access_tracking_perf_test.c 11.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
// SPDX-License-Identifier: GPL-2.0
/*
 * access_tracking_perf_test
 *
 * Copyright (C) 2021, Google, Inc.
 *
 * This test measures the performance effects of KVM's access tracking.
 * Access tracking is driven by the MMU notifiers test_young, clear_young, and
 * clear_flush_young. These notifiers do not have a direct userspace API,
 * however the clear_young notifier can be triggered by marking a pages as idle
 * in /sys/kernel/mm/page_idle/bitmap. This test leverages that mechanism to
 * enable access tracking on guest memory.
 *
 * To measure performance this test runs a VM with a configurable number of
 * vCPUs that each touch every page in disjoint regions of memory. Performance
 * is measured in the time it takes all vCPUs to finish touching their
 * predefined region.
 *
 * Note that a deterministic correctness test of access tracking is not possible
 * by using page_idle as it exists today. This is for a few reasons:
 *
 * 1. page_idle only issues clear_young notifiers, which lack a TLB flush. This
 *    means subsequent guest accesses are not guaranteed to see page table
 *    updates made by KVM until some time in the future.
 *
 * 2. page_idle only operates on LRU pages. Newly allocated pages are not
 *    immediately allocated to LRU lists. Instead they are held in a "pagevec",
 *    which is drained to LRU lists some time in the future. There is no
 *    userspace API to force this drain to occur.
 *
 * These limitations are worked around in this test by using a large enough
 * region of memory for each vCPU such that the number of translations cached in
 * the TLB and the number of pages held in pagevecs are a small fraction of the
 * overall workload. And if either of those conditions are not true this test
 * will fail rather than silently passing.
 */
#include <inttypes.h>
#include <limits.h>
#include <pthread.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>

#include "kvm_util.h"
#include "test_util.h"
#include "perf_test_util.h"
#include "guest_modes.h"

/* Global variable used to synchronize all of the vCPU threads. */
static int iteration = -1;

/* Defines what vCPU threads should do during a given iteration. */
static enum {
	/* Run the vCPU to access all its memory. */
	ITERATION_ACCESS_MEMORY,
	/* Mark the vCPU's memory idle in page_idle. */
	ITERATION_MARK_IDLE,
} iteration_work;

/* Set to true when vCPU threads should exit. */
static bool done;

/* The iteration that was last completed by each vCPU. */
static int vcpu_last_completed_iteration[KVM_MAX_VCPUS];

/* Whether to overlap the regions of memory vCPUs access. */
static bool overlap_memory_access;

struct test_params {
	/* The backing source for the region of memory. */
	enum vm_mem_backing_src_type backing_src;

	/* The amount of memory to allocate for each vCPU. */
	uint64_t vcpu_memory_bytes;

	/* The number of vCPUs to create in the VM. */
	int vcpus;
};

static uint64_t pread_uint64(int fd, const char *filename, uint64_t index)
{
	uint64_t value;
	off_t offset = index * sizeof(value);

	TEST_ASSERT(pread(fd, &value, sizeof(value), offset) == sizeof(value),
		    "pread from %s offset 0x%" PRIx64 " failed!",
		    filename, offset);

	return value;

}

#define PAGEMAP_PRESENT (1ULL << 63)
#define PAGEMAP_PFN_MASK ((1ULL << 55) - 1)

static uint64_t lookup_pfn(int pagemap_fd, struct kvm_vm *vm, uint64_t gva)
{
	uint64_t hva = (uint64_t) addr_gva2hva(vm, gva);
	uint64_t entry;
	uint64_t pfn;

	entry = pread_uint64(pagemap_fd, "pagemap", hva / getpagesize());
	if (!(entry & PAGEMAP_PRESENT))
		return 0;

	pfn = entry & PAGEMAP_PFN_MASK;
	if (!pfn) {
		print_skip("Looking up PFNs requires CAP_SYS_ADMIN");
		exit(KSFT_SKIP);
	}

	return pfn;
}

static bool is_page_idle(int page_idle_fd, uint64_t pfn)
{
	uint64_t bits = pread_uint64(page_idle_fd, "page_idle", pfn / 64);

	return !!((bits >> (pfn % 64)) & 1);
}

static void mark_page_idle(int page_idle_fd, uint64_t pfn)
{
	uint64_t bits = 1ULL << (pfn % 64);

	TEST_ASSERT(pwrite(page_idle_fd, &bits, 8, 8 * (pfn / 64)) == 8,
		    "Set page_idle bits for PFN 0x%" PRIx64, pfn);
}

static void mark_vcpu_memory_idle(struct kvm_vm *vm, int vcpu_id)
{
	uint64_t base_gva = perf_test_args.vcpu_args[vcpu_id].gva;
	uint64_t pages = perf_test_args.vcpu_args[vcpu_id].pages;
	uint64_t page;
	uint64_t still_idle = 0;
	uint64_t no_pfn = 0;
	int page_idle_fd;
	int pagemap_fd;

	/* If vCPUs are using an overlapping region, let vCPU 0 mark it idle. */
	if (overlap_memory_access && vcpu_id)
		return;

	page_idle_fd = open("/sys/kernel/mm/page_idle/bitmap", O_RDWR);
	TEST_ASSERT(page_idle_fd > 0, "Failed to open page_idle.");

	pagemap_fd = open("/proc/self/pagemap", O_RDONLY);
	TEST_ASSERT(pagemap_fd > 0, "Failed to open pagemap.");

	for (page = 0; page < pages; page++) {
		uint64_t gva = base_gva + page * perf_test_args.guest_page_size;
		uint64_t pfn = lookup_pfn(pagemap_fd, vm, gva);

		if (!pfn) {
			no_pfn++;
			continue;
		}

		if (is_page_idle(page_idle_fd, pfn)) {
			still_idle++;
			continue;
		}

		mark_page_idle(page_idle_fd, pfn);
	}

	/*
	 * Assumption: Less than 1% of pages are going to be swapped out from
	 * under us during this test.
	 */
	TEST_ASSERT(no_pfn < pages / 100,
		    "vCPU %d: No PFN for %" PRIu64 " out of %" PRIu64 " pages.",
		    vcpu_id, no_pfn, pages);

	/*
	 * Test that at least 90% of memory has been marked idle (the rest might
	 * not be marked idle because the pages have not yet made it to an LRU
	 * list or the translations are still cached in the TLB). 90% is
	 * arbitrary; high enough that we ensure most memory access went through
	 * access tracking but low enough as to not make the test too brittle
	 * over time and across architectures.
	 */
	TEST_ASSERT(still_idle < pages / 10,
		    "vCPU%d: Too many pages still idle (%"PRIu64 " out of %"
		    PRIu64 ").\n",
		    vcpu_id, still_idle, pages);

	close(page_idle_fd);
	close(pagemap_fd);
}

static void assert_ucall(struct kvm_vm *vm, uint32_t vcpu_id,
			 uint64_t expected_ucall)
{
	struct ucall uc;
	uint64_t actual_ucall = get_ucall(vm, vcpu_id, &uc);

	TEST_ASSERT(expected_ucall == actual_ucall,
		    "Guest exited unexpectedly (expected ucall %" PRIu64
		    ", got %" PRIu64 ")",
		    expected_ucall, actual_ucall);
}

static bool spin_wait_for_next_iteration(int *current_iteration)
{
	int last_iteration = *current_iteration;

	do {
		if (READ_ONCE(done))
			return false;

		*current_iteration = READ_ONCE(iteration);
	} while (last_iteration == *current_iteration);

	return true;
}

static void *vcpu_thread_main(void *arg)
{
	struct perf_test_vcpu_args *vcpu_args = arg;
	struct kvm_vm *vm = perf_test_args.vm;
	int vcpu_id = vcpu_args->vcpu_id;
	int current_iteration = -1;

	while (spin_wait_for_next_iteration(&current_iteration)) {
		switch (READ_ONCE(iteration_work)) {
		case ITERATION_ACCESS_MEMORY:
			vcpu_run(vm, vcpu_id);
			assert_ucall(vm, vcpu_id, UCALL_SYNC);
			break;
		case ITERATION_MARK_IDLE:
			mark_vcpu_memory_idle(vm, vcpu_id);
			break;
		};

		vcpu_last_completed_iteration[vcpu_id] = current_iteration;
	}

	return NULL;
}

static void spin_wait_for_vcpu(int vcpu_id, int target_iteration)
{
	while (READ_ONCE(vcpu_last_completed_iteration[vcpu_id]) !=
	       target_iteration) {
		continue;
	}
}

/* The type of memory accesses to perform in the VM. */
enum access_type {
	ACCESS_READ,
	ACCESS_WRITE,
};

static void run_iteration(struct kvm_vm *vm, int vcpus, const char *description)
{
	struct timespec ts_start;
	struct timespec ts_elapsed;
	int next_iteration;
	int vcpu_id;

	/* Kick off the vCPUs by incrementing iteration. */
	next_iteration = ++iteration;

	clock_gettime(CLOCK_MONOTONIC, &ts_start);

	/* Wait for all vCPUs to finish the iteration. */
	for (vcpu_id = 0; vcpu_id < vcpus; vcpu_id++)
		spin_wait_for_vcpu(vcpu_id, next_iteration);

	ts_elapsed = timespec_elapsed(ts_start);
	pr_info("%-30s: %ld.%09lds\n",
		description, ts_elapsed.tv_sec, ts_elapsed.tv_nsec);
}

static void access_memory(struct kvm_vm *vm, int vcpus, enum access_type access,
			  const char *description)
{
	perf_test_args.wr_fract = (access == ACCESS_READ) ? INT_MAX : 1;
	sync_global_to_guest(vm, perf_test_args);
	iteration_work = ITERATION_ACCESS_MEMORY;
	run_iteration(vm, vcpus, description);
}

static void mark_memory_idle(struct kvm_vm *vm, int vcpus)
{
	/*
	 * Even though this parallelizes the work across vCPUs, this is still a
	 * very slow operation because page_idle forces the test to mark one pfn
	 * at a time and the clear_young notifier serializes on the KVM MMU
	 * lock.
	 */
	pr_debug("Marking VM memory idle (slow)...\n");
	iteration_work = ITERATION_MARK_IDLE;
	run_iteration(vm, vcpus, "Mark memory idle");
}

static pthread_t *create_vcpu_threads(int vcpus)
{
	pthread_t *vcpu_threads;
	int i;

	vcpu_threads = malloc(vcpus * sizeof(vcpu_threads[0]));
	TEST_ASSERT(vcpu_threads, "Failed to allocate vcpu_threads.");

	for (i = 0; i < vcpus; i++) {
		vcpu_last_completed_iteration[i] = iteration;
		pthread_create(&vcpu_threads[i], NULL, vcpu_thread_main,
			       &perf_test_args.vcpu_args[i]);
	}

	return vcpu_threads;
}

static void terminate_vcpu_threads(pthread_t *vcpu_threads, int vcpus)
{
	int i;

	/* Set done to signal the vCPU threads to exit */
	done = true;

	for (i = 0; i < vcpus; i++)
		pthread_join(vcpu_threads[i], NULL);
}

static void run_test(enum vm_guest_mode mode, void *arg)
{
	struct test_params *params = arg;
	struct kvm_vm *vm;
	pthread_t *vcpu_threads;
	int vcpus = params->vcpus;

334
	vm = perf_test_create_vm(mode, vcpus, params->vcpu_memory_bytes, 1,
335
				 params->backing_src, !overlap_memory_access);
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370

	vcpu_threads = create_vcpu_threads(vcpus);

	pr_info("\n");
	access_memory(vm, vcpus, ACCESS_WRITE, "Populating memory");

	/* As a control, read and write to the populated memory first. */
	access_memory(vm, vcpus, ACCESS_WRITE, "Writing to populated memory");
	access_memory(vm, vcpus, ACCESS_READ, "Reading from populated memory");

	/* Repeat on memory that has been marked as idle. */
	mark_memory_idle(vm, vcpus);
	access_memory(vm, vcpus, ACCESS_WRITE, "Writing to idle memory");
	mark_memory_idle(vm, vcpus);
	access_memory(vm, vcpus, ACCESS_READ, "Reading from idle memory");

	terminate_vcpu_threads(vcpu_threads, vcpus);
	free(vcpu_threads);
	perf_test_destroy_vm(vm);
}

static void help(char *name)
{
	puts("");
	printf("usage: %s [-h] [-m mode] [-b vcpu_bytes] [-v vcpus] [-o]  [-s mem_type]\n",
	       name);
	puts("");
	printf(" -h: Display this help message.");
	guest_modes_help();
	printf(" -b: specify the size of the memory region which should be\n"
	       "     dirtied by each vCPU. e.g. 10M or 3G.\n"
	       "     (default: 1G)\n");
	printf(" -v: specify the number of vCPUs to run.\n");
	printf(" -o: Overlap guest memory accesses instead of partitioning\n"
	       "     them into a separate region of memory for each vCPU.\n");
371
	backing_src_help("-s");
372 373 374 375 376 377 378
	puts("");
	exit(0);
}

int main(int argc, char *argv[])
{
	struct test_params params = {
379
		.backing_src = DEFAULT_VM_MEM_SRC,
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
		.vcpu_memory_bytes = DEFAULT_PER_VCPU_MEM_SIZE,
		.vcpus = 1,
	};
	int page_idle_fd;
	int opt;

	guest_modes_append_default();

	while ((opt = getopt(argc, argv, "hm:b:v:os:")) != -1) {
		switch (opt) {
		case 'm':
			guest_modes_cmdline(optarg);
			break;
		case 'b':
			params.vcpu_memory_bytes = parse_size(optarg);
			break;
		case 'v':
			params.vcpus = atoi(optarg);
			break;
		case 'o':
			overlap_memory_access = true;
			break;
		case 's':
			params.backing_src = parse_backing_src_type(optarg);
			break;
		case 'h':
		default:
			help(argv[0]);
			break;
		}
	}

	page_idle_fd = open("/sys/kernel/mm/page_idle/bitmap", O_RDWR);
	if (page_idle_fd < 0) {
		print_skip("CONFIG_IDLE_PAGE_TRACKING is not enabled");
		exit(KSFT_SKIP);
	}
	close(page_idle_fd);

	for_each_guest_mode(run_test, &params);

	return 0;
}