hns_enet.c 64.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright (c) 2014-2015 Hisilicon Limited.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

#include <linux/clk.h>
#include <linux/cpumask.h>
#include <linux/etherdevice.h>
#include <linux/if_vlan.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/module.h>
#include <linux/phy.h>
#include <linux/platform_device.h>
#include <linux/skbuff.h>

#include "hnae.h"
#include "hns_enet.h"
25
#include "hns_dsaf_mac.h"
26 27 28 29 30 31 32 33 34 35 36

#define NIC_MAX_Q_PER_VF 16
#define HNS_NIC_TX_TIMEOUT (5 * HZ)

#define SERVICE_TIMER_HZ (1 * HZ)

#define NIC_TX_CLEAN_MAX_NUM 256
#define NIC_RX_CLEAN_MAX_NUM 64

#define RCB_IRQ_NOT_INITED 0
#define RCB_IRQ_INITED 1
37
#define HNS_BUFFER_SIZE_2048 2048
38

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
#define BD_MAX_SEND_SIZE 8191
#define SKB_TMP_LEN(SKB) \
	(((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB))

static void fill_v2_desc(struct hnae_ring *ring, void *priv,
			 int size, dma_addr_t dma, int frag_end,
			 int buf_num, enum hns_desc_type type, int mtu)
{
	struct hnae_desc *desc = &ring->desc[ring->next_to_use];
	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
	struct iphdr *iphdr;
	struct ipv6hdr *ipv6hdr;
	struct sk_buff *skb;
	__be16 protocol;
	u8 bn_pid = 0;
	u8 rrcfv = 0;
	u8 ip_offset = 0;
	u8 tvsvsn = 0;
	u16 mss = 0;
	u8 l4_len = 0;
	u16 paylen = 0;

	desc_cb->priv = priv;
	desc_cb->length = size;
	desc_cb->dma = dma;
	desc_cb->type = type;

	desc->addr = cpu_to_le64(dma);
	desc->tx.send_size = cpu_to_le16((u16)size);

69
	/* config bd buffer end */
70 71 72
	hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1);
	hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1);

73 74 75 76
	/* fill port_id in the tx bd for sending management pkts */
	hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M,
		       HNSV2_TXD_PORTID_S, ring->q->handle->dport_id);

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
	if (type == DESC_TYPE_SKB) {
		skb = (struct sk_buff *)priv;

		if (skb->ip_summed == CHECKSUM_PARTIAL) {
			skb_reset_mac_len(skb);
			protocol = skb->protocol;
			ip_offset = ETH_HLEN;

			if (protocol == htons(ETH_P_8021Q)) {
				ip_offset += VLAN_HLEN;
				protocol = vlan_get_protocol(skb);
				skb->protocol = protocol;
			}

			if (skb->protocol == htons(ETH_P_IP)) {
				iphdr = ip_hdr(skb);
				hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1);
				hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);

				/* check for tcp/udp header */
97 98
				if (iphdr->protocol == IPPROTO_TCP &&
				    skb_is_gso(skb)) {
99 100 101
					hnae_set_bit(tvsvsn,
						     HNSV2_TXD_TSE_B, 1);
					l4_len = tcp_hdrlen(skb);
102 103
					mss = skb_shinfo(skb)->gso_size;
					paylen = skb->len - SKB_TMP_LEN(skb);
104 105 106 107 108 109 110
				}
			} else if (skb->protocol == htons(ETH_P_IPV6)) {
				hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1);
				ipv6hdr = ipv6_hdr(skb);
				hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);

				/* check for tcp/udp header */
111 112
				if (ipv6hdr->nexthdr == IPPROTO_TCP &&
				    skb_is_gso(skb) && skb_is_gso_v6(skb)) {
113 114 115
					hnae_set_bit(tvsvsn,
						     HNSV2_TXD_TSE_B, 1);
					l4_len = tcp_hdrlen(skb);
116 117
					mss = skb_shinfo(skb)->gso_size;
					paylen = skb->len - SKB_TMP_LEN(skb);
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
				}
			}
			desc->tx.ip_offset = ip_offset;
			desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn;
			desc->tx.mss = cpu_to_le16(mss);
			desc->tx.l4_len = l4_len;
			desc->tx.paylen = cpu_to_le16(paylen);
		}
	}

	hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end);

	desc->tx.bn_pid = bn_pid;
	desc->tx.ra_ri_cs_fe_vld = rrcfv;

	ring_ptr_move_fw(ring, next_to_use);
}

136 137 138 139 140 141 142
static const struct acpi_device_id hns_enet_acpi_match[] = {
	{ "HISI00C1", 0 },
	{ "HISI00C2", 0 },
	{ },
};
MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match);

143 144
static void fill_desc(struct hnae_ring *ring, void *priv,
		      int size, dma_addr_t dma, int frag_end,
145
		      int buf_num, enum hns_desc_type type, int mtu)
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
{
	struct hnae_desc *desc = &ring->desc[ring->next_to_use];
	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
	struct sk_buff *skb;
	__be16 protocol;
	u32 ip_offset;
	u32 asid_bufnum_pid = 0;
	u32 flag_ipoffset = 0;

	desc_cb->priv = priv;
	desc_cb->length = size;
	desc_cb->dma = dma;
	desc_cb->type = type;

	desc->addr = cpu_to_le64(dma);
	desc->tx.send_size = cpu_to_le16((u16)size);

	/*config bd buffer end */
	flag_ipoffset |= 1 << HNS_TXD_VLD_B;

	asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S;

	if (type == DESC_TYPE_SKB) {
		skb = (struct sk_buff *)priv;

		if (skb->ip_summed == CHECKSUM_PARTIAL) {
			protocol = skb->protocol;
			ip_offset = ETH_HLEN;

			/*if it is a SW VLAN check the next protocol*/
			if (protocol == htons(ETH_P_8021Q)) {
				ip_offset += VLAN_HLEN;
				protocol = vlan_get_protocol(skb);
				skb->protocol = protocol;
			}

			if (skb->protocol == htons(ETH_P_IP)) {
				flag_ipoffset |= 1 << HNS_TXD_L3CS_B;
				/* check for tcp/udp header */
				flag_ipoffset |= 1 << HNS_TXD_L4CS_B;

			} else if (skb->protocol == htons(ETH_P_IPV6)) {
				/* ipv6 has not l3 cs, check for L4 header */
				flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
			}

			flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S;
		}
	}

	flag_ipoffset |= frag_end << HNS_TXD_FE_B;

	desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid);
	desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset);

	ring_ptr_move_fw(ring, next_to_use);
}

static void unfill_desc(struct hnae_ring *ring)
{
	ring_ptr_move_bw(ring, next_to_use);
}

209 210
static int hns_nic_maybe_stop_tx(
	struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
211
{
212 213
	struct sk_buff *skb = *out_skb;
	struct sk_buff *new_skb = NULL;
214 215 216 217 218 219
	int buf_num;

	/* no. of segments (plus a header) */
	buf_num = skb_shinfo(skb)->nr_frags + 1;

	if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
220 221
		if (ring_space(ring) < 1)
			return -EBUSY;
222 223

		new_skb = skb_copy(skb, GFP_ATOMIC);
224 225
		if (!new_skb)
			return -ENOMEM;
226 227

		dev_kfree_skb_any(skb);
228
		*out_skb = new_skb;
229 230
		buf_num = 1;
	} else if (buf_num > ring_space(ring)) {
231 232 233 234 235 236 237
		return -EBUSY;
	}

	*bnum = buf_num;
	return 0;
}

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
static int hns_nic_maybe_stop_tso(
	struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
{
	int i;
	int size;
	int buf_num;
	int frag_num;
	struct sk_buff *skb = *out_skb;
	struct sk_buff *new_skb = NULL;
	struct skb_frag_struct *frag;

	size = skb_headlen(skb);
	buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;

	frag_num = skb_shinfo(skb)->nr_frags;
	for (i = 0; i < frag_num; i++) {
		frag = &skb_shinfo(skb)->frags[i];
		size = skb_frag_size(frag);
		buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
	}

	if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
		buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
		if (ring_space(ring) < buf_num)
			return -EBUSY;
		/* manual split the send packet */
		new_skb = skb_copy(skb, GFP_ATOMIC);
		if (!new_skb)
			return -ENOMEM;
		dev_kfree_skb_any(skb);
		*out_skb = new_skb;

	} else if (ring_space(ring) < buf_num) {
		return -EBUSY;
	}

	*bnum = buf_num;
	return 0;
}

static void fill_tso_desc(struct hnae_ring *ring, void *priv,
			  int size, dma_addr_t dma, int frag_end,
			  int buf_num, enum hns_desc_type type, int mtu)
{
	int frag_buf_num;
	int sizeoflast;
	int k;

	frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
	sizeoflast = size % BD_MAX_SEND_SIZE;
	sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE;

	/* when the frag size is bigger than hardware, split this frag */
	for (k = 0; k < frag_buf_num; k++)
		fill_v2_desc(ring, priv,
			     (k == frag_buf_num - 1) ?
					sizeoflast : BD_MAX_SEND_SIZE,
			     dma + BD_MAX_SEND_SIZE * k,
			     frag_end && (k == frag_buf_num - 1) ? 1 : 0,
			     buf_num,
			     (type == DESC_TYPE_SKB && !k) ?
					DESC_TYPE_SKB : DESC_TYPE_PAGE,
			     mtu);
}

303 304 305
netdev_tx_t hns_nic_net_xmit_hw(struct net_device *ndev,
				struct sk_buff *skb,
				struct hns_nic_ring_data *ring_data)
306 307 308
{
	struct hns_nic_priv *priv = netdev_priv(ndev);
	struct hnae_ring *ring = ring_data->ring;
309
	struct device *dev = ring_to_dev(ring);
310 311 312 313 314 315 316 317 318 319
	struct netdev_queue *dev_queue;
	struct skb_frag_struct *frag;
	int buf_num;
	int seg_num;
	dma_addr_t dma;
	int size, next_to_use;
	int i;

	switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
	case -EBUSY:
320 321
		ring->stats.tx_busy++;
		goto out_net_tx_busy;
322 323 324 325 326 327
	case -ENOMEM:
		ring->stats.sw_err_cnt++;
		netdev_err(ndev, "no memory to xmit!\n");
		goto out_err_tx_ok;
	default:
		break;
328
	}
329 330 331

	/* no. of segments (plus a header) */
	seg_num = skb_shinfo(skb)->nr_frags + 1;
332 333 334 335 336 337 338 339 340 341
	next_to_use = ring->next_to_use;

	/* fill the first part */
	size = skb_headlen(skb);
	dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
	if (dma_mapping_error(dev, dma)) {
		netdev_err(ndev, "TX head DMA map failed\n");
		ring->stats.sw_err_cnt++;
		goto out_err_tx_ok;
	}
342 343
	priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
			    buf_num, DESC_TYPE_SKB, ndev->mtu);
344 345

	/* fill the fragments */
346
	for (i = 1; i < seg_num; i++) {
347 348 349 350 351 352 353 354
		frag = &skb_shinfo(skb)->frags[i - 1];
		size = skb_frag_size(frag);
		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
		if (dma_mapping_error(dev, dma)) {
			netdev_err(ndev, "TX frag(%d) DMA map failed\n", i);
			ring->stats.sw_err_cnt++;
			goto out_map_frag_fail;
		}
355 356 357
		priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
				    seg_num - 1 == i ? 1 : 0, buf_num,
				    DESC_TYPE_PAGE, ndev->mtu);
358 359 360 361 362 363
	}

	/*complete translate all packets*/
	dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping);
	netdev_tx_sent_queue(dev_queue, skb->len);

364 365 366 367
	netif_trans_update(ndev);
	ndev->stats.tx_bytes += skb->len;
	ndev->stats.tx_packets++;

368 369 370 371 372 373 374 375 376 377
	wmb(); /* commit all data before submit */
	assert(skb->queue_mapping < priv->ae_handle->q_num);
	hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num);
	ring->stats.tx_pkts++;
	ring->stats.tx_bytes += skb->len;

	return NETDEV_TX_OK;

out_map_frag_fail:

378
	while (ring->next_to_use != next_to_use) {
379
		unfill_desc(ring);
380 381 382 383 384 385 386 387 388 389
		if (ring->next_to_use != next_to_use)
			dma_unmap_page(dev,
				       ring->desc_cb[ring->next_to_use].dma,
				       ring->desc_cb[ring->next_to_use].length,
				       DMA_TO_DEVICE);
		else
			dma_unmap_single(dev,
					 ring->desc_cb[next_to_use].dma,
					 ring->desc_cb[next_to_use].length,
					 DMA_TO_DEVICE);
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
	}

out_err_tx_ok:

	dev_kfree_skb_any(skb);
	return NETDEV_TX_OK;

out_net_tx_busy:

	netif_stop_subqueue(ndev, skb->queue_mapping);

	/* Herbert's original patch had:
	 *  smp_mb__after_netif_stop_queue();
	 * but since that doesn't exist yet, just open code it.
	 */
	smp_mb();
	return NETDEV_TX_BUSY;
}

/**
 * hns_nic_get_headlen - determine size of header for RSC/LRO/GRO/FCOE
 * @data: pointer to the start of the headers
 * @max: total length of section to find headers in
 *
 * This function is meant to determine the length of headers that will
 * be recognized by hardware for LRO, GRO, and RSC offloads.  The main
 * motivation of doing this is to only perform one pull for IPv4 TCP
 * packets so that we can do basic things like calculating the gso_size
 * based on the average data per packet.
 **/
static unsigned int hns_nic_get_headlen(unsigned char *data, u32 flag,
					unsigned int max_size)
{
	unsigned char *network;
	u8 hlen;

	/* this should never happen, but better safe than sorry */
	if (max_size < ETH_HLEN)
		return max_size;

	/* initialize network frame pointer */
	network = data;

	/* set first protocol and move network header forward */
	network += ETH_HLEN;

	/* handle any vlan tag if present */
	if (hnae_get_field(flag, HNS_RXD_VLAN_M, HNS_RXD_VLAN_S)
		== HNS_RX_FLAG_VLAN_PRESENT) {
		if ((typeof(max_size))(network - data) > (max_size - VLAN_HLEN))
			return max_size;

		network += VLAN_HLEN;
	}

	/* handle L3 protocols */
	if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S)
		== HNS_RX_FLAG_L3ID_IPV4) {
		if ((typeof(max_size))(network - data) >
		    (max_size - sizeof(struct iphdr)))
			return max_size;

		/* access ihl as a u8 to avoid unaligned access on ia64 */
		hlen = (network[0] & 0x0F) << 2;

		/* verify hlen meets minimum size requirements */
		if (hlen < sizeof(struct iphdr))
			return network - data;

		/* record next protocol if header is present */
	} else if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S)
		== HNS_RX_FLAG_L3ID_IPV6) {
		if ((typeof(max_size))(network - data) >
		    (max_size - sizeof(struct ipv6hdr)))
			return max_size;

		/* record next protocol */
		hlen = sizeof(struct ipv6hdr);
	} else {
		return network - data;
	}

	/* relocate pointer to start of L4 header */
	network += hlen;

	/* finally sort out TCP/UDP */
	if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S)
		== HNS_RX_FLAG_L4ID_TCP) {
		if ((typeof(max_size))(network - data) >
		    (max_size - sizeof(struct tcphdr)))
			return max_size;

		/* access doff as a u8 to avoid unaligned access on ia64 */
		hlen = (network[12] & 0xF0) >> 2;

		/* verify hlen meets minimum size requirements */
		if (hlen < sizeof(struct tcphdr))
			return network - data;

		network += hlen;
	} else if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S)
		== HNS_RX_FLAG_L4ID_UDP) {
		if ((typeof(max_size))(network - data) >
		    (max_size - sizeof(struct udphdr)))
			return max_size;

		network += sizeof(struct udphdr);
	}

	/* If everything has gone correctly network should be the
	 * data section of the packet and will be the end of the header.
	 * If not then it probably represents the end of the last recognized
	 * header.
	 */
	if ((typeof(max_size))(network - data) < max_size)
		return network - data;
	else
		return max_size;
}

510 511 512
static void hns_nic_reuse_page(struct sk_buff *skb, int i,
			       struct hnae_ring *ring, int pull_len,
			       struct hnae_desc_cb *desc_cb)
513
{
514 515 516
	struct hnae_desc *desc;
	int truesize, size;
	int last_offset;
517 518
	bool twobufs;

519 520
	twobufs = ((PAGE_SIZE < 8192) &&
		hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048);
521 522 523 524

	desc = &ring->desc[ring->next_to_clean];
	size = le16_to_cpu(desc->rx.size);

525
	if (twobufs) {
526 527 528 529 530 531 532 533 534
		truesize = hnae_buf_size(ring);
	} else {
		truesize = ALIGN(size, L1_CACHE_BYTES);
		last_offset = hnae_page_size(ring) - hnae_buf_size(ring);
	}

	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
			size - pull_len, truesize - pull_len);

535
	 /* avoid re-using remote pages,flag default unreuse */
536 537 538 539 540 541 542 543
	if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
		return;

	if (twobufs) {
		/* if we are only owner of page we can reuse it */
		if (likely(page_count(desc_cb->priv) == 1)) {
			/* flip page offset to other buffer */
			desc_cb->page_offset ^= truesize;
544 545 546 547 548

			desc_cb->reuse_flag = 1;
			/* bump ref count on page before it is given*/
			get_page(desc_cb->priv);
		}
549 550 551 552 553 554 555 556 557 558
		return;
	}

	/* move offset up to the next cache line */
	desc_cb->page_offset += truesize;

	if (desc_cb->page_offset <= last_offset) {
		desc_cb->reuse_flag = 1;
		/* bump ref count on page before it is given*/
		get_page(desc_cb->priv);
559 560 561
	}
}

562 563 564 565 566 567 568 569 570 571 572 573
static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum)
{
	*out_bnum = hnae_get_field(bnum_flag,
				   HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1;
}

static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum)
{
	*out_bnum = hnae_get_field(bnum_flag,
				   HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S);
}

574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
static void hns_nic_rx_checksum(struct hns_nic_ring_data *ring_data,
				struct sk_buff *skb, u32 flag)
{
	struct net_device *netdev = ring_data->napi.dev;
	u32 l3id;
	u32 l4id;

	/* check if RX checksum offload is enabled */
	if (unlikely(!(netdev->features & NETIF_F_RXCSUM)))
		return;

	/* In hardware, we only support checksum for the following protocols:
	 * 1) IPv4,
	 * 2) TCP(over IPv4 or IPv6),
	 * 3) UDP(over IPv4 or IPv6),
	 * 4) SCTP(over IPv4 or IPv6)
	 * but we support many L3(IPv4, IPv6, MPLS, PPPoE etc) and L4(TCP,
	 * UDP, GRE, SCTP, IGMP, ICMP etc.) protocols.
	 *
	 * Hardware limitation:
	 * Our present hardware RX Descriptor lacks L3/L4 checksum "Status &
	 * Error" bit (which usually can be used to indicate whether checksum
	 * was calculated by the hardware and if there was any error encountered
	 * during checksum calculation).
	 *
	 * Software workaround:
	 * We do get info within the RX descriptor about the kind of L3/L4
	 * protocol coming in the packet and the error status. These errors
	 * might not just be checksum errors but could be related to version,
	 * length of IPv4, UDP, TCP etc.
	 * Because there is no-way of knowing if it is a L3/L4 error due to bad
	 * checksum or any other L3/L4 error, we will not (cannot) convey
	 * checksum status for such cases to upper stack and will not maintain
	 * the RX L3/L4 checksum counters as well.
	 */

	l3id = hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S);
	l4id = hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S);

	/*  check L3 protocol for which checksum is supported */
	if ((l3id != HNS_RX_FLAG_L3ID_IPV4) && (l3id != HNS_RX_FLAG_L3ID_IPV6))
		return;

	/* check for any(not just checksum)flagged L3 protocol errors */
	if (unlikely(hnae_get_bit(flag, HNS_RXD_L3E_B)))
		return;

	/* we do not support checksum of fragmented packets */
	if (unlikely(hnae_get_bit(flag, HNS_RXD_FRAG_B)))
		return;

	/*  check L4 protocol for which checksum is supported */
	if ((l4id != HNS_RX_FLAG_L4ID_TCP) &&
	    (l4id != HNS_RX_FLAG_L4ID_UDP) &&
	    (l4id != HNS_RX_FLAG_L4ID_SCTP))
		return;

	/* check for any(not just checksum)flagged L4 protocol errors */
	if (unlikely(hnae_get_bit(flag, HNS_RXD_L4E_B)))
		return;

	/* now, this has to be a packet with valid RX checksum */
	skb->ip_summed = CHECKSUM_UNNECESSARY;
}

639 640 641 642 643
static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data,
			       struct sk_buff **out_skb, int *out_bnum)
{
	struct hnae_ring *ring = ring_data->ring;
	struct net_device *ndev = ring_data->napi.dev;
644
	struct hns_nic_priv *priv = netdev_priv(ndev);
645 646 647 648
	struct sk_buff *skb;
	struct hnae_desc *desc;
	struct hnae_desc_cb *desc_cb;
	unsigned char *va;
649
	int bnum, length, i;
650 651 652 653 654
	int pull_len;
	u32 bnum_flag;

	desc = &ring->desc[ring->next_to_clean];
	desc_cb = &ring->desc_cb[ring->next_to_clean];
655 656 657

	prefetch(desc);

658 659
	va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;

660 661 662 663 664 665 666 667
	/* prefetch first cache line of first page */
	prefetch(va);
#if L1_CACHE_BYTES < 128
	prefetch(va + L1_CACHE_BYTES);
#endif

	skb = *out_skb = napi_alloc_skb(&ring_data->napi,
					HNS_RX_HEAD_SIZE);
668 669 670 671 672 673
	if (unlikely(!skb)) {
		netdev_err(ndev, "alloc rx skb fail\n");
		ring->stats.sw_err_cnt++;
		return -ENOMEM;
	}

674
	prefetchw(skb->data);
675 676 677 678 679
	length = le16_to_cpu(desc->rx.pkt_len);
	bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
	priv->ops.get_rxd_bnum(bnum_flag, &bnum);
	*out_bnum = bnum;

680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
	if (length <= HNS_RX_HEAD_SIZE) {
		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));

		/* we can reuse buffer as-is, just make sure it is local */
		if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
			desc_cb->reuse_flag = 1;
		else /* this page cannot be reused so discard it */
			put_page(desc_cb->priv);

		ring_ptr_move_fw(ring, next_to_clean);

		if (unlikely(bnum != 1)) { /* check err*/
			*out_bnum = 1;
			goto out_bnum_err;
		}
	} else {
		ring->stats.seg_pkt_cnt++;

		pull_len = hns_nic_get_headlen(va, bnum_flag, HNS_RX_HEAD_SIZE);
		memcpy(__skb_put(skb, pull_len), va,
		       ALIGN(pull_len, sizeof(long)));

702
		hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
703 704 705 706 707 708 709 710 711 712
		ring_ptr_move_fw(ring, next_to_clean);

		if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/
			*out_bnum = 1;
			goto out_bnum_err;
		}
		for (i = 1; i < bnum; i++) {
			desc = &ring->desc[ring->next_to_clean];
			desc_cb = &ring->desc_cb[ring->next_to_clean];

713
			hns_nic_reuse_page(skb, i, ring, 0, desc_cb);
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
			ring_ptr_move_fw(ring, next_to_clean);
		}
	}

	/* check except process, free skb and jump the desc */
	if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) {
out_bnum_err:
		*out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/
		netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n",
			   bnum, ring->max_desc_num_per_pkt,
			   length, (int)MAX_SKB_FRAGS,
			   ((u64 *)desc)[0], ((u64 *)desc)[1]);
		ring->stats.err_bd_num++;
		dev_kfree_skb_any(skb);
		return -EDOM;
	}

	bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);

	if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) {
		netdev_err(ndev, "no valid bd,%016llx,%016llx\n",
			   ((u64 *)desc)[0], ((u64 *)desc)[1]);
		ring->stats.non_vld_descs++;
		dev_kfree_skb_any(skb);
		return -EINVAL;
	}

	if (unlikely((!desc->rx.pkt_len) ||
		     hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) {
		ring->stats.err_pkt_len++;
		dev_kfree_skb_any(skb);
		return -EFAULT;
	}

	if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) {
		ring->stats.l2_err++;
		dev_kfree_skb_any(skb);
		return -EFAULT;
	}

	ring->stats.rx_pkts++;
	ring->stats.rx_bytes += skb->len;

757 758 759 760
	/* indicate to upper stack if our hardware has already calculated
	 * the RX checksum
	 */
	hns_nic_rx_checksum(ring_data, skb, bnum_flag);
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806

	return 0;
}

static void
hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count)
{
	int i, ret;
	struct hnae_desc_cb res_cbs;
	struct hnae_desc_cb *desc_cb;
	struct hnae_ring *ring = ring_data->ring;
	struct net_device *ndev = ring_data->napi.dev;

	for (i = 0; i < cleand_count; i++) {
		desc_cb = &ring->desc_cb[ring->next_to_use];
		if (desc_cb->reuse_flag) {
			ring->stats.reuse_pg_cnt++;
			hnae_reuse_buffer(ring, ring->next_to_use);
		} else {
			ret = hnae_reserve_buffer_map(ring, &res_cbs);
			if (ret) {
				ring->stats.sw_err_cnt++;
				netdev_err(ndev, "hnae reserve buffer map failed.\n");
				break;
			}
			hnae_replace_buffer(ring, ring->next_to_use, &res_cbs);
		}

		ring_ptr_move_fw(ring, next_to_use);
	}

	wmb(); /* make all data has been write before submit */
	writel_relaxed(i, ring->io_base + RCB_REG_HEAD);
}

/* return error number for error or number of desc left to take
 */
static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data,
			      struct sk_buff *skb)
{
	struct net_device *ndev = ring_data->napi.dev;

	skb->protocol = eth_type_trans(skb, ndev);
	(void)napi_gro_receive(&ring_data->napi, skb);
}

807 808 809 810 811 812 813 814
static int hns_desc_unused(struct hnae_ring *ring)
{
	int ntc = ring->next_to_clean;
	int ntu = ring->next_to_use;

	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
}

815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
#define HNS_LOWEST_LATENCY_RATE		27	/* 27 MB/s */
#define HNS_LOW_LATENCY_RATE			80	/* 80 MB/s */

#define HNS_COAL_BDNUM			3

static u32 hns_coal_rx_bdnum(struct hnae_ring *ring)
{
	bool coal_enable = ring->q->handle->coal_adapt_en;

	if (coal_enable &&
	    ring->coal_last_rx_bytes > HNS_LOWEST_LATENCY_RATE)
		return HNS_COAL_BDNUM;
	else
		return 0;
}

static void hns_update_rx_rate(struct hnae_ring *ring)
{
	bool coal_enable = ring->q->handle->coal_adapt_en;
	u32 time_passed_ms;
	u64 total_bytes;

	if (!coal_enable ||
	    time_before(jiffies, ring->coal_last_jiffies + (HZ >> 4)))
		return;

	/* ring->stats.rx_bytes overflowed */
	if (ring->coal_last_rx_bytes > ring->stats.rx_bytes) {
		ring->coal_last_rx_bytes = ring->stats.rx_bytes;
		ring->coal_last_jiffies = jiffies;
		return;
	}

	total_bytes = ring->stats.rx_bytes - ring->coal_last_rx_bytes;
	time_passed_ms = jiffies_to_msecs(jiffies - ring->coal_last_jiffies);
850 851
	do_div(total_bytes, time_passed_ms);
	ring->coal_rx_rate = total_bytes >> 10;
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921

	ring->coal_last_rx_bytes = ring->stats.rx_bytes;
	ring->coal_last_jiffies = jiffies;
}

/**
 * smooth_alg - smoothing algrithm for adjusting coalesce parameter
 **/
static u32 smooth_alg(u32 new_param, u32 old_param)
{
	u32 gap = (new_param > old_param) ? new_param - old_param
					  : old_param - new_param;

	if (gap > 8)
		gap >>= 3;

	if (new_param > old_param)
		return old_param + gap;
	else
		return old_param - gap;
}

/**
 * hns_nic_adp_coalesce - self adapte coalesce according to rx rate
 * @ring_data: pointer to hns_nic_ring_data
 **/
static void hns_nic_adpt_coalesce(struct hns_nic_ring_data *ring_data)
{
	struct hnae_ring *ring = ring_data->ring;
	struct hnae_handle *handle = ring->q->handle;
	u32 new_coal_param, old_coal_param = ring->coal_param;

	if (ring->coal_rx_rate < HNS_LOWEST_LATENCY_RATE)
		new_coal_param = HNAE_LOWEST_LATENCY_COAL_PARAM;
	else if (ring->coal_rx_rate < HNS_LOW_LATENCY_RATE)
		new_coal_param = HNAE_LOW_LATENCY_COAL_PARAM;
	else
		new_coal_param = HNAE_BULK_LATENCY_COAL_PARAM;

	if (new_coal_param == old_coal_param &&
	    new_coal_param == handle->coal_param)
		return;

	new_coal_param = smooth_alg(new_coal_param, old_coal_param);
	ring->coal_param = new_coal_param;

	/**
	 * Because all ring in one port has one coalesce param, when one ring
	 * calculate its own coalesce param, it cannot write to hardware at
	 * once. There are three conditions as follows:
	 *       1. current ring's coalesce param is larger than the hardware.
	 *       2. or ring which adapt last time can change again.
	 *       3. timeout.
	 */
	if (new_coal_param == handle->coal_param) {
		handle->coal_last_jiffies = jiffies;
		handle->coal_ring_idx = ring_data->queue_index;
	} else if (new_coal_param > handle->coal_param ||
		   handle->coal_ring_idx == ring_data->queue_index ||
		   time_after(jiffies, handle->coal_last_jiffies + (HZ >> 4))) {
		handle->dev->ops->set_coalesce_usecs(handle,
					new_coal_param);
		handle->dev->ops->set_coalesce_frames(handle,
					1, new_coal_param);
		handle->coal_param = new_coal_param;
		handle->coal_ring_idx = ring_data->queue_index;
		handle->coal_last_jiffies = jiffies;
	}
}

922 923 924 925 926
static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data,
			       int budget, void *v)
{
	struct hnae_ring *ring = ring_data->ring;
	struct sk_buff *skb;
927
	int num, bnum;
928 929
#define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
	int recv_pkts, recv_bds, clean_count, err;
930
	int unused_count = hns_desc_unused(ring);
931 932 933 934 935

	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
	rmb(); /* make sure num taken effect before the other data is touched */

	recv_pkts = 0, recv_bds = 0, clean_count = 0;
936
	num -= unused_count;
937

938
	while (recv_pkts < budget && recv_bds < num) {
D
Daode Huang 已提交
939
		/* reuse or realloc buffers */
940 941 942
		if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
			hns_nic_alloc_rx_buffers(ring_data,
						 clean_count + unused_count);
943
			clean_count = 0;
944
			unused_count = hns_desc_unused(ring);
945 946
		}

D
Daode Huang 已提交
947
		/* poll one pkt */
948 949
		err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum);
		if (unlikely(!skb)) /* this fault cannot be repaired */
950
			goto out;
951 952 953 954 955 956 957 958 959 960 961 962 963 964

		recv_bds += bnum;
		clean_count += bnum;
		if (unlikely(err)) {  /* do jump the err */
			recv_pkts++;
			continue;
		}

		/* do update ip stack process*/
		((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)(
							ring_data, skb);
		recv_pkts++;
	}

965
out:
966
	/* make all data has been write before submit */
967 968 969
	if (clean_count + unused_count > 0)
		hns_nic_alloc_rx_buffers(ring_data,
					 clean_count + unused_count);
970

971 972 973
	return recv_pkts;
}

974
static bool hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data)
975 976 977
{
	struct hnae_ring *ring = ring_data->ring;
	int num = 0;
978
	bool rx_stopped;
979

980
	hns_update_rx_rate(ring);
981

982
	/* for hardware bug fixed */
983
	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
984 985
	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);

986 987 988 989 990 991
	if (num <= hns_coal_rx_bdnum(ring)) {
		if (ring->q->handle->coal_adapt_en)
			hns_nic_adpt_coalesce(ring_data);

		rx_stopped = true;
	} else {
992 993 994
		ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
			ring_data->ring, 1);

995
		rx_stopped = false;
996
	}
997 998

	return rx_stopped;
999 1000
}

1001
static bool hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
1002 1003
{
	struct hnae_ring *ring = ring_data->ring;
1004
	int num;
1005

1006
	hns_update_rx_rate(ring);
1007 1008
	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);

1009 1010 1011 1012
	if (num <= hns_coal_rx_bdnum(ring)) {
		if (ring->q->handle->coal_adapt_en)
			hns_nic_adpt_coalesce(ring_data);

1013
		return true;
1014 1015 1016
	}

	return false;
1017 1018
}

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring,
					    int *bytes, int *pkts)
{
	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];

	(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
	(*bytes) += desc_cb->length;
	/* desc_cb will be cleaned, after hnae_free_buffer_detach*/
	hnae_free_buffer_detach(ring, ring->next_to_clean);

	ring_ptr_move_fw(ring, next_to_clean);
}

static int is_valid_clean_head(struct hnae_ring *ring, int h)
{
	int u = ring->next_to_use;
	int c = ring->next_to_clean;

	if (unlikely(h > ring->desc_num))
		return 0;

	assert(u > 0 && u < ring->desc_num);
	assert(c > 0 && c < ring->desc_num);
	assert(u != c && h != c); /* must be checked before call this func */

	return u > c ? (h > c && h <= u) : (h > c || h <= u);
}

/* netif_tx_lock will turn down the performance, set only when necessary */
#ifdef CONFIG_NET_POLL_CONTROLLER
1049 1050
#define NETIF_TX_LOCK(ring) spin_lock(&(ring)->lock)
#define NETIF_TX_UNLOCK(ring) spin_unlock(&(ring)->lock)
1051
#else
1052 1053
#define NETIF_TX_LOCK(ring)
#define NETIF_TX_UNLOCK(ring)
1054
#endif
1055

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
/* reclaim all desc in one budget
 * return error or number of desc left
 */
static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data,
			       int budget, void *v)
{
	struct hnae_ring *ring = ring_data->ring;
	struct net_device *ndev = ring_data->napi.dev;
	struct netdev_queue *dev_queue;
	struct hns_nic_priv *priv = netdev_priv(ndev);
	int head;
	int bytes, pkts;

1069
	NETIF_TX_LOCK(ring);
1070 1071 1072 1073 1074

	head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
	rmb(); /* make sure head is ready before touch any data */

	if (is_ring_empty(ring) || head == ring->next_to_clean) {
1075
		NETIF_TX_UNLOCK(ring);
1076 1077 1078 1079 1080 1081 1082
		return 0; /* no data to poll */
	}

	if (!is_valid_clean_head(ring, head)) {
		netdev_err(ndev, "wrong head (%d, %d-%d)\n", head,
			   ring->next_to_use, ring->next_to_clean);
		ring->stats.io_err_cnt++;
1083
		NETIF_TX_UNLOCK(ring);
1084 1085 1086 1087 1088
		return -EIO;
	}

	bytes = 0;
	pkts = 0;
1089
	while (head != ring->next_to_clean) {
1090
		hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
1091 1092 1093
		/* issue prefetch for next Tx descriptor */
		prefetch(&ring->desc_cb[ring->next_to_clean]);
	}
1094

1095
	NETIF_TX_UNLOCK(ring);
1096 1097 1098 1099

	dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
	netdev_tx_completed_queue(dev_queue, pkts, bytes);

1100 1101 1102
	if (unlikely(priv->link && !netif_carrier_ok(ndev)))
		netif_carrier_on(ndev);

1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
	if (unlikely(pkts && netif_carrier_ok(ndev) &&
		     (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) {
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (netif_tx_queue_stopped(dev_queue) &&
		    !test_bit(NIC_STATE_DOWN, &priv->state)) {
			netif_tx_wake_queue(dev_queue);
			ring->stats.restart_queue++;
		}
	}
	return 0;
}

1118
static bool hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data)
1119 1120
{
	struct hnae_ring *ring = ring_data->ring;
1121 1122 1123 1124 1125
	int head;

	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);

	head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1126 1127 1128 1129 1130

	if (head != ring->next_to_clean) {
		ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
			ring_data->ring, 1);

1131 1132 1133
		return false;
	} else {
		return true;
1134 1135 1136
	}
}

1137
static bool hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
1138 1139 1140 1141 1142
{
	struct hnae_ring *ring = ring_data->ring;
	int head = readl_relaxed(ring->io_base + RCB_REG_HEAD);

	if (head == ring->next_to_clean)
1143
		return true;
1144
	else
1145
		return false;
1146 1147
}

1148 1149 1150 1151 1152 1153 1154 1155
static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data)
{
	struct hnae_ring *ring = ring_data->ring;
	struct net_device *ndev = ring_data->napi.dev;
	struct netdev_queue *dev_queue;
	int head;
	int bytes, pkts;

1156
	NETIF_TX_LOCK(ring);
1157 1158 1159 1160 1161 1162 1163

	head = ring->next_to_use; /* ntu :soft setted ring position*/
	bytes = 0;
	pkts = 0;
	while (head != ring->next_to_clean)
		hns_nic_reclaim_one_desc(ring, &bytes, &pkts);

1164
	NETIF_TX_UNLOCK(ring);
1165 1166 1167 1168 1169 1170 1171

	dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
	netdev_tx_reset_queue(dev_queue);
}

static int hns_nic_common_poll(struct napi_struct *napi, int budget)
{
1172
	int clean_complete = 0;
1173 1174
	struct hns_nic_ring_data *ring_data =
		container_of(napi, struct hns_nic_ring_data, napi);
1175
	struct hnae_ring *ring = ring_data->ring;
1176

1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
try_again:
	clean_complete += ring_data->poll_one(
				ring_data, budget - clean_complete,
				ring_data->ex_process);

	if (clean_complete < budget) {
		if (ring_data->fini_process(ring_data)) {
			napi_complete(napi);
			ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
		} else {
			goto try_again;
		}
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
	}

	return clean_complete;
}

static irqreturn_t hns_irq_handle(int irq, void *dev)
{
	struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev;

	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
		ring_data->ring, 1);
	napi_schedule(&ring_data->napi);

	return IRQ_HANDLED;
}

/**
 *hns_nic_adjust_link - adjust net work mode by the phy stat or new param
 *@ndev: net device
 */
static void hns_nic_adjust_link(struct net_device *ndev)
{
	struct hns_nic_priv *priv = netdev_priv(ndev);
	struct hnae_handle *h = priv->ae_handle;
1213 1214
	int state = 1;

1215
	if (ndev->phydev) {
1216 1217
		h->dev->ops->adjust_link(h, ndev->phydev->speed,
					 ndev->phydev->duplex);
1218
		state = ndev->phydev->link;
1219 1220
	}
	state = state && h->dev->ops->get_status(h);
1221

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
	if (state != priv->link) {
		if (state) {
			netif_carrier_on(ndev);
			netif_tx_wake_all_queues(ndev);
			netdev_info(ndev, "link up\n");
		} else {
			netif_carrier_off(ndev);
			netdev_info(ndev, "link down\n");
		}
		priv->link = state;
	}
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
}

/**
 *hns_nic_init_phy - init phy
 *@ndev: net device
 *@h: ae handle
 * Return 0 on success, negative on failure
 */
int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h)
{
1243 1244
	struct phy_device *phy_dev = h->phy_dev;
	int ret;
1245

1246
	if (!h->phy_dev)
1247 1248
		return 0;

1249 1250
	if (h->phy_if != PHY_INTERFACE_MODE_XGMII) {
		phy_dev->dev_flags = 0;
1251

1252 1253 1254 1255 1256 1257 1258
		ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link,
					 h->phy_if);
	} else {
		ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if);
	}
	if (unlikely(ret))
		return -ENODEV;
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315

	phy_dev->supported &= h->if_support;
	phy_dev->advertising = phy_dev->supported;

	if (h->phy_if == PHY_INTERFACE_MODE_XGMII)
		phy_dev->autoneg = false;

	return 0;
}

static int hns_nic_ring_open(struct net_device *netdev, int idx)
{
	struct hns_nic_priv *priv = netdev_priv(netdev);
	struct hnae_handle *h = priv->ae_handle;

	napi_enable(&priv->ring_data[idx].napi);

	enable_irq(priv->ring_data[idx].ring->irq);
	h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0);

	return 0;
}

static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p)
{
	struct hns_nic_priv *priv = netdev_priv(ndev);
	struct hnae_handle *h = priv->ae_handle;
	struct sockaddr *mac_addr = p;
	int ret;

	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
		return -EADDRNOTAVAIL;

	ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data);
	if (ret) {
		netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret);
		return ret;
	}

	memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len);

	return 0;
}

void hns_nic_update_stats(struct net_device *netdev)
{
	struct hns_nic_priv *priv = netdev_priv(netdev);
	struct hnae_handle *h = priv->ae_handle;

	h->dev->ops->update_stats(h, &netdev->stats);
}

/* set mac addr if it is configed. or leave it to the AE driver */
static void hns_init_mac_addr(struct net_device *ndev)
{
	struct hns_nic_priv *priv = netdev_priv(ndev);

1316
	if (!device_get_mac_address(priv->dev, ndev->dev_addr, ETH_ALEN)) {
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
		eth_hw_addr_random(ndev);
		dev_warn(priv->dev, "No valid mac, use random mac %pM",
			 ndev->dev_addr);
	}
}

static void hns_nic_ring_close(struct net_device *netdev, int idx)
{
	struct hns_nic_priv *priv = netdev_priv(netdev);
	struct hnae_handle *h = priv->ae_handle;

	h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1);
	disable_irq(priv->ring_data[idx].ring->irq);

	napi_disable(&priv->ring_data[idx].napi);
}

1334 1335
static int hns_nic_init_affinity_mask(int q_num, int ring_idx,
				      struct hnae_ring *ring, cpumask_t *mask)
1336 1337
{
	int cpu;
1338

1339 1340 1341 1342 1343 1344 1345 1346 1347
	/* Diffrent irq banlance between 16core and 32core.
	 * The cpu mask set by ring index according to the ring flag
	 * which indicate the ring is tx or rx.
	 */
	if (q_num == num_possible_cpus()) {
		if (is_tx_ring(ring))
			cpu = ring_idx;
		else
			cpu = ring_idx - q_num;
1348
	} else {
1349 1350 1351 1352
		if (is_tx_ring(ring))
			cpu = ring_idx * 2;
		else
			cpu = (ring_idx - q_num) * 2 + 1;
1353
	}
1354

1355 1356 1357 1358
	cpumask_clear(mask);
	cpumask_set_cpu(cpu, mask);

	return cpu;
1359 1360 1361 1362 1363 1364 1365 1366
}

static int hns_nic_init_irq(struct hns_nic_priv *priv)
{
	struct hnae_handle *h = priv->ae_handle;
	struct hns_nic_ring_data *rd;
	int i;
	int ret;
1367
	int cpu;
1368

1369 1370 1371 1372 1373 1374 1375 1376
	for (i = 0; i < h->q_num * 2; i++) {
		rd = &priv->ring_data[i];

		if (rd->ring->irq_init_flag == RCB_IRQ_INITED)
			break;

		snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN,
			 "%s-%s%d", priv->netdev->name,
1377
			 (is_tx_ring(rd->ring) ? "tx" : "rx"), rd->queue_index);
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388

		rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0';

		ret = request_irq(rd->ring->irq,
				  hns_irq_handle, 0, rd->ring->ring_name, rd);
		if (ret) {
			netdev_err(priv->netdev, "request irq(%d) fail\n",
				   rd->ring->irq);
			return ret;
		}
		disable_irq(rd->ring->irq);
1389 1390 1391 1392 1393 1394 1395 1396

		cpu = hns_nic_init_affinity_mask(h->q_num, i,
						 rd->ring, &rd->mask);

		if (cpu_online(cpu))
			irq_set_affinity_hint(rd->ring->irq,
					      &rd->mask);

1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
		rd->ring->irq_init_flag = RCB_IRQ_INITED;
	}

	return 0;
}

static int hns_nic_net_up(struct net_device *ndev)
{
	struct hns_nic_priv *priv = netdev_priv(ndev);
	struct hnae_handle *h = priv->ae_handle;
1407
	int i, j;
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
	int ret;

	ret = hns_nic_init_irq(priv);
	if (ret != 0) {
		netdev_err(ndev, "hns init irq failed! ret=%d\n", ret);
		return ret;
	}

	for (i = 0; i < h->q_num * 2; i++) {
		ret = hns_nic_ring_open(ndev, i);
		if (ret)
			goto out_has_some_queues;
	}

	ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr);
	if (ret)
		goto out_set_mac_addr_err;

	ret = h->dev->ops->start ? h->dev->ops->start(h) : 0;
	if (ret)
		goto out_start_err;

1430 1431
	if (ndev->phydev)
		phy_start(ndev->phydev);
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464

	clear_bit(NIC_STATE_DOWN, &priv->state);
	(void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);

	return 0;

out_start_err:
	netif_stop_queue(ndev);
out_set_mac_addr_err:
out_has_some_queues:
	for (j = i - 1; j >= 0; j--)
		hns_nic_ring_close(ndev, j);

	set_bit(NIC_STATE_DOWN, &priv->state);

	return ret;
}

static void hns_nic_net_down(struct net_device *ndev)
{
	int i;
	struct hnae_ae_ops *ops;
	struct hns_nic_priv *priv = netdev_priv(ndev);

	if (test_and_set_bit(NIC_STATE_DOWN, &priv->state))
		return;

	(void)del_timer_sync(&priv->service_timer);
	netif_tx_stop_all_queues(ndev);
	netif_carrier_off(ndev);
	netif_tx_disable(ndev);
	priv->link = 0;

1465 1466
	if (ndev->phydev)
		phy_stop(ndev->phydev);
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499

	ops = priv->ae_handle->dev->ops;

	if (ops->stop)
		ops->stop(priv->ae_handle);

	netif_tx_stop_all_queues(ndev);

	for (i = priv->ae_handle->q_num - 1; i >= 0; i--) {
		hns_nic_ring_close(ndev, i);
		hns_nic_ring_close(ndev, i + priv->ae_handle->q_num);

		/* clean tx buffers*/
		hns_nic_tx_clr_all_bufs(priv->ring_data + i);
	}
}

void hns_nic_net_reset(struct net_device *ndev)
{
	struct hns_nic_priv *priv = netdev_priv(ndev);
	struct hnae_handle *handle = priv->ae_handle;

	while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state))
		usleep_range(1000, 2000);

	(void)hnae_reinit_handle(handle);

	clear_bit(NIC_STATE_RESETTING, &priv->state);
}

void hns_nic_net_reinit(struct net_device *netdev)
{
	struct hns_nic_priv *priv = netdev_priv(netdev);
1500
	enum hnae_port_type type = priv->ae_handle->port_type;
1501

1502
	netif_trans_update(priv->netdev);
1503 1504 1505 1506
	while (test_and_set_bit(NIC_STATE_REINITING, &priv->state))
		usleep_range(1000, 2000);

	hns_nic_net_down(netdev);
1507 1508 1509 1510 1511 1512 1513

	/* Only do hns_nic_net_reset in debug mode
	 * because of hardware limitation.
	 */
	if (type == HNAE_PORT_DEBUG)
		hns_nic_net_reset(netdev);

1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
	(void)hns_nic_net_up(netdev);
	clear_bit(NIC_STATE_REINITING, &priv->state);
}

static int hns_nic_net_open(struct net_device *ndev)
{
	struct hns_nic_priv *priv = netdev_priv(ndev);
	struct hnae_handle *h = priv->ae_handle;
	int ret;

	if (test_bit(NIC_STATE_TESTING, &priv->state))
		return -EBUSY;

	priv->link = 0;
	netif_carrier_off(ndev);

	ret = netif_set_real_num_tx_queues(ndev, h->q_num);
	if (ret < 0) {
		netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n",
			   ret);
		return ret;
	}

	ret = netif_set_real_num_rx_queues(ndev, h->q_num);
	if (ret < 0) {
		netdev_err(ndev,
			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
		return ret;
	}

	ret = hns_nic_net_up(ndev);
	if (ret) {
		netdev_err(ndev,
			   "hns net up fail, ret=%d!\n", ret);
		return ret;
	}

	return 0;
}

static int hns_nic_net_stop(struct net_device *ndev)
{
	hns_nic_net_down(ndev);

	return 0;
}

static void hns_tx_timeout_reset(struct hns_nic_priv *priv);
static void hns_nic_net_timeout(struct net_device *ndev)
{
	struct hns_nic_priv *priv = netdev_priv(ndev);

	hns_tx_timeout_reset(priv);
}

static int hns_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr,
			    int cmd)
{
1572
	struct phy_device *phy_dev = netdev->phydev;
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603

	if (!netif_running(netdev))
		return -EINVAL;

	if (!phy_dev)
		return -ENOTSUPP;

	return phy_mii_ioctl(phy_dev, ifr, cmd);
}

/* use only for netconsole to poll with the device without interrupt */
#ifdef CONFIG_NET_POLL_CONTROLLER
void hns_nic_poll_controller(struct net_device *ndev)
{
	struct hns_nic_priv *priv = netdev_priv(ndev);
	unsigned long flags;
	int i;

	local_irq_save(flags);
	for (i = 0; i < priv->ae_handle->q_num * 2; i++)
		napi_schedule(&priv->ring_data[i].napi);
	local_irq_restore(flags);
}
#endif

static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb,
				    struct net_device *ndev)
{
	struct hns_nic_priv *priv = netdev_priv(ndev);

	assert(skb->queue_mapping < ndev->ae_handle->q_num);
1604 1605 1606

	return hns_nic_net_xmit_hw(ndev, skb,
				   &tx_ring_data(priv, skb->queue_mapping));
1607 1608
}

1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
static void hns_nic_drop_rx_fetch(struct hns_nic_ring_data *ring_data,
				  struct sk_buff *skb)
{
	dev_kfree_skb_any(skb);
}

#define HNS_LB_TX_RING	0
static struct sk_buff *hns_assemble_skb(struct net_device *ndev)
{
	struct sk_buff *skb;
	struct ethhdr *ethhdr;
	int frame_len;

	/* allocate test skb */
	skb = alloc_skb(64, GFP_KERNEL);
	if (!skb)
		return NULL;

	skb_put(skb, 64);
	skb->dev = ndev;
	memset(skb->data, 0xFF, skb->len);

	/* must be tcp/ip package */
	ethhdr = (struct ethhdr *)skb->data;
	ethhdr->h_proto = htons(ETH_P_IP);

	frame_len = skb->len & (~1ul);
	memset(&skb->data[frame_len / 2], 0xAA,
	       frame_len / 2 - 1);

	skb->queue_mapping = HNS_LB_TX_RING;

	return skb;
}

static int hns_enable_serdes_lb(struct net_device *ndev)
{
	struct hns_nic_priv *priv = netdev_priv(ndev);
	struct hnae_handle *h = priv->ae_handle;
	struct hnae_ae_ops *ops = h->dev->ops;
	int speed, duplex;
	int ret;

	ret = ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 1);
	if (ret)
		return ret;

	ret = ops->start ? ops->start(h) : 0;
	if (ret)
		return ret;

	/* link adjust duplex*/
	if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
		speed = 1000;
	else
		speed = 10000;
	duplex = 1;

	ops->adjust_link(h, speed, duplex);

	/* wait h/w ready */
	mdelay(300);

	return 0;
}

static void hns_disable_serdes_lb(struct net_device *ndev)
{
	struct hns_nic_priv *priv = netdev_priv(ndev);
	struct hnae_handle *h = priv->ae_handle;
	struct hnae_ae_ops *ops = h->dev->ops;

	ops->stop(h);
	ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 0);
}

/**
 *hns_nic_clear_all_rx_fetch - clear the chip fetched descriptions. The
 *function as follows:
 *    1. if one rx ring has found the page_offset is not equal 0 between head
 *       and tail, it means that the chip fetched the wrong descs for the ring
 *       which buffer size is 4096.
 *    2. we set the chip serdes loopback and set rss indirection to the ring.
 *    3. construct 64-bytes ip broadcast packages, wait the associated rx ring
 *       recieving all packages and it will fetch new descriptions.
 *    4. recover to the original state.
 *
 *@ndev: net device
 */
static int hns_nic_clear_all_rx_fetch(struct net_device *ndev)
{
	struct hns_nic_priv *priv = netdev_priv(ndev);
	struct hnae_handle *h = priv->ae_handle;
	struct hnae_ae_ops *ops = h->dev->ops;
	struct hns_nic_ring_data *rd;
	struct hnae_ring *ring;
	struct sk_buff *skb;
	u32 *org_indir;
	u32 *cur_indir;
	int indir_size;
	int head, tail;
	int fetch_num;
	int i, j;
	bool found;
	int retry_times;
	int ret = 0;

	/* alloc indir memory */
	indir_size = ops->get_rss_indir_size(h) * sizeof(*org_indir);
	org_indir = kzalloc(indir_size, GFP_KERNEL);
	if (!org_indir)
		return -ENOMEM;

	/* store the orginal indirection */
	ops->get_rss(h, org_indir, NULL, NULL);

	cur_indir = kzalloc(indir_size, GFP_KERNEL);
	if (!cur_indir) {
		ret = -ENOMEM;
		goto cur_indir_alloc_err;
	}

	/* set loopback */
	if (hns_enable_serdes_lb(ndev)) {
		ret = -EINVAL;
		goto enable_serdes_lb_err;
	}

	/* foreach every rx ring to clear fetch desc */
	for (i = 0; i < h->q_num; i++) {
		ring = &h->qs[i]->rx_ring;
		head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
		tail = readl_relaxed(ring->io_base + RCB_REG_TAIL);
		found = false;
		fetch_num = ring_dist(ring, head, tail);

		while (head != tail) {
			if (ring->desc_cb[head].page_offset != 0) {
				found = true;
				break;
			}

			head++;
			if (head == ring->desc_num)
				head = 0;
		}

		if (found) {
			for (j = 0; j < indir_size / sizeof(*org_indir); j++)
				cur_indir[j] = i;
			ops->set_rss(h, cur_indir, NULL, 0);

			for (j = 0; j < fetch_num; j++) {
				/* alloc one skb and init */
				skb = hns_assemble_skb(ndev);
				if (!skb)
					goto out;
				rd = &tx_ring_data(priv, skb->queue_mapping);
				hns_nic_net_xmit_hw(ndev, skb, rd);

				retry_times = 0;
				while (retry_times++ < 10) {
					mdelay(10);
					/* clean rx */
					rd = &rx_ring_data(priv, i);
					if (rd->poll_one(rd, fetch_num,
							 hns_nic_drop_rx_fetch))
						break;
				}

				retry_times = 0;
				while (retry_times++ < 10) {
					mdelay(10);
					/* clean tx ring 0 send package */
					rd = &tx_ring_data(priv,
							   HNS_LB_TX_RING);
					if (rd->poll_one(rd, fetch_num, NULL))
						break;
				}
			}
		}
	}

out:
	/* restore everything */
	ops->set_rss(h, org_indir, NULL, 0);
	hns_disable_serdes_lb(ndev);
enable_serdes_lb_err:
	kfree(cur_indir);
cur_indir_alloc_err:
	kfree(org_indir);

	return ret;
}

1804 1805 1806 1807
static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu)
{
	struct hns_nic_priv *priv = netdev_priv(ndev);
	struct hnae_handle *h = priv->ae_handle;
1808
	bool if_running = netif_running(ndev);
1809 1810
	int ret;

1811 1812 1813 1814 1815 1816 1817 1818
	/* MTU < 68 is an error and causes problems on some kernels */
	if (new_mtu < 68)
		return -EINVAL;

	/* MTU no change */
	if (new_mtu == ndev->mtu)
		return 0;

1819 1820 1821
	if (!h->dev->ops->set_mtu)
		return -ENOTSUPP;

1822
	if (if_running) {
1823 1824
		(void)hns_nic_net_stop(ndev);
		msleep(100);
1825
	}
1826

1827 1828 1829 1830 1831
	if (priv->enet_ver != AE_VERSION_1 &&
	    ndev->mtu <= BD_SIZE_2048_MAX_MTU &&
	    new_mtu > BD_SIZE_2048_MAX_MTU) {
		/* update desc */
		hnae_reinit_all_ring_desc(h);
1832

1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
		/* clear the package which the chip has fetched */
		ret = hns_nic_clear_all_rx_fetch(ndev);

		/* the page offset must be consist with desc */
		hnae_reinit_all_ring_page_off(h);

		if (ret) {
			netdev_err(ndev, "clear the fetched desc fail\n");
			goto out;
		}
	}

	ret = h->dev->ops->set_mtu(h, new_mtu);
	if (ret) {
		netdev_err(ndev, "set mtu fail, return value %d\n",
			   ret);
		goto out;
1850 1851
	}

1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
	/* finally, set new mtu to netdevice */
	ndev->mtu = new_mtu;

out:
	if (if_running) {
		if (hns_nic_net_open(ndev)) {
			netdev_err(ndev, "hns net open fail\n");
			ret = -EINVAL;
		}
	}
1862 1863 1864 1865

	return ret;
}

1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
static int hns_nic_set_features(struct net_device *netdev,
				netdev_features_t features)
{
	struct hns_nic_priv *priv = netdev_priv(netdev);

	switch (priv->enet_ver) {
	case AE_VERSION_1:
		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
			netdev_info(netdev, "enet v1 do not support tso!\n");
		break;
	default:
		if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
			priv->ops.fill_desc = fill_tso_desc;
			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
			/* The chip only support 7*4096 */
			netif_set_gso_max_size(netdev, 7 * 4096);
		} else {
			priv->ops.fill_desc = fill_v2_desc;
			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
		}
		break;
	}
	netdev->features = features;
	return 0;
}

static netdev_features_t hns_nic_fix_features(
		struct net_device *netdev, netdev_features_t features)
{
	struct hns_nic_priv *priv = netdev_priv(netdev);

	switch (priv->enet_ver) {
	case AE_VERSION_1:
		features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
				NETIF_F_HW_VLAN_CTAG_FILTER);
		break;
	default:
		break;
	}
	return features;
}

1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr)
{
	struct hns_nic_priv *priv = netdev_priv(netdev);
	struct hnae_handle *h = priv->ae_handle;

	if (h->dev->ops->add_uc_addr)
		return h->dev->ops->add_uc_addr(h, addr);

	return 0;
}

static int hns_nic_uc_unsync(struct net_device *netdev,
			     const unsigned char *addr)
{
	struct hns_nic_priv *priv = netdev_priv(netdev);
	struct hnae_handle *h = priv->ae_handle;

	if (h->dev->ops->rm_uc_addr)
		return h->dev->ops->rm_uc_addr(h, addr);

	return 0;
}

1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
/**
 * nic_set_multicast_list - set mutl mac address
 * @netdev: net device
 * @p: mac address
 *
 * return void
 */
void hns_set_multicast_list(struct net_device *ndev)
{
	struct hns_nic_priv *priv = netdev_priv(ndev);
	struct hnae_handle *h = priv->ae_handle;
	struct netdev_hw_addr *ha = NULL;

	if (!h)	{
		netdev_err(ndev, "hnae handle is null\n");
		return;
	}

1949 1950 1951 1952
	if (h->dev->ops->clr_mc_addr)
		if (h->dev->ops->clr_mc_addr(h))
			netdev_err(ndev, "clear multicast address fail\n");

1953 1954 1955 1956 1957 1958 1959
	if (h->dev->ops->set_mc_addr) {
		netdev_for_each_mc_addr(ha, ndev)
			if (h->dev->ops->set_mc_addr(h, ha->addr))
				netdev_err(ndev, "set multicast fail\n");
	}
}

Y
yankejian 已提交
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
void hns_nic_set_rx_mode(struct net_device *ndev)
{
	struct hns_nic_priv *priv = netdev_priv(ndev);
	struct hnae_handle *h = priv->ae_handle;

	if (h->dev->ops->set_promisc_mode) {
		if (ndev->flags & IFF_PROMISC)
			h->dev->ops->set_promisc_mode(h, 1);
		else
			h->dev->ops->set_promisc_mode(h, 0);
	}

	hns_set_multicast_list(ndev);
1973 1974 1975

	if (__dev_uc_sync(ndev, hns_nic_uc_sync, hns_nic_uc_unsync))
		netdev_err(ndev, "sync uc address fail\n");
Y
yankejian 已提交
1976 1977
}

1978 1979
static void hns_nic_get_stats64(struct net_device *ndev,
				struct rtnl_link_stats64 *stats)
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
{
	int idx = 0;
	u64 tx_bytes = 0;
	u64 rx_bytes = 0;
	u64 tx_pkts = 0;
	u64 rx_pkts = 0;
	struct hns_nic_priv *priv = netdev_priv(ndev);
	struct hnae_handle *h = priv->ae_handle;

	for (idx = 0; idx < h->q_num; idx++) {
		tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes;
		tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts;
		rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes;
		rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts;
	}

	stats->tx_bytes = tx_bytes;
	stats->tx_packets = tx_pkts;
	stats->rx_bytes = rx_bytes;
	stats->rx_packets = rx_pkts;

	stats->rx_errors = ndev->stats.rx_errors;
	stats->multicast = ndev->stats.multicast;
	stats->rx_length_errors = ndev->stats.rx_length_errors;
	stats->rx_crc_errors = ndev->stats.rx_crc_errors;
	stats->rx_missed_errors = ndev->stats.rx_missed_errors;

	stats->tx_errors = ndev->stats.tx_errors;
	stats->rx_dropped = ndev->stats.rx_dropped;
	stats->tx_dropped = ndev->stats.tx_dropped;
	stats->collisions = ndev->stats.collisions;
	stats->rx_over_errors = ndev->stats.rx_over_errors;
	stats->rx_frame_errors = ndev->stats.rx_frame_errors;
	stats->rx_fifo_errors = ndev->stats.rx_fifo_errors;
	stats->tx_aborted_errors = ndev->stats.tx_aborted_errors;
	stats->tx_carrier_errors = ndev->stats.tx_carrier_errors;
	stats->tx_fifo_errors = ndev->stats.tx_fifo_errors;
	stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors;
	stats->tx_window_errors = ndev->stats.tx_window_errors;
	stats->rx_compressed = ndev->stats.rx_compressed;
	stats->tx_compressed = ndev->stats.tx_compressed;
}

2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
static u16
hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb,
		     void *accel_priv, select_queue_fallback_t fallback)
{
	struct ethhdr *eth_hdr = (struct ethhdr *)skb->data;
	struct hns_nic_priv *priv = netdev_priv(ndev);

	/* fix hardware broadcast/multicast packets queue loopback */
	if (!AE_IS_VER1(priv->enet_ver) &&
	    is_multicast_ether_addr(eth_hdr->h_dest))
		return 0;
	else
		return fallback(ndev, skb);
}

2038 2039 2040 2041 2042 2043 2044 2045
static const struct net_device_ops hns_nic_netdev_ops = {
	.ndo_open = hns_nic_net_open,
	.ndo_stop = hns_nic_net_stop,
	.ndo_start_xmit = hns_nic_net_xmit,
	.ndo_tx_timeout = hns_nic_net_timeout,
	.ndo_set_mac_address = hns_nic_net_set_mac_address,
	.ndo_change_mtu = hns_nic_change_mtu,
	.ndo_do_ioctl = hns_nic_do_ioctl,
2046 2047
	.ndo_set_features = hns_nic_set_features,
	.ndo_fix_features = hns_nic_fix_features,
2048 2049 2050 2051
	.ndo_get_stats64 = hns_nic_get_stats64,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = hns_nic_poll_controller,
#endif
Y
yankejian 已提交
2052
	.ndo_set_rx_mode = hns_nic_set_rx_mode,
2053
	.ndo_select_queue = hns_nic_select_queue,
2054 2055 2056 2057 2058 2059 2060 2061
};

static void hns_nic_update_link_status(struct net_device *netdev)
{
	struct hns_nic_priv *priv = netdev_priv(netdev);

	struct hnae_handle *h = priv->ae_handle;

2062 2063 2064
	if (h->phy_dev) {
		if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
			return;
2065

2066
		(void)genphy_read_status(h->phy_dev);
2067
	}
2068
	hns_nic_adjust_link(netdev);
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
}

/* for dumping key regs*/
static void hns_nic_dump(struct hns_nic_priv *priv)
{
	struct hnae_handle *h = priv->ae_handle;
	struct hnae_ae_ops *ops = h->dev->ops;
	u32 *data, reg_num, i;

	if (ops->get_regs_len && ops->get_regs) {
		reg_num = ops->get_regs_len(priv->ae_handle);
		reg_num = (reg_num + 3ul) & ~3ul;
		data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL);
		if (data) {
			ops->get_regs(priv->ae_handle, data);
			for (i = 0; i < reg_num; i += 4)
				pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
					i, data[i], data[i + 1],
					data[i + 2], data[i + 3]);
			kfree(data);
		}
	}

	for (i = 0; i < h->q_num; i++) {
		pr_info("tx_queue%d_next_to_clean:%d\n",
			i, h->qs[i]->tx_ring.next_to_clean);
		pr_info("tx_queue%d_next_to_use:%d\n",
			i, h->qs[i]->tx_ring.next_to_use);
		pr_info("rx_queue%d_next_to_clean:%d\n",
			i, h->qs[i]->rx_ring.next_to_clean);
		pr_info("rx_queue%d_next_to_use:%d\n",
			i, h->qs[i]->rx_ring.next_to_use);
	}
}

2104
/* for resetting subtask */
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
static void hns_nic_reset_subtask(struct hns_nic_priv *priv)
{
	enum hnae_port_type type = priv->ae_handle->port_type;

	if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state))
		return;
	clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);

	/* If we're already down, removing or resetting, just bail */
	if (test_bit(NIC_STATE_DOWN, &priv->state) ||
	    test_bit(NIC_STATE_REMOVING, &priv->state) ||
	    test_bit(NIC_STATE_RESETTING, &priv->state))
		return;

	hns_nic_dump(priv);
2120 2121
	netdev_info(priv->netdev, "try to reset %s port!\n",
		    (type == HNAE_PORT_DEBUG ? "debug" : "service"));
2122 2123

	rtnl_lock();
2124
	/* put off any impending NetWatchDogTimeout */
2125
	netif_trans_update(priv->netdev);
2126
	hns_nic_net_reinit(priv->netdev);
2127

2128 2129 2130 2131 2132 2133
	rtnl_unlock();
}

/* for doing service complete*/
static void hns_nic_service_event_complete(struct hns_nic_priv *priv)
{
2134
	WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state));
2135
	/* make sure to commit the things */
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
	smp_mb__before_atomic();
	clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
}

static void hns_nic_service_task(struct work_struct *work)
{
	struct hns_nic_priv *priv
		= container_of(work, struct hns_nic_priv, service_task);
	struct hnae_handle *h = priv->ae_handle;

	hns_nic_update_link_status(priv->netdev);
	h->dev->ops->update_led_status(h);
	hns_nic_update_stats(priv->netdev);

	hns_nic_reset_subtask(priv);
	hns_nic_service_event_complete(priv);
}

static void hns_nic_task_schedule(struct hns_nic_priv *priv)
{
	if (!test_bit(NIC_STATE_DOWN, &priv->state) &&
	    !test_bit(NIC_STATE_REMOVING, &priv->state) &&
	    !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state))
		(void)schedule_work(&priv->service_task);
}

2162
static void hns_nic_service_timer(struct timer_list *t)
2163
{
2164
	struct hns_nic_priv *priv = from_timer(priv, t, service_timer);
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191

	(void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);

	hns_nic_task_schedule(priv);
}

/**
 * hns_tx_timeout_reset - initiate reset due to Tx timeout
 * @priv: driver private struct
 **/
static void hns_tx_timeout_reset(struct hns_nic_priv *priv)
{
	/* Do the reset outside of interrupt context */
	if (!test_bit(NIC_STATE_DOWN, &priv->state)) {
		set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
		netdev_warn(priv->netdev,
			    "initiating reset due to tx timeout(%llu,0x%lx)\n",
			    priv->tx_timeout_count, priv->state);
		priv->tx_timeout_count++;
		hns_nic_task_schedule(priv);
	}
}

static int hns_nic_init_ring_data(struct hns_nic_priv *priv)
{
	struct hnae_handle *h = priv->ae_handle;
	struct hns_nic_ring_data *rd;
2192
	bool is_ver1 = AE_IS_VER1(priv->enet_ver);
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
	int i;

	if (h->q_num > NIC_MAX_Q_PER_VF) {
		netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num);
		return -EINVAL;
	}

	priv->ring_data = kzalloc(h->q_num * sizeof(*priv->ring_data) * 2,
				  GFP_KERNEL);
	if (!priv->ring_data)
		return -ENOMEM;

	for (i = 0; i < h->q_num; i++) {
		rd = &priv->ring_data[i];
		rd->queue_index = i;
		rd->ring = &h->qs[i]->tx_ring;
		rd->poll_one = hns_nic_tx_poll_one;
2210 2211
		rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro :
			hns_nic_tx_fini_pro_v2;
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222

		netif_napi_add(priv->netdev, &rd->napi,
			       hns_nic_common_poll, NIC_TX_CLEAN_MAX_NUM);
		rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
	}
	for (i = h->q_num; i < h->q_num * 2; i++) {
		rd = &priv->ring_data[i];
		rd->queue_index = i - h->q_num;
		rd->ring = &h->qs[i - h->q_num]->rx_ring;
		rd->poll_one = hns_nic_rx_poll_one;
		rd->ex_process = hns_nic_rx_up_pro;
2223 2224
		rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro :
			hns_nic_rx_fini_pro_v2;
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241

		netif_napi_add(priv->netdev, &rd->napi,
			       hns_nic_common_poll, NIC_RX_CLEAN_MAX_NUM);
		rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
	}

	return 0;
}

static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv)
{
	struct hnae_handle *h = priv->ae_handle;
	int i;

	for (i = 0; i < h->q_num * 2; i++) {
		netif_napi_del(&priv->ring_data[i].napi);
		if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
2242 2243 2244
			(void)irq_set_affinity_hint(
				priv->ring_data[i].ring->irq,
				NULL);
2245 2246 2247 2248 2249 2250 2251 2252 2253
			free_irq(priv->ring_data[i].ring->irq,
				 &priv->ring_data[i]);
		}

		priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED;
	}
	kfree(priv->ring_data);
}

2254 2255 2256
static void hns_nic_set_priv_ops(struct net_device *netdev)
{
	struct hns_nic_priv *priv = netdev_priv(netdev);
2257
	struct hnae_handle *h = priv->ae_handle;
2258 2259 2260 2261 2262 2263 2264

	if (AE_IS_VER1(priv->enet_ver)) {
		priv->ops.fill_desc = fill_desc;
		priv->ops.get_rxd_bnum = get_rx_desc_bnum;
		priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
	} else {
		priv->ops.get_rxd_bnum = get_v2rx_desc_bnum;
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
		if ((netdev->features & NETIF_F_TSO) ||
		    (netdev->features & NETIF_F_TSO6)) {
			priv->ops.fill_desc = fill_tso_desc;
			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
			/* This chip only support 7*4096 */
			netif_set_gso_max_size(netdev, 7 * 4096);
		} else {
			priv->ops.fill_desc = fill_v2_desc;
			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
		}
2275 2276 2277 2278
		/* enable tso when init
		 * control tso on/off through TSE bit in bd
		 */
		h->dev->ops->set_tso_stats(h, 1);
2279 2280 2281
	}
}

2282 2283 2284 2285 2286 2287 2288
static int hns_nic_try_get_ae(struct net_device *ndev)
{
	struct hns_nic_priv *priv = netdev_priv(ndev);
	struct hnae_handle *h;
	int ret;

	h = hnae_get_handle(&priv->netdev->dev,
2289
			    priv->fwnode, priv->port_id, NULL);
2290
	if (IS_ERR_OR_NULL(h)) {
2291
		ret = -ENODEV;
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
		dev_dbg(priv->dev, "has not handle, register notifier!\n");
		goto out;
	}
	priv->ae_handle = h;

	ret = hns_nic_init_phy(ndev, h);
	if (ret) {
		dev_err(priv->dev, "probe phy device fail!\n");
		goto out_init_phy;
	}

	ret = hns_nic_init_ring_data(priv);
	if (ret) {
		ret = -ENOMEM;
		goto out_init_ring_data;
	}

2309 2310
	hns_nic_set_priv_ops(ndev);

2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
	ret = register_netdev(ndev);
	if (ret) {
		dev_err(priv->dev, "probe register netdev fail!\n");
		goto out_reg_ndev_fail;
	}
	return 0;

out_reg_ndev_fail:
	hns_nic_uninit_ring_data(priv);
	priv->ring_data = NULL;
out_init_phy:
out_init_ring_data:
	hnae_put_handle(priv->ae_handle);
	priv->ae_handle = NULL;
out:
	return ret;
}

static int hns_nic_notifier_action(struct notifier_block *nb,
				   unsigned long action, void *data)
{
	struct hns_nic_priv *priv =
		container_of(nb, struct hns_nic_priv, notifier_block);

	assert(action == HNAE_AE_REGISTER);

	if (!hns_nic_try_get_ae(priv->netdev)) {
		hnae_unregister_notifier(&priv->notifier_block);
		priv->notifier_block.notifier_call = NULL;
	}
	return 0;
}

static int hns_nic_dev_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct net_device *ndev;
	struct hns_nic_priv *priv;
2349
	u32 port_id;
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
	int ret;

	ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF);
	if (!ndev)
		return -ENOMEM;

	platform_set_drvdata(pdev, ndev);

	priv = netdev_priv(ndev);
	priv->dev = dev;
	priv->netdev = ndev;

2362 2363
	if (dev_of_node(dev)) {
		struct device_node *ae_node;
2364

2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
		if (of_device_is_compatible(dev->of_node,
					    "hisilicon,hns-nic-v1"))
			priv->enet_ver = AE_VERSION_1;
		else
			priv->enet_ver = AE_VERSION_2;

		ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0);
		if (IS_ERR_OR_NULL(ae_node)) {
			ret = PTR_ERR(ae_node);
			dev_err(dev, "not find ae-handle\n");
			goto out_read_prop_fail;
		}
		priv->fwnode = &ae_node->fwnode;
	} else if (is_acpi_node(dev->fwnode)) {
		struct acpi_reference_args args;

		if (acpi_dev_found(hns_enet_acpi_match[0].id))
			priv->enet_ver = AE_VERSION_1;
		else if (acpi_dev_found(hns_enet_acpi_match[1].id))
			priv->enet_ver = AE_VERSION_2;
		else
			return -ENXIO;

		/* try to find port-idx-in-ae first */
		ret = acpi_node_get_property_reference(dev->fwnode,
						       "ae-handle", 0, &args);
		if (ret) {
			dev_err(dev, "not find ae-handle\n");
			goto out_read_prop_fail;
		}
		priv->fwnode = acpi_fwnode_handle(args.adev);
	} else {
		dev_err(dev, "cannot read cfg data from OF or acpi\n");
		return -ENXIO;
2399
	}
2400

2401
	ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id);
2402 2403
	if (ret) {
		/* only for old code compatible */
2404
		ret = device_property_read_u32(dev, "port-id", &port_id);
2405 2406 2407 2408 2409 2410 2411
		if (ret)
			goto out_read_prop_fail;
		/* for old dts, we need to caculate the port offset */
		port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET
			: port_id - HNS_SRV_OFFSET;
	}
	priv->port_id = port_id;
2412 2413 2414 2415 2416 2417 2418

	hns_init_mac_addr(ndev);

	ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
	ndev->priv_flags |= IFF_UNICAST_FLT;
	ndev->netdev_ops = &hns_nic_netdev_ops;
	hns_ethtool_set_ops(ndev);
2419

2420 2421 2422 2423 2424 2425 2426
	ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
		NETIF_F_GRO;
	ndev->vlan_features |=
		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
	ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO;

2427 2428
	/* MTU range: 68 - 9578 (v1) or 9706 (v2) */
	ndev->min_mtu = MAC_MIN_MTU;
2429 2430
	switch (priv->enet_ver) {
	case AE_VERSION_2:
2431
		ndev->features |= NETIF_F_TSO | NETIF_F_TSO6;
2432 2433
		ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
			NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2434
			NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6;
2435 2436
		ndev->max_mtu = MAC_MAX_MTU_V2 -
				(ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2437 2438
		break;
	default:
2439 2440
		ndev->max_mtu = MAC_MAX_MTU -
				(ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2441 2442 2443
		break;
	}

2444 2445 2446 2447 2448
	SET_NETDEV_DEV(ndev, dev);

	if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)))
		dev_dbg(dev, "set mask to 64bit\n");
	else
2449
		dev_err(dev, "set mask to 64bit fail!\n");
2450 2451 2452 2453

	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(ndev);

2454
	timer_setup(&priv->service_timer, hns_nic_service_timer, 0);
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
	INIT_WORK(&priv->service_task, hns_nic_service_task);

	set_bit(NIC_STATE_SERVICE_INITED, &priv->state);
	clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
	set_bit(NIC_STATE_DOWN, &priv->state);

	if (hns_nic_try_get_ae(priv->netdev)) {
		priv->notifier_block.notifier_call = hns_nic_notifier_action;
		ret = hnae_register_notifier(&priv->notifier_block);
		if (ret) {
			dev_err(dev, "register notifier fail!\n");
			goto out_notify_fail;
		}
		dev_dbg(dev, "has not handle, register notifier!\n");
	}

	return 0;

out_notify_fail:
	(void)cancel_work_sync(&priv->service_task);
2475
out_read_prop_fail:
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
	free_netdev(ndev);
	return ret;
}

static int hns_nic_dev_remove(struct platform_device *pdev)
{
	struct net_device *ndev = platform_get_drvdata(pdev);
	struct hns_nic_priv *priv = netdev_priv(ndev);

	if (ndev->reg_state != NETREG_UNINITIALIZED)
		unregister_netdev(ndev);

	if (priv->ring_data)
		hns_nic_uninit_ring_data(priv);
	priv->ring_data = NULL;

2492 2493
	if (ndev->phydev)
		phy_disconnect(ndev->phydev);
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520

	if (!IS_ERR_OR_NULL(priv->ae_handle))
		hnae_put_handle(priv->ae_handle);
	priv->ae_handle = NULL;
	if (priv->notifier_block.notifier_call)
		hnae_unregister_notifier(&priv->notifier_block);
	priv->notifier_block.notifier_call = NULL;

	set_bit(NIC_STATE_REMOVING, &priv->state);
	(void)cancel_work_sync(&priv->service_task);

	free_netdev(ndev);
	return 0;
}

static const struct of_device_id hns_enet_of_match[] = {
	{.compatible = "hisilicon,hns-nic-v1",},
	{.compatible = "hisilicon,hns-nic-v2",},
	{},
};

MODULE_DEVICE_TABLE(of, hns_enet_of_match);

static struct platform_driver hns_nic_dev_driver = {
	.driver = {
		.name = "hns-nic",
		.of_match_table = hns_enet_of_match,
2521
		.acpi_match_table = ACPI_PTR(hns_enet_acpi_match),
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
	},
	.probe = hns_nic_dev_probe,
	.remove = hns_nic_dev_remove,
};

module_platform_driver(hns_nic_dev_driver);

MODULE_DESCRIPTION("HISILICON HNS Ethernet driver");
MODULE_AUTHOR("Hisilicon, Inc.");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:hns-nic");