915_ttm_bo_driver = {
	.ttm_tt_create = i915_ttm_tt_create,
	.ttm_tt_unpopulate = i915_ttm_tt_unpopulate,
	.ttm_tt_destroy = i915_ttm_tt_destroy,
	.eviction_valuable = i915_ttm_eviction_valuable,
	.evict_flags = i915_ttm_evict_flags,
	.move = i915_ttm_move,
	.swap_notify = i915_ttm_swap_notify,
	.delete_mem_notify = i915_ttm_delete_mem_notify,
604 605
	.io_mem_reserve = i915_ttm_io_mem_reserve,
	.io_mem_pfn = i915_ttm_io_mem_pfn,
606 607 608 609 610 611 612 613 614 615 616 617
};

/**
 * i915_ttm_driver - Return a pointer to the TTM device funcs
 *
 * Return: Pointer to statically allocated TTM device funcs.
 */
struct ttm_device_funcs *i915_ttm_driver(void)
{
	return &i915_ttm_bo_driver;
}

618 619
static int __i915_ttm_get_pages(struct drm_i915_gem_object *obj,
				struct ttm_placement *placement)
620 621 622 623 624 625 626
{
	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
	struct ttm_operation_ctx ctx = {
		.interruptible = true,
		.no_wait_gpu = false,
	};
	struct sg_table *st;
627
	int real_num_busy;
628 629
	int ret;

630
	/* First try only the requested placement. No eviction. */
631 632
	real_num_busy = fetch_and_zero(&placement->num_busy_placement);
	ret = ttm_bo_validate(bo, placement, &ctx);
633 634 635 636 637 638 639 640 641
	if (ret) {
		ret = i915_ttm_err_to_gem(ret);
		/*
		 * Anything that wants to restart the operation gets to
		 * do that.
		 */
		if (ret == -EDEADLK || ret == -EINTR || ret == -ERESTARTSYS ||
		    ret == -EAGAIN)
			return ret;
642

643 644 645 646
		/*
		 * If the initial attempt fails, allow all accepted placements,
		 * evicting if necessary.
		 */
647 648
		placement->num_busy_placement = real_num_busy;
		ret = ttm_bo_validate(bo, placement, &ctx);
649 650 651
		if (ret)
			return i915_ttm_err_to_gem(ret);
	}
652 653

	i915_ttm_adjust_lru(obj);
654 655 656 657 658 659 660 661 662
	if (bo->ttm && !ttm_tt_is_populated(bo->ttm)) {
		ret = ttm_tt_populate(bo->bdev, bo->ttm, &ctx);
		if (ret)
			return ret;

		i915_ttm_adjust_domains_after_move(obj);
		i915_ttm_adjust_gem_after_move(obj);
	}

663 664 665 666 667
	if (!i915_gem_object_has_pages(obj)) {
		/* Object either has a page vector or is an iomem object */
		st = bo->ttm ? i915_ttm_tt_get_st(bo->ttm) : obj->ttm.cached_io_st;
		if (IS_ERR(st))
			return PTR_ERR(st);
668

669 670
		__i915_gem_object_set_pages(obj, st, i915_sg_dma_sizes(st->sgl));
	}
671 672 673 674

	return ret;
}

675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
static int i915_ttm_get_pages(struct drm_i915_gem_object *obj)
{
	struct ttm_place requested, busy[I915_TTM_MAX_PLACEMENTS];
	struct ttm_placement placement;

	GEM_BUG_ON(obj->mm.n_placements > I915_TTM_MAX_PLACEMENTS);

	/* Move to the requested placement. */
	i915_ttm_placement_from_obj(obj, &requested, busy, &placement);

	return __i915_ttm_get_pages(obj, &placement);
}

/**
 * DOC: Migration vs eviction
 *
 * GEM migration may not be the same as TTM migration / eviction. If
 * the TTM core decides to evict an object it may be evicted to a
 * TTM memory type that is not in the object's allowable GEM regions, or
 * in fact theoretically to a TTM memory type that doesn't correspond to
 * a GEM memory region. In that case the object's GEM region is not
 * updated, and the data is migrated back to the GEM region at
 * get_pages time. TTM may however set up CPU ptes to the object even
 * when it is evicted.
 * Gem forced migration using the i915_ttm_migrate() op, is allowed even
 * to regions that are not in the object's list of allowable placements.
 */
static int i915_ttm_migrate(struct drm_i915_gem_object *obj,
			    struct intel_memory_region *mr)
{
	struct ttm_place requested;
	struct ttm_placement placement;
	int ret;

	i915_ttm_place_from_region(mr, &requested, obj->flags);
	placement.num_placement = 1;
	placement.num_busy_placement = 1;
	placement.placement = &requested;
	placement.busy_placement = &requested;

	ret = __i915_ttm_get_pages(obj, &placement);
	if (ret)
		return ret;

	/*
	 * Reinitialize the region bindings. This is primarily
	 * required for objects where the new region is not in
	 * its allowable placements.
	 */
	if (obj->mm.region != mr) {
		i915_gem_object_release_memory_region(obj);
		i915_gem_object_init_memory_region(obj, mr);
	}

	return 0;
}

732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
static void i915_ttm_put_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *st)
{
	/*
	 * We're currently not called from a shrinker, so put_pages()
	 * typically means the object is about to destroyed, or called
	 * from move_notify(). So just avoid doing much for now.
	 * If the object is not destroyed next, The TTM eviction logic
	 * and shrinkers will move it out if needed.
	 */

	i915_ttm_adjust_lru(obj);
}

static void i915_ttm_adjust_lru(struct drm_i915_gem_object *obj)
{
	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);

	/*
	 * Don't manipulate the TTM LRUs while in TTM bo destruction.
	 * We're called through i915_ttm_delete_mem_notify().
	 */
	if (!kref_read(&bo->kref))
		return;

	/*
	 * Put on the correct LRU list depending on the MADV status
	 */
	spin_lock(&bo->bdev->lru_lock);
	if (obj->mm.madv != I915_MADV_WILLNEED) {
		bo->priority = I915_TTM_PRIO_PURGE;
	} else if (!i915_gem_object_has_pages(obj)) {
		if (bo->priority < I915_TTM_PRIO_HAS_PAGES)
			bo->priority = I915_TTM_PRIO_HAS_PAGES;
	} else {
		if (bo->priority > I915_TTM_PRIO_NO_PAGES)
			bo->priority = I915_TTM_PRIO_NO_PAGES;
	}

	ttm_bo_move_to_lru_tail(bo, bo->resource, NULL);
	spin_unlock(&bo->bdev->lru_lock);
}

/*
 * TTM-backed gem object destruction requires some clarification.
 * Basically we have two possibilities here. We can either rely on the
 * i915 delayed destruction and put the TTM object when the object
 * is idle. This would be detected by TTM which would bypass the
 * TTM delayed destroy handling. The other approach is to put the TTM
 * object early and rely on the TTM destroyed handling, and then free
 * the leftover parts of the GEM object once TTM's destroyed list handling is
 * complete. For now, we rely on the latter for two reasons:
 * a) TTM can evict an object even when it's on the delayed destroy list,
 * which in theory allows for complete eviction.
 * b) There is work going on in TTM to allow freeing an object even when
 * it's not idle, and using the TTM destroyed list handling could help us
 * benefit from that.
 */
static void i915_ttm_delayed_free(struct drm_i915_gem_object *obj)
{
	if (obj->ttm.created) {
		ttm_bo_put(i915_gem_to_ttm(obj));
	} else {
		__i915_gem_free_object(obj);
		call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
	}
}

800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
static vm_fault_t vm_fault_ttm(struct vm_fault *vmf)
{
	struct vm_area_struct *area = vmf->vma;
	struct drm_i915_gem_object *obj =
		i915_ttm_to_gem(area->vm_private_data);

	/* Sanity check that we allow writing into this object */
	if (unlikely(i915_gem_object_is_readonly(obj) &&
		     area->vm_flags & VM_WRITE))
		return VM_FAULT_SIGBUS;

	return ttm_bo_vm_fault(vmf);
}

static int
vm_access_ttm(struct vm_area_struct *area, unsigned long addr,
	      void *buf, int len, int write)
{
	struct drm_i915_gem_object *obj =
		i915_ttm_to_gem(area->vm_private_data);

	if (i915_gem_object_is_readonly(obj) && write)
		return -EACCES;

	return ttm_bo_vm_access(area, addr, buf, len, write);
}

static void ttm_vm_open(struct vm_area_struct *vma)
{
	struct drm_i915_gem_object *obj =
		i915_ttm_to_gem(vma->vm_private_data);

	GEM_BUG_ON(!obj);
	i915_gem_object_get(obj);
}

static void ttm_vm_close(struct vm_area_struct *vma)
{
	struct drm_i915_gem_object *obj =
		i915_ttm_to_gem(vma->vm_private_data);

	GEM_BUG_ON(!obj);
	i915_gem_object_put(obj);
}

static const struct vm_operations_struct vm_ops_ttm = {
	.fault = vm_fault_ttm,
	.access = vm_access_ttm,
	.open = ttm_vm_open,
	.close = ttm_vm_close,
};

static u64 i915_ttm_mmap_offset(struct drm_i915_gem_object *obj)
{
	/* The ttm_bo must be allocated with I915_BO_ALLOC_USER */
	GEM_BUG_ON(!drm_mm_node_allocated(&obj->base.vma_node.vm_node));

	return drm_vma_node_offset_addr(&obj->base.vma_node);
}

M
Matthew Auld 已提交
860
static const struct drm_i915_gem_object_ops i915_gem_ttm_obj_ops = {
861 862 863 864 865 866 867
	.name = "i915_gem_object_ttm",

	.get_pages = i915_ttm_get_pages,
	.put_pages = i915_ttm_put_pages,
	.truncate = i915_ttm_purge,
	.adjust_lru = i915_ttm_adjust_lru,
	.delayed_free = i915_ttm_delayed_free,
868
	.migrate = i915_ttm_migrate,
869 870
	.mmap_offset = i915_ttm_mmap_offset,
	.mmap_ops = &vm_ops_ttm,
871 872 873 874 875 876 877
};

void i915_ttm_bo_destroy(struct ttm_buffer_object *bo)
{
	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);

	i915_gem_object_release_memory_region(obj);
878
	mutex_destroy(&obj->ttm.get_io_page.lock);
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
	if (obj->ttm.created)
		call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
}

/**
 * __i915_gem_ttm_object_init - Initialize a ttm-backed i915 gem object
 * @mem: The initial memory region for the object.
 * @obj: The gem object.
 * @size: Object size in bytes.
 * @flags: gem object flags.
 *
 * Return: 0 on success, negative error code on failure.
 */
int __i915_gem_ttm_object_init(struct intel_memory_region *mem,
			       struct drm_i915_gem_object *obj,
			       resource_size_t size,
895
			       resource_size_t page_size,
896 897 898 899
			       unsigned int flags)
{
	static struct lock_class_key lock_class;
	struct drm_i915_private *i915 = mem->i915;
900 901 902 903
	struct ttm_operation_ctx ctx = {
		.interruptible = true,
		.no_wait_gpu = false,
	};
904 905 906 907 908 909 910
	enum ttm_bo_type bo_type;
	int ret;

	drm_gem_private_object_init(&i915->drm, &obj->base, size);
	i915_gem_object_init(obj, &i915_gem_ttm_obj_ops, &lock_class, flags);
	i915_gem_object_init_memory_region(obj, mem);
	i915_gem_object_make_unshrinkable(obj);
911 912
	INIT_RADIX_TREE(&obj->ttm.get_io_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->ttm.get_io_page.lock);
913 914 915
	bo_type = (obj->flags & I915_BO_ALLOC_USER) ? ttm_bo_type_device :
		ttm_bo_type_kernel;

916 917
	obj->base.vma_node.driver_private = i915_gem_to_ttm(obj);

918 919 920
	/* Forcing the page size is kernel internal only */
	GEM_BUG_ON(page_size && obj->mm.n_placements);

921 922 923 924 925 926 927
	/*
	 * If this function fails, it will call the destructor, but
	 * our caller still owns the object. So no freeing in the
	 * destructor until obj->ttm.created is true.
	 * Similarly, in delayed_destroy, we can't call ttm_bo_put()
	 * until successful initialization.
	 */
928 929
	ret = ttm_bo_init_reserved(&i915->bdev, i915_gem_to_ttm(obj), size,
				   bo_type, &i915_sys_placement,
930
				   page_size >> PAGE_SHIFT,
931 932 933
				   &ctx, NULL, NULL, i915_ttm_bo_destroy);
	if (ret)
		return i915_ttm_err_to_gem(ret);
934

935 936 937 938
	obj->ttm.created = true;
	i915_ttm_adjust_domains_after_move(obj);
	i915_ttm_adjust_gem_after_move(obj);
	i915_gem_object_unlock(obj);
939

940
	return 0;
941
}
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962

static const struct intel_memory_region_ops ttm_system_region_ops = {
	.init_object = __i915_gem_ttm_object_init,
};

struct intel_memory_region *
i915_gem_ttm_system_setup(struct drm_i915_private *i915,
			  u16 type, u16 instance)
{
	struct intel_memory_region *mr;

	mr = intel_memory_region_create(i915, 0,
					totalram_pages() << PAGE_SHIFT,
					PAGE_SIZE, 0,
					type, instance,
					&ttm_system_region_ops);
	if (IS_ERR(mr))
		return mr;

	intel_memory_region_set_name(mr, "system-ttm");
	return mr;
963
}