debug.c 83.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * This file is part of UBIFS.
 *
 * Copyright (C) 2006-2008 Nokia Corporation
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published by
 * the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 51
 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 *
 * Authors: Artem Bityutskiy (Битюцкий Артём)
 *          Adrian Hunter
 */

/*
 * This file implements most of the debugging stuff which is compiled in only
 * when it is enabled. But some debugging check functions are implemented in
 * corresponding subsystem, just because they are closely related and utilize
 * various local functions of those subsystems.
 */

#include <linux/module.h>
A
Artem Bityutskiy 已提交
31
#include <linux/debugfs.h>
A
Artem Bityutskiy 已提交
32
#include <linux/math64.h>
33
#include <linux/uaccess.h>
34 35
#include <linux/random.h>
#include "ubifs.h"
36

37
static DEFINE_SPINLOCK(dbg_lock);
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

static const char *get_key_fmt(int fmt)
{
	switch (fmt) {
	case UBIFS_SIMPLE_KEY_FMT:
		return "simple";
	default:
		return "unknown/invalid format";
	}
}

static const char *get_key_hash(int hash)
{
	switch (hash) {
	case UBIFS_KEY_HASH_R5:
		return "R5";
	case UBIFS_KEY_HASH_TEST:
		return "test";
	default:
		return "unknown/invalid name hash";
	}
}

static const char *get_key_type(int type)
{
	switch (type) {
	case UBIFS_INO_KEY:
		return "inode";
	case UBIFS_DENT_KEY:
		return "direntry";
	case UBIFS_XENT_KEY:
		return "xentry";
	case UBIFS_DATA_KEY:
		return "data";
	case UBIFS_TRUN_KEY:
		return "truncate";
	default:
		return "unknown/invalid key";
	}
}

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
static const char *get_dent_type(int type)
{
	switch (type) {
	case UBIFS_ITYPE_REG:
		return "file";
	case UBIFS_ITYPE_DIR:
		return "dir";
	case UBIFS_ITYPE_LNK:
		return "symlink";
	case UBIFS_ITYPE_BLK:
		return "blkdev";
	case UBIFS_ITYPE_CHR:
		return "char dev";
	case UBIFS_ITYPE_FIFO:
		return "fifo";
	case UBIFS_ITYPE_SOCK:
		return "socket";
	default:
		return "unknown/invalid type";
	}
}

A
Artem Bityutskiy 已提交
101 102
const char *dbg_snprintf_key(const struct ubifs_info *c,
			     const union ubifs_key *key, char *buffer, int len)
103 104 105 106 107 108 109
{
	char *p = buffer;
	int type = key_type(c, key);

	if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
		switch (type) {
		case UBIFS_INO_KEY:
110 111 112
			len -= snprintf(p, len, "(%lu, %s)",
					(unsigned long)key_inum(c, key),
					get_key_type(type));
113 114 115
			break;
		case UBIFS_DENT_KEY:
		case UBIFS_XENT_KEY:
116 117 118
			len -= snprintf(p, len, "(%lu, %s, %#08x)",
					(unsigned long)key_inum(c, key),
					get_key_type(type), key_hash(c, key));
119 120
			break;
		case UBIFS_DATA_KEY:
121 122 123
			len -= snprintf(p, len, "(%lu, %s, %u)",
					(unsigned long)key_inum(c, key),
					get_key_type(type), key_block(c, key));
124 125
			break;
		case UBIFS_TRUN_KEY:
126 127 128
			len -= snprintf(p, len, "(%lu, %s)",
					(unsigned long)key_inum(c, key),
					get_key_type(type));
129 130
			break;
		default:
131 132
			len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
					key->u32[0], key->u32[1]);
133 134
		}
	} else
135 136
		len -= snprintf(p, len, "bad key format %d", c->key_fmt);
	ubifs_assert(len > 0);
A
Artem Bityutskiy 已提交
137
	return p;
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
}

const char *dbg_ntype(int type)
{
	switch (type) {
	case UBIFS_PAD_NODE:
		return "padding node";
	case UBIFS_SB_NODE:
		return "superblock node";
	case UBIFS_MST_NODE:
		return "master node";
	case UBIFS_REF_NODE:
		return "reference node";
	case UBIFS_INO_NODE:
		return "inode node";
	case UBIFS_DENT_NODE:
		return "direntry node";
	case UBIFS_XENT_NODE:
		return "xentry node";
	case UBIFS_DATA_NODE:
		return "data node";
	case UBIFS_TRUN_NODE:
		return "truncate node";
	case UBIFS_IDX_NODE:
		return "indexing node";
	case UBIFS_CS_NODE:
		return "commit start node";
	case UBIFS_ORPH_NODE:
		return "orphan node";
	default:
		return "unknown node";
	}
}

static const char *dbg_gtype(int type)
{
	switch (type) {
	case UBIFS_NO_NODE_GROUP:
		return "no node group";
	case UBIFS_IN_NODE_GROUP:
		return "in node group";
	case UBIFS_LAST_OF_NODE_GROUP:
		return "last of node group";
	default:
		return "unknown";
	}
}

const char *dbg_cstate(int cmt_state)
{
	switch (cmt_state) {
	case COMMIT_RESTING:
		return "commit resting";
	case COMMIT_BACKGROUND:
		return "background commit requested";
	case COMMIT_REQUIRED:
		return "commit required";
	case COMMIT_RUNNING_BACKGROUND:
		return "BACKGROUND commit running";
	case COMMIT_RUNNING_REQUIRED:
		return "commit running and required";
	case COMMIT_BROKEN:
		return "broken commit";
	default:
		return "unknown commit state";
	}
}

206 207 208 209 210 211 212 213 214 215 216 217 218 219
const char *dbg_jhead(int jhead)
{
	switch (jhead) {
	case GCHD:
		return "0 (GC)";
	case BASEHD:
		return "1 (base)";
	case DATAHD:
		return "2 (data)";
	default:
		return "unknown journal head";
	}
}

220 221
static void dump_ch(const struct ubifs_ch *ch)
{
222 223 224
	pr_err("\tmagic          %#x\n", le32_to_cpu(ch->magic));
	pr_err("\tcrc            %#x\n", le32_to_cpu(ch->crc));
	pr_err("\tnode_type      %d (%s)\n", ch->node_type,
225
	       dbg_ntype(ch->node_type));
226
	pr_err("\tgroup_type     %d (%s)\n", ch->group_type,
227
	       dbg_gtype(ch->group_type));
228
	pr_err("\tsqnum          %llu\n",
229
	       (unsigned long long)le64_to_cpu(ch->sqnum));
230
	pr_err("\tlen            %u\n", le32_to_cpu(ch->len));
231 232
}

233
void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
234 235
{
	const struct ubifs_inode *ui = ubifs_inode(inode);
236 237 238 239
	struct qstr nm = { .name = NULL };
	union ubifs_key key;
	struct ubifs_dent_node *dent, *pdent = NULL;
	int count = 2;
240

241 242 243
	pr_err("Dump in-memory inode:");
	pr_err("\tinode          %lu\n", inode->i_ino);
	pr_err("\tsize           %llu\n",
244
	       (unsigned long long)i_size_read(inode));
245
	pr_err("\tnlink          %u\n", inode->i_nlink);
246 247
	pr_err("\tuid            %u\n", (unsigned int)i_uid_read(inode));
	pr_err("\tgid            %u\n", (unsigned int)i_gid_read(inode));
248
	pr_err("\tatime          %u.%u\n",
249 250
	       (unsigned int)inode->i_atime.tv_sec,
	       (unsigned int)inode->i_atime.tv_nsec);
251
	pr_err("\tmtime          %u.%u\n",
252 253
	       (unsigned int)inode->i_mtime.tv_sec,
	       (unsigned int)inode->i_mtime.tv_nsec);
254
	pr_err("\tctime          %u.%u\n",
255 256
	       (unsigned int)inode->i_ctime.tv_sec,
	       (unsigned int)inode->i_ctime.tv_nsec);
257 258 259 260 261 262 263 264
	pr_err("\tcreat_sqnum    %llu\n", ui->creat_sqnum);
	pr_err("\txattr_size     %u\n", ui->xattr_size);
	pr_err("\txattr_cnt      %u\n", ui->xattr_cnt);
	pr_err("\txattr_names    %u\n", ui->xattr_names);
	pr_err("\tdirty          %u\n", ui->dirty);
	pr_err("\txattr          %u\n", ui->xattr);
	pr_err("\tbulk_read      %u\n", ui->xattr);
	pr_err("\tsynced_i_size  %llu\n",
A
Artem Bityutskiy 已提交
265
	       (unsigned long long)ui->synced_i_size);
266
	pr_err("\tui_size        %llu\n",
A
Artem Bityutskiy 已提交
267
	       (unsigned long long)ui->ui_size);
268 269 270 271 272
	pr_err("\tflags          %d\n", ui->flags);
	pr_err("\tcompr_type     %d\n", ui->compr_type);
	pr_err("\tlast_page_read %lu\n", ui->last_page_read);
	pr_err("\tread_in_a_row  %lu\n", ui->read_in_a_row);
	pr_err("\tdata_len       %d\n", ui->data_len);
273 274 275 276

	if (!S_ISDIR(inode->i_mode))
		return;

277
	pr_err("List of directory entries:\n");
278 279 280 281 282 283 284
	ubifs_assert(!mutex_is_locked(&c->tnc_mutex));

	lowest_dent_key(c, &key, inode->i_ino);
	while (1) {
		dent = ubifs_tnc_next_ent(c, &key, &nm);
		if (IS_ERR(dent)) {
			if (PTR_ERR(dent) != -ENOENT)
285
				pr_err("error %ld\n", PTR_ERR(dent));
286 287 288
			break;
		}

289
		pr_err("\t%d: %s (%s)\n",
290 291 292 293 294 295 296 297 298
		       count++, dent->name, get_dent_type(dent->type));

		nm.name = dent->name;
		nm.len = le16_to_cpu(dent->nlen);
		kfree(pdent);
		pdent = dent;
		key_read(c, &dent->key, &key);
	}
	kfree(pdent);
299 300
}

301
void ubifs_dump_node(const struct ubifs_info *c, const void *node)
302 303 304 305
{
	int i, n;
	union ubifs_key key;
	const struct ubifs_ch *ch = node;
A
Artem Bityutskiy 已提交
306
	char key_buf[DBG_KEY_BUF_LEN];
307 308 309

	/* If the magic is incorrect, just hexdump the first bytes */
	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
310
		pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
311
		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
312 313 314 315 316 317 318 319 320 321 322 323
			       (void *)node, UBIFS_CH_SZ, 1);
		return;
	}

	spin_lock(&dbg_lock);
	dump_ch(node);

	switch (ch->node_type) {
	case UBIFS_PAD_NODE:
	{
		const struct ubifs_pad_node *pad = node;

324
		pr_err("\tpad_len        %u\n", le32_to_cpu(pad->pad_len));
325 326 327 328 329 330 331
		break;
	}
	case UBIFS_SB_NODE:
	{
		const struct ubifs_sb_node *sup = node;
		unsigned int sup_flags = le32_to_cpu(sup->flags);

332
		pr_err("\tkey_hash       %d (%s)\n",
333
		       (int)sup->key_hash, get_key_hash(sup->key_hash));
334
		pr_err("\tkey_fmt        %d (%s)\n",
335
		       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
336 337
		pr_err("\tflags          %#x\n", sup_flags);
		pr_err("\t  big_lpt      %u\n",
338
		       !!(sup_flags & UBIFS_FLG_BIGLPT));
339
		pr_err("\t  space_fixup  %u\n",
340
		       !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
341 342 343 344 345
		pr_err("\tmin_io_size    %u\n", le32_to_cpu(sup->min_io_size));
		pr_err("\tleb_size       %u\n", le32_to_cpu(sup->leb_size));
		pr_err("\tleb_cnt        %u\n", le32_to_cpu(sup->leb_cnt));
		pr_err("\tmax_leb_cnt    %u\n", le32_to_cpu(sup->max_leb_cnt));
		pr_err("\tmax_bud_bytes  %llu\n",
346
		       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
347 348 349 350 351 352 353
		pr_err("\tlog_lebs       %u\n", le32_to_cpu(sup->log_lebs));
		pr_err("\tlpt_lebs       %u\n", le32_to_cpu(sup->lpt_lebs));
		pr_err("\torph_lebs      %u\n", le32_to_cpu(sup->orph_lebs));
		pr_err("\tjhead_cnt      %u\n", le32_to_cpu(sup->jhead_cnt));
		pr_err("\tfanout         %u\n", le32_to_cpu(sup->fanout));
		pr_err("\tlsave_cnt      %u\n", le32_to_cpu(sup->lsave_cnt));
		pr_err("\tdefault_compr  %u\n",
354
		       (int)le16_to_cpu(sup->default_compr));
355
		pr_err("\trp_size        %llu\n",
356
		       (unsigned long long)le64_to_cpu(sup->rp_size));
357 358 359 360 361
		pr_err("\trp_uid         %u\n", le32_to_cpu(sup->rp_uid));
		pr_err("\trp_gid         %u\n", le32_to_cpu(sup->rp_gid));
		pr_err("\tfmt_version    %u\n", le32_to_cpu(sup->fmt_version));
		pr_err("\ttime_gran      %u\n", le32_to_cpu(sup->time_gran));
		pr_err("\tUUID           %pUB\n", sup->uuid);
362 363 364 365 366 367
		break;
	}
	case UBIFS_MST_NODE:
	{
		const struct ubifs_mst_node *mst = node;

368
		pr_err("\thighest_inum   %llu\n",
369
		       (unsigned long long)le64_to_cpu(mst->highest_inum));
370
		pr_err("\tcommit number  %llu\n",
371
		       (unsigned long long)le64_to_cpu(mst->cmt_no));
372 373 374 375 376 377 378 379 380
		pr_err("\tflags          %#x\n", le32_to_cpu(mst->flags));
		pr_err("\tlog_lnum       %u\n", le32_to_cpu(mst->log_lnum));
		pr_err("\troot_lnum      %u\n", le32_to_cpu(mst->root_lnum));
		pr_err("\troot_offs      %u\n", le32_to_cpu(mst->root_offs));
		pr_err("\troot_len       %u\n", le32_to_cpu(mst->root_len));
		pr_err("\tgc_lnum        %u\n", le32_to_cpu(mst->gc_lnum));
		pr_err("\tihead_lnum     %u\n", le32_to_cpu(mst->ihead_lnum));
		pr_err("\tihead_offs     %u\n", le32_to_cpu(mst->ihead_offs));
		pr_err("\tindex_size     %llu\n",
381
		       (unsigned long long)le64_to_cpu(mst->index_size));
382 383 384 385 386 387 388 389 390 391 392 393 394
		pr_err("\tlpt_lnum       %u\n", le32_to_cpu(mst->lpt_lnum));
		pr_err("\tlpt_offs       %u\n", le32_to_cpu(mst->lpt_offs));
		pr_err("\tnhead_lnum     %u\n", le32_to_cpu(mst->nhead_lnum));
		pr_err("\tnhead_offs     %u\n", le32_to_cpu(mst->nhead_offs));
		pr_err("\tltab_lnum      %u\n", le32_to_cpu(mst->ltab_lnum));
		pr_err("\tltab_offs      %u\n", le32_to_cpu(mst->ltab_offs));
		pr_err("\tlsave_lnum     %u\n", le32_to_cpu(mst->lsave_lnum));
		pr_err("\tlsave_offs     %u\n", le32_to_cpu(mst->lsave_offs));
		pr_err("\tlscan_lnum     %u\n", le32_to_cpu(mst->lscan_lnum));
		pr_err("\tleb_cnt        %u\n", le32_to_cpu(mst->leb_cnt));
		pr_err("\tempty_lebs     %u\n", le32_to_cpu(mst->empty_lebs));
		pr_err("\tidx_lebs       %u\n", le32_to_cpu(mst->idx_lebs));
		pr_err("\ttotal_free     %llu\n",
395
		       (unsigned long long)le64_to_cpu(mst->total_free));
396
		pr_err("\ttotal_dirty    %llu\n",
397
		       (unsigned long long)le64_to_cpu(mst->total_dirty));
398
		pr_err("\ttotal_used     %llu\n",
399
		       (unsigned long long)le64_to_cpu(mst->total_used));
400
		pr_err("\ttotal_dead     %llu\n",
401
		       (unsigned long long)le64_to_cpu(mst->total_dead));
402
		pr_err("\ttotal_dark     %llu\n",
403 404 405 406 407 408 409
		       (unsigned long long)le64_to_cpu(mst->total_dark));
		break;
	}
	case UBIFS_REF_NODE:
	{
		const struct ubifs_ref_node *ref = node;

410 411 412
		pr_err("\tlnum           %u\n", le32_to_cpu(ref->lnum));
		pr_err("\toffs           %u\n", le32_to_cpu(ref->offs));
		pr_err("\tjhead          %u\n", le32_to_cpu(ref->jhead));
413 414 415 416 417 418 419
		break;
	}
	case UBIFS_INO_NODE:
	{
		const struct ubifs_ino_node *ino = node;

		key_read(c, &ino->key, &key);
420
		pr_err("\tkey            %s\n",
A
Artem Bityutskiy 已提交
421
		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
422
		pr_err("\tcreat_sqnum    %llu\n",
423
		       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
424
		pr_err("\tsize           %llu\n",
425
		       (unsigned long long)le64_to_cpu(ino->size));
426 427
		pr_err("\tnlink          %u\n", le32_to_cpu(ino->nlink));
		pr_err("\tatime          %lld.%u\n",
428 429
		       (long long)le64_to_cpu(ino->atime_sec),
		       le32_to_cpu(ino->atime_nsec));
430
		pr_err("\tmtime          %lld.%u\n",
431 432
		       (long long)le64_to_cpu(ino->mtime_sec),
		       le32_to_cpu(ino->mtime_nsec));
433
		pr_err("\tctime          %lld.%u\n",
434 435
		       (long long)le64_to_cpu(ino->ctime_sec),
		       le32_to_cpu(ino->ctime_nsec));
436 437 438 439 440 441 442 443
		pr_err("\tuid            %u\n", le32_to_cpu(ino->uid));
		pr_err("\tgid            %u\n", le32_to_cpu(ino->gid));
		pr_err("\tmode           %u\n", le32_to_cpu(ino->mode));
		pr_err("\tflags          %#x\n", le32_to_cpu(ino->flags));
		pr_err("\txattr_cnt      %u\n", le32_to_cpu(ino->xattr_cnt));
		pr_err("\txattr_size     %u\n", le32_to_cpu(ino->xattr_size));
		pr_err("\txattr_names    %u\n", le32_to_cpu(ino->xattr_names));
		pr_err("\tcompr_type     %#x\n",
444
		       (int)le16_to_cpu(ino->compr_type));
445
		pr_err("\tdata len       %u\n", le32_to_cpu(ino->data_len));
446 447 448 449 450 451 452 453 454
		break;
	}
	case UBIFS_DENT_NODE:
	case UBIFS_XENT_NODE:
	{
		const struct ubifs_dent_node *dent = node;
		int nlen = le16_to_cpu(dent->nlen);

		key_read(c, &dent->key, &key);
455
		pr_err("\tkey            %s\n",
A
Artem Bityutskiy 已提交
456
		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
457
		pr_err("\tinum           %llu\n",
458
		       (unsigned long long)le64_to_cpu(dent->inum));
459 460 461
		pr_err("\ttype           %d\n", (int)dent->type);
		pr_err("\tnlen           %d\n", nlen);
		pr_err("\tname           ");
462 463

		if (nlen > UBIFS_MAX_NLEN)
464
			pr_err("(bad name length, not printing, bad or corrupted node)");
465 466
		else {
			for (i = 0; i < nlen && dent->name[i]; i++)
467
				pr_cont("%c", dent->name[i]);
468
		}
469
		pr_cont("\n");
470 471 472 473 474 475 476 477 478

		break;
	}
	case UBIFS_DATA_NODE:
	{
		const struct ubifs_data_node *dn = node;
		int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;

		key_read(c, &dn->key, &key);
479
		pr_err("\tkey            %s\n",
A
Artem Bityutskiy 已提交
480
		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
481 482
		pr_err("\tsize           %u\n", le32_to_cpu(dn->size));
		pr_err("\tcompr_typ      %d\n",
483
		       (int)le16_to_cpu(dn->compr_type));
484 485
		pr_err("\tdata size      %d\n", dlen);
		pr_err("\tdata:\n");
486
		print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
487 488 489 490 491 492 493
			       (void *)&dn->data, dlen, 0);
		break;
	}
	case UBIFS_TRUN_NODE:
	{
		const struct ubifs_trun_node *trun = node;

494 495
		pr_err("\tinum           %u\n", le32_to_cpu(trun->inum));
		pr_err("\told_size       %llu\n",
496
		       (unsigned long long)le64_to_cpu(trun->old_size));
497
		pr_err("\tnew_size       %llu\n",
498 499 500 501 502 503 504 505
		       (unsigned long long)le64_to_cpu(trun->new_size));
		break;
	}
	case UBIFS_IDX_NODE:
	{
		const struct ubifs_idx_node *idx = node;

		n = le16_to_cpu(idx->child_cnt);
506 507 508
		pr_err("\tchild_cnt      %d\n", n);
		pr_err("\tlevel          %d\n", (int)le16_to_cpu(idx->level));
		pr_err("\tBranches:\n");
509 510 511 512 513 514

		for (i = 0; i < n && i < c->fanout - 1; i++) {
			const struct ubifs_branch *br;

			br = ubifs_idx_branch(c, idx, i);
			key_read(c, &br->key, &key);
515
			pr_err("\t%d: LEB %d:%d len %d key %s\n",
516
			       i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
A
Artem Bityutskiy 已提交
517 518 519
			       le32_to_cpu(br->len),
			       dbg_snprintf_key(c, &key, key_buf,
						DBG_KEY_BUF_LEN));
520 521 522 523 524 525 526 527 528
		}
		break;
	}
	case UBIFS_CS_NODE:
		break;
	case UBIFS_ORPH_NODE:
	{
		const struct ubifs_orph_node *orph = node;

529
		pr_err("\tcommit number  %llu\n",
530 531
		       (unsigned long long)
				le64_to_cpu(orph->cmt_no) & LLONG_MAX);
532
		pr_err("\tlast node flag %llu\n",
533 534
		       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
		n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
535
		pr_err("\t%d orphan inode numbers:\n", n);
536
		for (i = 0; i < n; i++)
537
			pr_err("\t  ino %llu\n",
538
			       (unsigned long long)le64_to_cpu(orph->inos[i]));
539 540 541
		break;
	}
	default:
542
		pr_err("node type %d was not recognized\n",
543 544 545 546 547
		       (int)ch->node_type);
	}
	spin_unlock(&dbg_lock);
}

548
void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
549 550
{
	spin_lock(&dbg_lock);
551
	pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
552
	       req->new_ino, req->dirtied_ino);
553
	pr_err("\tnew_ino_d   %d, dirtied_ino_d %d\n",
554
	       req->new_ino_d, req->dirtied_ino_d);
555
	pr_err("\tnew_page    %d, dirtied_page %d\n",
556
	       req->new_page, req->dirtied_page);
557
	pr_err("\tnew_dent    %d, mod_dent     %d\n",
558
	       req->new_dent, req->mod_dent);
559 560
	pr_err("\tidx_growth  %d\n", req->idx_growth);
	pr_err("\tdata_growth %d dd_growth     %d\n",
561 562 563 564
	       req->data_growth, req->dd_growth);
	spin_unlock(&dbg_lock);
}

565
void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
566 567
{
	spin_lock(&dbg_lock);
568
	pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs  %d\n",
569
	       current->pid, lst->empty_lebs, lst->idx_lebs);
570
	pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
571
	       lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
572
	pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
573
	       lst->total_used, lst->total_dark, lst->total_dead);
574 575 576
	spin_unlock(&dbg_lock);
}

577
void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
578 579 580 581 582
{
	int i;
	struct rb_node *rb;
	struct ubifs_bud *bud;
	struct ubifs_gced_idx_leb *idx_gc;
A
Artem Bityutskiy 已提交
583
	long long available, outstanding, free;
584

585
	spin_lock(&c->space_lock);
586
	spin_lock(&dbg_lock);
587
	pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
588
	       current->pid, bi->data_growth + bi->dd_growth,
589
	       bi->data_growth + bi->dd_growth + bi->idx_growth);
590
	pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
591
	       bi->data_growth, bi->dd_growth, bi->idx_growth);
592
	pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
593
	       bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
594
	pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
595
	       bi->page_budget, bi->inode_budget, bi->dent_budget);
596 597
	pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
	pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
598
	       c->dark_wm, c->dead_wm, c->max_idx_node_sz);
599 600 601 602 603 604 605 606 607

	if (bi != &c->bi)
		/*
		 * If we are dumping saved budgeting data, do not print
		 * additional information which is about the current state, not
		 * the old one which corresponded to the saved budgeting data.
		 */
		goto out_unlock;

608
	pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
609
	       c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
610
	pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
611
	       atomic_long_read(&c->dirty_pg_cnt),
612 613
	       atomic_long_read(&c->dirty_zn_cnt),
	       atomic_long_read(&c->clean_zn_cnt));
614
	pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
615

616 617 618
	/* If we are in R/O mode, journal heads do not exist */
	if (c->jheads)
		for (i = 0; i < c->jhead_cnt; i++)
619
			pr_err("\tjhead %s\t LEB %d\n",
620 621
			       dbg_jhead(c->jheads[i].wbuf.jhead),
			       c->jheads[i].wbuf.lnum);
622 623
	for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
		bud = rb_entry(rb, struct ubifs_bud, rb);
624
		pr_err("\tbud LEB %d\n", bud->lnum);
625 626
	}
	list_for_each_entry(bud, &c->old_buds, list)
627
		pr_err("\told bud LEB %d\n", bud->lnum);
628
	list_for_each_entry(idx_gc, &c->idx_gc, list)
629
		pr_err("\tGC'ed idx LEB %d unmap %d\n",
630
		       idx_gc->lnum, idx_gc->unmap);
631
	pr_err("\tcommit state %d\n", c->cmt_state);
A
Artem Bityutskiy 已提交
632 633

	/* Print budgeting predictions */
634 635
	available = ubifs_calc_available(c, c->bi.min_idx_lebs);
	outstanding = c->bi.data_growth + c->bi.dd_growth;
636
	free = ubifs_get_free_space_nolock(c);
637 638
	pr_err("Budgeting predictions:\n");
	pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
A
Artem Bityutskiy 已提交
639
	       available, outstanding, free);
640
out_unlock:
641
	spin_unlock(&dbg_lock);
642
	spin_unlock(&c->space_lock);
643 644
}

645
void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
646
{
A
Artem Bityutskiy 已提交
647 648 649 650 651 652 653 654 655 656 657
	int i, spc, dark = 0, dead = 0;
	struct rb_node *rb;
	struct ubifs_bud *bud;

	spc = lp->free + lp->dirty;
	if (spc < c->dead_wm)
		dead = spc;
	else
		dark = ubifs_calc_dark(c, spc);

	if (lp->flags & LPROPS_INDEX)
658
		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
659 660
		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
		       lp->flags);
A
Artem Bityutskiy 已提交
661
	else
662
		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
663 664
		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
		       dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
A
Artem Bityutskiy 已提交
665 666 667

	if (lp->flags & LPROPS_TAKEN) {
		if (lp->flags & LPROPS_INDEX)
668
			pr_cont("index, taken");
A
Artem Bityutskiy 已提交
669
		else
670
			pr_cont("taken");
A
Artem Bityutskiy 已提交
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
	} else {
		const char *s;

		if (lp->flags & LPROPS_INDEX) {
			switch (lp->flags & LPROPS_CAT_MASK) {
			case LPROPS_DIRTY_IDX:
				s = "dirty index";
				break;
			case LPROPS_FRDI_IDX:
				s = "freeable index";
				break;
			default:
				s = "index";
			}
		} else {
			switch (lp->flags & LPROPS_CAT_MASK) {
			case LPROPS_UNCAT:
				s = "not categorized";
				break;
			case LPROPS_DIRTY:
				s = "dirty";
				break;
			case LPROPS_FREE:
				s = "free";
				break;
			case LPROPS_EMPTY:
				s = "empty";
				break;
			case LPROPS_FREEABLE:
				s = "freeable";
				break;
			default:
				s = NULL;
				break;
			}
		}
707
		pr_cont("%s", s);
A
Artem Bityutskiy 已提交
708 709 710 711 712 713 714
	}

	for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
		bud = rb_entry(rb, struct ubifs_bud, rb);
		if (bud->lnum == lp->lnum) {
			int head = 0;
			for (i = 0; i < c->jhead_cnt; i++) {
715 716 717 718 719 720 721
				/*
				 * Note, if we are in R/O mode or in the middle
				 * of mounting/re-mounting, the write-buffers do
				 * not exist.
				 */
				if (c->jheads &&
				    lp->lnum == c->jheads[i].wbuf.lnum) {
722
					pr_cont(", jhead %s", dbg_jhead(i));
A
Artem Bityutskiy 已提交
723 724 725 726
					head = 1;
				}
			}
			if (!head)
727
				pr_cont(", bud of jhead %s",
A
Artem Bityutskiy 已提交
728 729 730 731
				       dbg_jhead(bud->jhead));
		}
	}
	if (lp->lnum == c->gc_lnum)
732 733
		pr_cont(", GC LEB");
	pr_cont(")\n");
734 735
}

736
void ubifs_dump_lprops(struct ubifs_info *c)
737 738 739 740 741
{
	int lnum, err;
	struct ubifs_lprops lp;
	struct ubifs_lp_stats lst;

742
	pr_err("(pid %d) start dumping LEB properties\n", current->pid);
743
	ubifs_get_lp_stats(c, &lst);
744
	ubifs_dump_lstats(&lst);
745 746 747 748 749 750

	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
		err = ubifs_read_one_lp(c, lnum, &lp);
		if (err)
			ubifs_err("cannot read lprops for LEB %d", lnum);

751
		ubifs_dump_lprop(c, &lp);
752
	}
753
	pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
754 755
}

756
void ubifs_dump_lpt_info(struct ubifs_info *c)
757 758 759 760
{
	int i;

	spin_lock(&dbg_lock);
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
	pr_err("(pid %d) dumping LPT information\n", current->pid);
	pr_err("\tlpt_sz:        %lld\n", c->lpt_sz);
	pr_err("\tpnode_sz:      %d\n", c->pnode_sz);
	pr_err("\tnnode_sz:      %d\n", c->nnode_sz);
	pr_err("\tltab_sz:       %d\n", c->ltab_sz);
	pr_err("\tlsave_sz:      %d\n", c->lsave_sz);
	pr_err("\tbig_lpt:       %d\n", c->big_lpt);
	pr_err("\tlpt_hght:      %d\n", c->lpt_hght);
	pr_err("\tpnode_cnt:     %d\n", c->pnode_cnt);
	pr_err("\tnnode_cnt:     %d\n", c->nnode_cnt);
	pr_err("\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
	pr_err("\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
	pr_err("\tlsave_cnt:     %d\n", c->lsave_cnt);
	pr_err("\tspace_bits:    %d\n", c->space_bits);
	pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
	pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
	pr_err("\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
	pr_err("\tpcnt_bits:     %d\n", c->pcnt_bits);
	pr_err("\tlnum_bits:     %d\n", c->lnum_bits);
	pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
	pr_err("\tLPT head is at %d:%d\n",
782
	       c->nhead_lnum, c->nhead_offs);
783
	pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
784
	if (c->big_lpt)
785
		pr_err("\tLPT lsave is at %d:%d\n",
786 787
		       c->lsave_lnum, c->lsave_offs);
	for (i = 0; i < c->lpt_lebs; i++)
788
		pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
789 790
		       i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
		       c->ltab[i].tgc, c->ltab[i].cmt);
791 792 793
	spin_unlock(&dbg_lock);
}

794 795
void ubifs_dump_sleb(const struct ubifs_info *c,
		     const struct ubifs_scan_leb *sleb, int offs)
796 797 798
{
	struct ubifs_scan_node *snod;

799
	pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
800 801 802 803
	       current->pid, sleb->lnum, offs);

	list_for_each_entry(snod, &sleb->nodes, list) {
		cond_resched();
804
		pr_err("Dumping node at LEB %d:%d len %d\n",
805
		       sleb->lnum, snod->offs, snod->len);
806
		ubifs_dump_node(c, snod->node);
807 808 809
	}
}

810
void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
811 812 813
{
	struct ubifs_scan_leb *sleb;
	struct ubifs_scan_node *snod;
814
	void *buf;
815

816
	pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
817

A
Artem Bityutskiy 已提交
818
	buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
819 820 821 822 823 824
	if (!buf) {
		ubifs_err("cannot allocate memory for dumping LEB %d", lnum);
		return;
	}

	sleb = ubifs_scan(c, lnum, 0, buf, 0);
825 826
	if (IS_ERR(sleb)) {
		ubifs_err("scan error %d", (int)PTR_ERR(sleb));
827
		goto out;
828 829
	}

830
	pr_err("LEB %d has %d nodes ending at %d\n", lnum,
831 832 833 834
	       sleb->nodes_cnt, sleb->endpt);

	list_for_each_entry(snod, &sleb->nodes, list) {
		cond_resched();
835
		pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
836
		       snod->offs, snod->len);
837
		ubifs_dump_node(c, snod->node);
838 839
	}

840
	pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
841
	ubifs_scan_destroy(sleb);
842 843 844

out:
	vfree(buf);
845 846 847
	return;
}

848 849
void ubifs_dump_znode(const struct ubifs_info *c,
		      const struct ubifs_znode *znode)
850 851 852
{
	int n;
	const struct ubifs_zbranch *zbr;
A
Artem Bityutskiy 已提交
853
	char key_buf[DBG_KEY_BUF_LEN];
854 855 856 857 858 859 860

	spin_lock(&dbg_lock);
	if (znode->parent)
		zbr = &znode->parent->zbranch[znode->iip];
	else
		zbr = &c->zroot;

861
	pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
862 863
	       znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
	       znode->level, znode->child_cnt, znode->flags);
864 865 866 867 868 869

	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
		spin_unlock(&dbg_lock);
		return;
	}

870
	pr_err("zbranches:\n");
871 872 873
	for (n = 0; n < znode->child_cnt; n++) {
		zbr = &znode->zbranch[n];
		if (znode->level > 0)
874
			pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
875 876 877
			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
			       dbg_snprintf_key(c, &zbr->key, key_buf,
						DBG_KEY_BUF_LEN));
878
		else
879
			pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
880 881 882
			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
			       dbg_snprintf_key(c, &zbr->key, key_buf,
						DBG_KEY_BUF_LEN));
883 884 885 886
	}
	spin_unlock(&dbg_lock);
}

887
void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
888 889 890
{
	int i;

891
	pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
892
	       current->pid, cat, heap->cnt);
893 894 895
	for (i = 0; i < heap->cnt; i++) {
		struct ubifs_lprops *lprops = heap->arr[i];

896
		pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
897 898
		       i, lprops->lnum, lprops->hpos, lprops->free,
		       lprops->dirty, lprops->flags);
899
	}
900
	pr_err("(pid %d) finish dumping heap\n", current->pid);
901 902
}

903 904
void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
		      struct ubifs_nnode *parent, int iip)
905 906 907
{
	int i;

908 909
	pr_err("(pid %d) dumping pnode:\n", current->pid);
	pr_err("\taddress %zx parent %zx cnext %zx\n",
910
	       (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
911
	pr_err("\tflags %lu iip %d level %d num %d\n",
912 913 914 915
	       pnode->flags, iip, pnode->level, pnode->num);
	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
		struct ubifs_lprops *lp = &pnode->lprops[i];

916
		pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
917 918 919 920
		       i, lp->free, lp->dirty, lp->flags, lp->lnum);
	}
}

921
void ubifs_dump_tnc(struct ubifs_info *c)
922 923 924 925
{
	struct ubifs_znode *znode;
	int level;

926 927
	pr_err("\n");
	pr_err("(pid %d) start dumping TNC tree\n", current->pid);
928 929
	znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
	level = znode->level;
930
	pr_err("== Level %d ==\n", level);
931 932 933
	while (znode) {
		if (level != znode->level) {
			level = znode->level;
934
			pr_err("== Level %d ==\n", level);
935
		}
936
		ubifs_dump_znode(c, znode);
937 938
		znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
	}
939
	pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
940 941 942 943 944
}

static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
		      void *priv)
{
945
	ubifs_dump_znode(c, znode);
946 947 948 949
	return 0;
}

/**
950
 * ubifs_dump_index - dump the on-flash index.
951 952
 * @c: UBIFS file-system description object
 *
953
 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
954 955
 * which dumps only in-memory znodes and does not read znodes which from flash.
 */
956
void ubifs_dump_index(struct ubifs_info *c)
957 958 959 960
{
	dbg_walk_index(c, NULL, dump_znode, NULL);
}

961 962 963 964 965 966 967 968 969 970
/**
 * dbg_save_space_info - save information about flash space.
 * @c: UBIFS file-system description object
 *
 * This function saves information about UBIFS free space, dirty space, etc, in
 * order to check it later.
 */
void dbg_save_space_info(struct ubifs_info *c)
{
	struct ubifs_debug_info *d = c->dbg;
971
	int freeable_cnt;
972 973

	spin_lock(&c->space_lock);
974
	memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
975 976
	memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
	d->saved_idx_gc_cnt = c->idx_gc_cnt;
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003

	/*
	 * We use a dirty hack here and zero out @c->freeable_cnt, because it
	 * affects the free space calculations, and UBIFS might not know about
	 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
	 * only when we read their lprops, and we do this only lazily, upon the
	 * need. So at any given point of time @c->freeable_cnt might be not
	 * exactly accurate.
	 *
	 * Just one example about the issue we hit when we did not zero
	 * @c->freeable_cnt.
	 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
	 *    amount of free space in @d->saved_free
	 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
	 *    information from flash, where we cache LEBs from various
	 *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
	 *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
	 *    -> 'ubifs_get_pnode()' -> 'update_cats()'
	 *    -> 'ubifs_add_to_cat()').
	 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
	 *    becomes %1.
	 * 4. We calculate the amount of free space when the re-mount is
	 *    finished in 'dbg_check_space_info()' and it does not match
	 *    @d->saved_free.
	 */
	freeable_cnt = c->freeable_cnt;
	c->freeable_cnt = 0;
1004
	d->saved_free = ubifs_get_free_space_nolock(c);
1005
	c->freeable_cnt = freeable_cnt;
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
	spin_unlock(&c->space_lock);
}

/**
 * dbg_check_space_info - check flash space information.
 * @c: UBIFS file-system description object
 *
 * This function compares current flash space information with the information
 * which was saved when the 'dbg_save_space_info()' function was called.
 * Returns zero if the information has not changed, and %-EINVAL it it has
 * changed.
 */
int dbg_check_space_info(struct ubifs_info *c)
{
	struct ubifs_debug_info *d = c->dbg;
	struct ubifs_lp_stats lst;
1022 1023
	long long free;
	int freeable_cnt;
1024 1025

	spin_lock(&c->space_lock);
1026 1027 1028 1029
	freeable_cnt = c->freeable_cnt;
	c->freeable_cnt = 0;
	free = ubifs_get_free_space_nolock(c);
	c->freeable_cnt = freeable_cnt;
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
	spin_unlock(&c->space_lock);

	if (free != d->saved_free) {
		ubifs_err("free space changed from %lld to %lld",
			  d->saved_free, free);
		goto out;
	}

	return 0;

out:
	ubifs_msg("saved lprops statistics dump");
1042
	ubifs_dump_lstats(&d->saved_lst);
1043
	ubifs_msg("saved budgeting info dump");
1044
	ubifs_dump_budg(c, &d->saved_bi);
1045
	ubifs_msg("saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1046
	ubifs_msg("current lprops statistics dump");
1047
	ubifs_get_lp_stats(c, &lst);
1048
	ubifs_dump_lstats(&lst);
1049
	ubifs_msg("current budgeting info dump");
1050
	ubifs_dump_budg(c, &c->bi);
1051 1052 1053 1054
	dump_stack();
	return -EINVAL;
}

1055 1056
/**
 * dbg_check_synced_i_size - check synchronized inode size.
1057
 * @c: UBIFS file-system description object
1058 1059 1060 1061 1062 1063 1064
 * @inode: inode to check
 *
 * If inode is clean, synchronized inode size has to be equivalent to current
 * inode size. This function has to be called only for locked inodes (@i_mutex
 * has to be locked). Returns %0 if synchronized inode size if correct, and
 * %-EINVAL if not.
 */
1065
int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1066 1067 1068 1069
{
	int err = 0;
	struct ubifs_inode *ui = ubifs_inode(inode);

1070
	if (!dbg_is_chk_gen(c))
1071 1072 1073 1074 1075 1076 1077
		return 0;
	if (!S_ISREG(inode->i_mode))
		return 0;

	mutex_lock(&ui->ui_mutex);
	spin_lock(&ui->ui_lock);
	if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1078 1079
		ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode is clean",
			  ui->ui_size, ui->synced_i_size);
1080 1081
		ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
			  inode->i_mode, i_size_read(inode));
1082
		dump_stack();
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
		err = -EINVAL;
	}
	spin_unlock(&ui->ui_lock);
	mutex_unlock(&ui->ui_mutex);
	return err;
}

/*
 * dbg_check_dir - check directory inode size and link count.
 * @c: UBIFS file-system description object
 * @dir: the directory to calculate size for
 * @size: the result is returned here
 *
 * This function makes sure that directory size and link count are correct.
 * Returns zero in case of success and a negative error code in case of
 * failure.
 *
 * Note, it is good idea to make sure the @dir->i_mutex is locked before
 * calling this function.
 */
1103
int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1104 1105 1106 1107 1108 1109 1110
{
	unsigned int nlink = 2;
	union ubifs_key key;
	struct ubifs_dent_node *dent, *pdent = NULL;
	struct qstr nm = { .name = NULL };
	loff_t size = UBIFS_INO_NODE_SZ;

1111
	if (!dbg_is_chk_gen(c))
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
		return 0;

	if (!S_ISDIR(dir->i_mode))
		return 0;

	lowest_dent_key(c, &key, dir->i_ino);
	while (1) {
		int err;

		dent = ubifs_tnc_next_ent(c, &key, &nm);
		if (IS_ERR(dent)) {
			err = PTR_ERR(dent);
			if (err == -ENOENT)
				break;
			return err;
		}

		nm.name = dent->name;
		nm.len = le16_to_cpu(dent->nlen);
		size += CALC_DENT_SIZE(nm.len);
		if (dent->type == UBIFS_ITYPE_DIR)
			nlink += 1;
		kfree(pdent);
		pdent = dent;
		key_read(c, &dent->key, &key);
	}
	kfree(pdent);

	if (i_size_read(dir) != size) {
1141 1142
		ubifs_err("directory inode %lu has size %llu, but calculated size is %llu",
			  dir->i_ino, (unsigned long long)i_size_read(dir),
1143
			  (unsigned long long)size);
1144
		ubifs_dump_inode(c, dir);
1145 1146 1147 1148
		dump_stack();
		return -EINVAL;
	}
	if (dir->i_nlink != nlink) {
1149 1150
		ubifs_err("directory inode %lu has nlink %u, but calculated nlink is %u",
			  dir->i_ino, dir->i_nlink, nlink);
1151
		ubifs_dump_inode(c, dir);
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
		dump_stack();
		return -EINVAL;
	}

	return 0;
}

/**
 * dbg_check_key_order - make sure that colliding keys are properly ordered.
 * @c: UBIFS file-system description object
 * @zbr1: first zbranch
 * @zbr2: following zbranch
 *
 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
 * names of the direntries/xentries which are referred by the keys. This
 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
 * sure the name of direntry/xentry referred by @zbr1 is less than
 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
 * and a negative error code in case of failure.
 */
static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
			       struct ubifs_zbranch *zbr2)
{
	int err, nlen1, nlen2, cmp;
	struct ubifs_dent_node *dent1, *dent2;
	union ubifs_key key;
A
Artem Bityutskiy 已提交
1178
	char key_buf[DBG_KEY_BUF_LEN];
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207

	ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
	dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
	if (!dent1)
		return -ENOMEM;
	dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
	if (!dent2) {
		err = -ENOMEM;
		goto out_free;
	}

	err = ubifs_tnc_read_node(c, zbr1, dent1);
	if (err)
		goto out_free;
	err = ubifs_validate_entry(c, dent1);
	if (err)
		goto out_free;

	err = ubifs_tnc_read_node(c, zbr2, dent2);
	if (err)
		goto out_free;
	err = ubifs_validate_entry(c, dent2);
	if (err)
		goto out_free;

	/* Make sure node keys are the same as in zbranch */
	err = 1;
	key_read(c, &dent1->key, &key);
	if (keys_cmp(c, &zbr1->key, &key)) {
A
Artem Bityutskiy 已提交
1208 1209 1210 1211 1212 1213
		ubifs_err("1st entry at %d:%d has key %s", zbr1->lnum,
			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
						       DBG_KEY_BUF_LEN));
		ubifs_err("but it should have key %s according to tnc",
			  dbg_snprintf_key(c, &zbr1->key, key_buf,
					   DBG_KEY_BUF_LEN));
1214
		ubifs_dump_node(c, dent1);
A
Artem Bityutskiy 已提交
1215
		goto out_free;
1216 1217 1218 1219
	}

	key_read(c, &dent2->key, &key);
	if (keys_cmp(c, &zbr2->key, &key)) {
A
Artem Bityutskiy 已提交
1220 1221 1222 1223 1224 1225
		ubifs_err("2nd entry at %d:%d has key %s", zbr1->lnum,
			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
						       DBG_KEY_BUF_LEN));
		ubifs_err("but it should have key %s according to tnc",
			  dbg_snprintf_key(c, &zbr2->key, key_buf,
					   DBG_KEY_BUF_LEN));
1226
		ubifs_dump_node(c, dent2);
A
Artem Bityutskiy 已提交
1227
		goto out_free;
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
	}

	nlen1 = le16_to_cpu(dent1->nlen);
	nlen2 = le16_to_cpu(dent2->nlen);

	cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
	if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
		err = 0;
		goto out_free;
	}
	if (cmp == 0 && nlen1 == nlen2)
A
Artem Bityutskiy 已提交
1239
		ubifs_err("2 xent/dent nodes with the same name");
1240
	else
A
Artem Bityutskiy 已提交
1241 1242
		ubifs_err("bad order of colliding key %s",
			  dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1243

A
Artem Bityutskiy 已提交
1244
	ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1245
	ubifs_dump_node(c, dent1);
A
Artem Bityutskiy 已提交
1246
	ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1247
	ubifs_dump_node(c, dent2);
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357

out_free:
	kfree(dent2);
	kfree(dent1);
	return err;
}

/**
 * dbg_check_znode - check if znode is all right.
 * @c: UBIFS file-system description object
 * @zbr: zbranch which points to this znode
 *
 * This function makes sure that znode referred to by @zbr is all right.
 * Returns zero if it is, and %-EINVAL if it is not.
 */
static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
{
	struct ubifs_znode *znode = zbr->znode;
	struct ubifs_znode *zp = znode->parent;
	int n, err, cmp;

	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
		err = 1;
		goto out;
	}
	if (znode->level < 0) {
		err = 2;
		goto out;
	}
	if (znode->iip < 0 || znode->iip >= c->fanout) {
		err = 3;
		goto out;
	}

	if (zbr->len == 0)
		/* Only dirty zbranch may have no on-flash nodes */
		if (!ubifs_zn_dirty(znode)) {
			err = 4;
			goto out;
		}

	if (ubifs_zn_dirty(znode)) {
		/*
		 * If znode is dirty, its parent has to be dirty as well. The
		 * order of the operation is important, so we have to have
		 * memory barriers.
		 */
		smp_mb();
		if (zp && !ubifs_zn_dirty(zp)) {
			/*
			 * The dirty flag is atomic and is cleared outside the
			 * TNC mutex, so znode's dirty flag may now have
			 * been cleared. The child is always cleared before the
			 * parent, so we just need to check again.
			 */
			smp_mb();
			if (ubifs_zn_dirty(znode)) {
				err = 5;
				goto out;
			}
		}
	}

	if (zp) {
		const union ubifs_key *min, *max;

		if (znode->level != zp->level - 1) {
			err = 6;
			goto out;
		}

		/* Make sure the 'parent' pointer in our znode is correct */
		err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
		if (!err) {
			/* This zbranch does not exist in the parent */
			err = 7;
			goto out;
		}

		if (znode->iip >= zp->child_cnt) {
			err = 8;
			goto out;
		}

		if (znode->iip != n) {
			/* This may happen only in case of collisions */
			if (keys_cmp(c, &zp->zbranch[n].key,
				     &zp->zbranch[znode->iip].key)) {
				err = 9;
				goto out;
			}
			n = znode->iip;
		}

		/*
		 * Make sure that the first key in our znode is greater than or
		 * equal to the key in the pointing zbranch.
		 */
		min = &zbr->key;
		cmp = keys_cmp(c, min, &znode->zbranch[0].key);
		if (cmp == 1) {
			err = 10;
			goto out;
		}

		if (n + 1 < zp->child_cnt) {
			max = &zp->zbranch[n + 1].key;

			/*
			 * Make sure the last key in our znode is less or
A
Artem Bityutskiy 已提交
1358
			 * equivalent than the key in the zbranch which goes
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
			 * after our pointing zbranch.
			 */
			cmp = keys_cmp(c, max,
				&znode->zbranch[znode->child_cnt - 1].key);
			if (cmp == -1) {
				err = 11;
				goto out;
			}
		}
	} else {
		/* This may only be root znode */
		if (zbr != &c->zroot) {
			err = 12;
			goto out;
		}
	}

	/*
	 * Make sure that next key is greater or equivalent then the previous
	 * one.
	 */
	for (n = 1; n < znode->child_cnt; n++) {
		cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
			       &znode->zbranch[n].key);
		if (cmp > 0) {
			err = 13;
			goto out;
		}
		if (cmp == 0) {
			/* This can only be keys with colliding hash */
			if (!is_hash_key(c, &znode->zbranch[n].key)) {
				err = 14;
				goto out;
			}

			if (znode->level != 0 || c->replaying)
				continue;

			/*
			 * Colliding keys should follow binary order of
			 * corresponding xentry/dentry names.
			 */
			err = dbg_check_key_order(c, &znode->zbranch[n - 1],
						  &znode->zbranch[n]);
			if (err < 0)
				return err;
			if (err) {
				err = 15;
				goto out;
			}
		}
	}

	for (n = 0; n < znode->child_cnt; n++) {
		if (!znode->zbranch[n].znode &&
		    (znode->zbranch[n].lnum == 0 ||
		     znode->zbranch[n].len == 0)) {
			err = 16;
			goto out;
		}

		if (znode->zbranch[n].lnum != 0 &&
		    znode->zbranch[n].len == 0) {
			err = 17;
			goto out;
		}

		if (znode->zbranch[n].lnum == 0 &&
		    znode->zbranch[n].len != 0) {
			err = 18;
			goto out;
		}

		if (znode->zbranch[n].lnum == 0 &&
		    znode->zbranch[n].offs != 0) {
			err = 19;
			goto out;
		}

		if (znode->level != 0 && znode->zbranch[n].znode)
			if (znode->zbranch[n].znode->parent != znode) {
				err = 20;
				goto out;
			}
	}

	return 0;

out:
	ubifs_err("failed, error %d", err);
	ubifs_msg("dump of the znode");
1450
	ubifs_dump_znode(c, znode);
1451 1452
	if (zp) {
		ubifs_msg("dump of the parent znode");
1453
		ubifs_dump_znode(c, zp);
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
	}
	dump_stack();
	return -EINVAL;
}

/**
 * dbg_check_tnc - check TNC tree.
 * @c: UBIFS file-system description object
 * @extra: do extra checks that are possible at start commit
 *
 * This function traverses whole TNC tree and checks every znode. Returns zero
 * if everything is all right and %-EINVAL if something is wrong with TNC.
 */
int dbg_check_tnc(struct ubifs_info *c, int extra)
{
	struct ubifs_znode *znode;
	long clean_cnt = 0, dirty_cnt = 0;
	int err, last;

1473
	if (!dbg_is_chk_index(c))
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
		return 0;

	ubifs_assert(mutex_is_locked(&c->tnc_mutex));
	if (!c->zroot.znode)
		return 0;

	znode = ubifs_tnc_postorder_first(c->zroot.znode);
	while (1) {
		struct ubifs_znode *prev;
		struct ubifs_zbranch *zbr;

		if (!znode->parent)
			zbr = &c->zroot;
		else
			zbr = &znode->parent->zbranch[znode->iip];

		err = dbg_check_znode(c, zbr);
		if (err)
			return err;

		if (extra) {
			if (ubifs_zn_dirty(znode))
				dirty_cnt += 1;
			else
				clean_cnt += 1;
		}

		prev = znode;
		znode = ubifs_tnc_postorder_next(znode);
		if (!znode)
			break;

		/*
		 * If the last key of this znode is equivalent to the first key
		 * of the next znode (collision), then check order of the keys.
		 */
		last = prev->child_cnt - 1;
		if (prev->level == 0 && znode->level == 0 && !c->replaying &&
		    !keys_cmp(c, &prev->zbranch[last].key,
			      &znode->zbranch[0].key)) {
			err = dbg_check_key_order(c, &prev->zbranch[last],
						  &znode->zbranch[0]);
			if (err < 0)
				return err;
			if (err) {
				ubifs_msg("first znode");
1520
				ubifs_dump_znode(c, prev);
1521
				ubifs_msg("second znode");
1522
				ubifs_dump_znode(c, znode);
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
				return -EINVAL;
			}
		}
	}

	if (extra) {
		if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
			ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
				  atomic_long_read(&c->clean_zn_cnt),
				  clean_cnt);
			return -EINVAL;
		}
		if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
			ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
				  atomic_long_read(&c->dirty_zn_cnt),
				  dirty_cnt);
			return -EINVAL;
		}
	}

	return 0;
}

/**
 * dbg_walk_index - walk the on-flash index.
 * @c: UBIFS file-system description object
 * @leaf_cb: called for each leaf node
 * @znode_cb: called for each indexing node
1551
 * @priv: private data which is passed to callbacks
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
 *
 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
 * node and @znode_cb for each indexing node. Returns zero in case of success
 * and a negative error code in case of failure.
 *
 * It would be better if this function removed every znode it pulled to into
 * the TNC, so that the behavior more closely matched the non-debugging
 * behavior.
 */
int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
		   dbg_znode_callback znode_cb, void *priv)
{
	int err;
	struct ubifs_zbranch *zbr;
	struct ubifs_znode *znode, *child;

	mutex_lock(&c->tnc_mutex);
	/* If the root indexing node is not in TNC - pull it */
	if (!c->zroot.znode) {
		c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
		if (IS_ERR(c->zroot.znode)) {
			err = PTR_ERR(c->zroot.znode);
			c->zroot.znode = NULL;
			goto out_unlock;
		}
	}

	/*
	 * We are going to traverse the indexing tree in the postorder manner.
	 * Go down and find the leftmost indexing node where we are going to
	 * start from.
	 */
	znode = c->zroot.znode;
	while (znode->level > 0) {
		zbr = &znode->zbranch[0];
		child = zbr->znode;
		if (!child) {
			child = ubifs_load_znode(c, zbr, znode, 0);
			if (IS_ERR(child)) {
				err = PTR_ERR(child);
				goto out_unlock;
			}
			zbr->znode = child;
		}

		znode = child;
	}

	/* Iterate over all indexing nodes */
	while (1) {
		int idx;

		cond_resched();

		if (znode_cb) {
			err = znode_cb(c, znode, priv);
			if (err) {
1609 1610
				ubifs_err("znode checking function returned error %d",
					  err);
1611
				ubifs_dump_znode(c, znode);
1612 1613 1614 1615 1616 1617 1618 1619
				goto out_dump;
			}
		}
		if (leaf_cb && znode->level == 0) {
			for (idx = 0; idx < znode->child_cnt; idx++) {
				zbr = &znode->zbranch[idx];
				err = leaf_cb(c, zbr, priv);
				if (err) {
1620
					ubifs_err("leaf checking function returned error %d, for leaf at LEB %d:%d",
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
						  err, zbr->lnum, zbr->offs);
					goto out_dump;
				}
			}
		}

		if (!znode->parent)
			break;

		idx = znode->iip + 1;
		znode = znode->parent;
		if (idx < znode->child_cnt) {
			/* Switch to the next index in the parent */
			zbr = &znode->zbranch[idx];
			child = zbr->znode;
			if (!child) {
				child = ubifs_load_znode(c, zbr, znode, idx);
				if (IS_ERR(child)) {
					err = PTR_ERR(child);
					goto out_unlock;
				}
				zbr->znode = child;
			}
			znode = child;
		} else
			/*
			 * This is the last child, switch to the parent and
			 * continue.
			 */
			continue;

		/* Go to the lowest leftmost znode in the new sub-tree */
		while (znode->level > 0) {
			zbr = &znode->zbranch[0];
			child = zbr->znode;
			if (!child) {
				child = ubifs_load_znode(c, zbr, znode, 0);
				if (IS_ERR(child)) {
					err = PTR_ERR(child);
					goto out_unlock;
				}
				zbr->znode = child;
			}
			znode = child;
		}
	}

	mutex_unlock(&c->tnc_mutex);
	return 0;

out_dump:
	if (znode->parent)
		zbr = &znode->parent->zbranch[znode->iip];
	else
		zbr = &c->zroot;
	ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1677
	ubifs_dump_znode(c, znode);
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
out_unlock:
	mutex_unlock(&c->tnc_mutex);
	return err;
}

/**
 * add_size - add znode size to partially calculated index size.
 * @c: UBIFS file-system description object
 * @znode: znode to add size for
 * @priv: partially calculated index size
 *
 * This is a helper function for 'dbg_check_idx_size()' which is called for
 * every indexing node and adds its size to the 'long long' variable pointed to
 * by @priv.
 */
static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
{
	long long *idx_size = priv;
	int add;

	add = ubifs_idx_node_sz(c, znode->child_cnt);
	add = ALIGN(add, 8);
	*idx_size += add;
	return 0;
}

/**
 * dbg_check_idx_size - check index size.
 * @c: UBIFS file-system description object
 * @idx_size: size to check
 *
 * This function walks the UBIFS index, calculates its size and checks that the
 * size is equivalent to @idx_size. Returns zero in case of success and a
 * negative error code in case of failure.
 */
int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
{
	int err;
	long long calc = 0;

1718
	if (!dbg_is_chk_index(c))
1719 1720 1721 1722 1723 1724 1725 1726 1727
		return 0;

	err = dbg_walk_index(c, NULL, add_size, &calc);
	if (err) {
		ubifs_err("error %d while walking the index", err);
		return err;
	}

	if (calc != idx_size) {
1728 1729
		ubifs_err("index size check failed: calculated size is %lld, should be %lld",
			  calc, idx_size);
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
		dump_stack();
		return -EINVAL;
	}

	return 0;
}

/**
 * struct fsck_inode - information about an inode used when checking the file-system.
 * @rb: link in the RB-tree of inodes
 * @inum: inode number
 * @mode: inode type, permissions, etc
 * @nlink: inode link count
 * @xattr_cnt: count of extended attributes
 * @references: how many directory/xattr entries refer this inode (calculated
 *              while walking the index)
 * @calc_cnt: for directory inode count of child directories
 * @size: inode size (read from on-flash inode)
 * @xattr_sz: summary size of all extended attributes (read from on-flash
 *            inode)
 * @calc_sz: for directories calculated directory size
 * @calc_xcnt: count of extended attributes
 * @calc_xsz: calculated summary size of all extended attributes
 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
 *             inode (read from on-flash inode)
 * @calc_xnms: calculated sum of lengths of all extended attribute names
 */
struct fsck_inode {
	struct rb_node rb;
	ino_t inum;
	umode_t mode;
	unsigned int nlink;
	unsigned int xattr_cnt;
	int references;
	int calc_cnt;
	long long size;
	unsigned int xattr_sz;
	long long calc_sz;
	long long calc_xcnt;
	long long calc_xsz;
	unsigned int xattr_nms;
	long long calc_xnms;
};

/**
 * struct fsck_data - private FS checking information.
 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
 */
struct fsck_data {
	struct rb_root inodes;
};

/**
 * add_inode - add inode information to RB-tree of inodes.
 * @c: UBIFS file-system description object
 * @fsckd: FS checking information
 * @ino: raw UBIFS inode to add
 *
 * This is a helper function for 'check_leaf()' which adds information about
 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
 * case of success and a negative error code in case of failure.
 */
static struct fsck_inode *add_inode(struct ubifs_info *c,
				    struct fsck_data *fsckd,
				    struct ubifs_ino_node *ino)
{
	struct rb_node **p, *parent = NULL;
	struct fsck_inode *fscki;
	ino_t inum = key_inum_flash(c, &ino->key);
1799 1800
	struct inode *inode;
	struct ubifs_inode *ui;
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815

	p = &fsckd->inodes.rb_node;
	while (*p) {
		parent = *p;
		fscki = rb_entry(parent, struct fsck_inode, rb);
		if (inum < fscki->inum)
			p = &(*p)->rb_left;
		else if (inum > fscki->inum)
			p = &(*p)->rb_right;
		else
			return fscki;
	}

	if (inum > c->highest_inum) {
		ubifs_err("too high inode number, max. is %lu",
A
Artem Bityutskiy 已提交
1816
			  (unsigned long)c->highest_inum);
1817 1818 1819 1820 1821 1822 1823
		return ERR_PTR(-EINVAL);
	}

	fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
	if (!fscki)
		return ERR_PTR(-ENOMEM);

1824 1825
	inode = ilookup(c->vfs_sb, inum);

1826
	fscki->inum = inum;
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
	/*
	 * If the inode is present in the VFS inode cache, use it instead of
	 * the on-flash inode which might be out-of-date. E.g., the size might
	 * be out-of-date. If we do not do this, the following may happen, for
	 * example:
	 *   1. A power cut happens
	 *   2. We mount the file-system R/O, the replay process fixes up the
	 *      inode size in the VFS cache, but on on-flash.
	 *   3. 'check_leaf()' fails because it hits a data node beyond inode
	 *      size.
	 */
	if (!inode) {
		fscki->nlink = le32_to_cpu(ino->nlink);
		fscki->size = le64_to_cpu(ino->size);
		fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
		fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
		fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
		fscki->mode = le32_to_cpu(ino->mode);
	} else {
		ui = ubifs_inode(inode);
		fscki->nlink = inode->i_nlink;
		fscki->size = inode->i_size;
		fscki->xattr_cnt = ui->xattr_cnt;
		fscki->xattr_sz = ui->xattr_size;
		fscki->xattr_nms = ui->xattr_names;
		fscki->mode = inode->i_mode;
		iput(inode);
	}

1856 1857 1858 1859
	if (S_ISDIR(fscki->mode)) {
		fscki->calc_sz = UBIFS_INO_NODE_SZ;
		fscki->calc_cnt = 2;
	}
1860

1861 1862
	rb_link_node(&fscki->rb, parent, p);
	rb_insert_color(&fscki->rb, &fsckd->inodes);
1863

1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
	return fscki;
}

/**
 * search_inode - search inode in the RB-tree of inodes.
 * @fsckd: FS checking information
 * @inum: inode number to search
 *
 * This is a helper function for 'check_leaf()' which searches inode @inum in
 * the RB-tree of inodes and returns an inode information pointer or %NULL if
 * the inode was not found.
 */
static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
{
	struct rb_node *p;
	struct fsck_inode *fscki;

	p = fsckd->inodes.rb_node;
	while (p) {
		fscki = rb_entry(p, struct fsck_inode, rb);
		if (inum < fscki->inum)
			p = p->rb_left;
		else if (inum > fscki->inum)
			p = p->rb_right;
		else
			return fscki;
	}
	return NULL;
}

/**
 * read_add_inode - read inode node and add it to RB-tree of inodes.
 * @c: UBIFS file-system description object
 * @fsckd: FS checking information
 * @inum: inode number to read
 *
 * This is a helper function for 'check_leaf()' which finds inode node @inum in
 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
 * information pointer in case of success and a negative error code in case of
 * failure.
 */
static struct fsck_inode *read_add_inode(struct ubifs_info *c,
					 struct fsck_data *fsckd, ino_t inum)
{
	int n, err;
	union ubifs_key key;
	struct ubifs_znode *znode;
	struct ubifs_zbranch *zbr;
	struct ubifs_ino_node *ino;
	struct fsck_inode *fscki;

	fscki = search_inode(fsckd, inum);
	if (fscki)
		return fscki;

	ino_key_init(c, &key, inum);
	err = ubifs_lookup_level0(c, &key, &znode, &n);
	if (!err) {
A
Artem Bityutskiy 已提交
1922
		ubifs_err("inode %lu not found in index", (unsigned long)inum);
1923 1924
		return ERR_PTR(-ENOENT);
	} else if (err < 0) {
A
Artem Bityutskiy 已提交
1925 1926
		ubifs_err("error %d while looking up inode %lu",
			  err, (unsigned long)inum);
1927 1928 1929 1930 1931
		return ERR_PTR(err);
	}

	zbr = &znode->zbranch[n];
	if (zbr->len < UBIFS_INO_NODE_SZ) {
A
Artem Bityutskiy 已提交
1932 1933
		ubifs_err("bad node %lu node length %d",
			  (unsigned long)inum, zbr->len);
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
		return ERR_PTR(-EINVAL);
	}

	ino = kmalloc(zbr->len, GFP_NOFS);
	if (!ino)
		return ERR_PTR(-ENOMEM);

	err = ubifs_tnc_read_node(c, zbr, ino);
	if (err) {
		ubifs_err("cannot read inode node at LEB %d:%d, error %d",
			  zbr->lnum, zbr->offs, err);
		kfree(ino);
		return ERR_PTR(err);
	}

	fscki = add_inode(c, fsckd, ino);
	kfree(ino);
	if (IS_ERR(fscki)) {
		ubifs_err("error %ld while adding inode %lu node",
A
Artem Bityutskiy 已提交
1953
			  PTR_ERR(fscki), (unsigned long)inum);
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
		return fscki;
	}

	return fscki;
}

/**
 * check_leaf - check leaf node.
 * @c: UBIFS file-system description object
 * @zbr: zbranch of the leaf node to check
 * @priv: FS checking information
 *
 * This is a helper function for 'dbg_check_filesystem()' which is called for
 * every single leaf node while walking the indexing tree. It checks that the
 * leaf node referred from the indexing tree exists, has correct CRC, and does
 * some other basic validation. This function is also responsible for building
 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
 * calculates reference count, size, etc for each inode in order to later
 * compare them to the information stored inside the inodes and detect possible
 * inconsistencies. Returns zero in case of success and a negative error code
 * in case of failure.
 */
static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
		      void *priv)
{
	ino_t inum;
	void *node;
	struct ubifs_ch *ch;
	int err, type = key_type(c, &zbr->key);
	struct fsck_inode *fscki;

	if (zbr->len < UBIFS_CH_SZ) {
		ubifs_err("bad leaf length %d (LEB %d:%d)",
			  zbr->len, zbr->lnum, zbr->offs);
		return -EINVAL;
	}

	node = kmalloc(zbr->len, GFP_NOFS);
	if (!node)
		return -ENOMEM;

	err = ubifs_tnc_read_node(c, zbr, node);
	if (err) {
		ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
			  zbr->lnum, zbr->offs, err);
		goto out_free;
	}

	/* If this is an inode node, add it to RB-tree of inodes */
	if (type == UBIFS_INO_KEY) {
		fscki = add_inode(c, priv, node);
		if (IS_ERR(fscki)) {
			err = PTR_ERR(fscki);
			ubifs_err("error %d while adding inode node", err);
			goto out_dump;
		}
		goto out;
	}

	if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
	    type != UBIFS_DATA_KEY) {
		ubifs_err("unexpected node type %d at LEB %d:%d",
			  type, zbr->lnum, zbr->offs);
		err = -EINVAL;
		goto out_free;
	}

	ch = node;
	if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
		ubifs_err("too high sequence number, max. is %llu",
			  c->max_sqnum);
		err = -EINVAL;
		goto out_dump;
	}

	if (type == UBIFS_DATA_KEY) {
		long long blk_offs;
		struct ubifs_data_node *dn = node;

		/*
		 * Search the inode node this data node belongs to and insert
		 * it to the RB-tree of inodes.
		 */
		inum = key_inum_flash(c, &dn->key);
		fscki = read_add_inode(c, priv, inum);
		if (IS_ERR(fscki)) {
			err = PTR_ERR(fscki);
2041
			ubifs_err("error %d while processing data node and trying to find inode node %lu",
A
Artem Bityutskiy 已提交
2042
				  err, (unsigned long)inum);
2043 2044 2045 2046 2047 2048 2049 2050
			goto out_dump;
		}

		/* Make sure the data node is within inode size */
		blk_offs = key_block_flash(c, &dn->key);
		blk_offs <<= UBIFS_BLOCK_SHIFT;
		blk_offs += le32_to_cpu(dn->size);
		if (blk_offs > fscki->size) {
2051 2052
			ubifs_err("data node at LEB %d:%d is not within inode size %lld",
				  zbr->lnum, zbr->offs, fscki->size);
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
			err = -EINVAL;
			goto out_dump;
		}
	} else {
		int nlen;
		struct ubifs_dent_node *dent = node;
		struct fsck_inode *fscki1;

		err = ubifs_validate_entry(c, dent);
		if (err)
			goto out_dump;

		/*
		 * Search the inode node this entry refers to and the parent
		 * inode node and insert them to the RB-tree of inodes.
		 */
		inum = le64_to_cpu(dent->inum);
		fscki = read_add_inode(c, priv, inum);
		if (IS_ERR(fscki)) {
			err = PTR_ERR(fscki);
2073
			ubifs_err("error %d while processing entry node and trying to find inode node %lu",
A
Artem Bityutskiy 已提交
2074
				  err, (unsigned long)inum);
2075 2076 2077 2078 2079 2080 2081 2082 2083
			goto out_dump;
		}

		/* Count how many direntries or xentries refers this inode */
		fscki->references += 1;

		inum = key_inum_flash(c, &dent->key);
		fscki1 = read_add_inode(c, priv, inum);
		if (IS_ERR(fscki1)) {
R
Roel Kluin 已提交
2084
			err = PTR_ERR(fscki1);
2085
			ubifs_err("error %d while processing entry node and trying to find parent inode node %lu",
A
Artem Bityutskiy 已提交
2086
				  err, (unsigned long)inum);
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
			goto out_dump;
		}

		nlen = le16_to_cpu(dent->nlen);
		if (type == UBIFS_XENT_KEY) {
			fscki1->calc_xcnt += 1;
			fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
			fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
			fscki1->calc_xnms += nlen;
		} else {
			fscki1->calc_sz += CALC_DENT_SIZE(nlen);
			if (dent->type == UBIFS_ITYPE_DIR)
				fscki1->calc_cnt += 1;
		}
	}

out:
	kfree(node);
	return 0;

out_dump:
	ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2109
	ubifs_dump_node(c, node);
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
out_free:
	kfree(node);
	return err;
}

/**
 * free_inodes - free RB-tree of inodes.
 * @fsckd: FS checking information
 */
static void free_inodes(struct fsck_data *fsckd)
{
	struct rb_node *this = fsckd->inodes.rb_node;
	struct fsck_inode *fscki;

	while (this) {
		if (this->rb_left)
			this = this->rb_left;
		else if (this->rb_right)
			this = this->rb_right;
		else {
			fscki = rb_entry(this, struct fsck_inode, rb);
			this = rb_parent(this);
			if (this) {
				if (this->rb_left == &fscki->rb)
					this->rb_left = NULL;
				else
					this->rb_right = NULL;
			}
			kfree(fscki);
		}
	}
}

/**
 * check_inodes - checks all inodes.
 * @c: UBIFS file-system description object
 * @fsckd: FS checking information
 *
 * This is a helper function for 'dbg_check_filesystem()' which walks the
 * RB-tree of inodes after the index scan has been finished, and checks that
 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
 * %-EINVAL if not, and a negative error code in case of failure.
 */
static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
{
	int n, err;
	union ubifs_key key;
	struct ubifs_znode *znode;
	struct ubifs_zbranch *zbr;
	struct ubifs_ino_node *ino;
	struct fsck_inode *fscki;
	struct rb_node *this = rb_first(&fsckd->inodes);

	while (this) {
		fscki = rb_entry(this, struct fsck_inode, rb);
		this = rb_next(this);

		if (S_ISDIR(fscki->mode)) {
			/*
			 * Directories have to have exactly one reference (they
			 * cannot have hardlinks), although root inode is an
			 * exception.
			 */
			if (fscki->inum != UBIFS_ROOT_INO &&
			    fscki->references != 1) {
2175
				ubifs_err("directory inode %lu has %d direntries which refer it, but should be 1",
A
Artem Bityutskiy 已提交
2176
					  (unsigned long)fscki->inum,
2177 2178 2179 2180 2181
					  fscki->references);
				goto out_dump;
			}
			if (fscki->inum == UBIFS_ROOT_INO &&
			    fscki->references != 0) {
2182
				ubifs_err("root inode %lu has non-zero (%d) direntries which refer it",
A
Artem Bityutskiy 已提交
2183 2184
					  (unsigned long)fscki->inum,
					  fscki->references);
2185 2186 2187
				goto out_dump;
			}
			if (fscki->calc_sz != fscki->size) {
2188
				ubifs_err("directory inode %lu size is %lld, but calculated size is %lld",
A
Artem Bityutskiy 已提交
2189 2190
					  (unsigned long)fscki->inum,
					  fscki->size, fscki->calc_sz);
2191 2192 2193
				goto out_dump;
			}
			if (fscki->calc_cnt != fscki->nlink) {
2194
				ubifs_err("directory inode %lu nlink is %d, but calculated nlink is %d",
A
Artem Bityutskiy 已提交
2195 2196
					  (unsigned long)fscki->inum,
					  fscki->nlink, fscki->calc_cnt);
2197 2198 2199 2200
				goto out_dump;
			}
		} else {
			if (fscki->references != fscki->nlink) {
2201
				ubifs_err("inode %lu nlink is %d, but calculated nlink is %d",
A
Artem Bityutskiy 已提交
2202
					  (unsigned long)fscki->inum,
2203 2204 2205 2206 2207
					  fscki->nlink, fscki->references);
				goto out_dump;
			}
		}
		if (fscki->xattr_sz != fscki->calc_xsz) {
2208
			ubifs_err("inode %lu has xattr size %u, but calculated size is %lld",
A
Artem Bityutskiy 已提交
2209
				  (unsigned long)fscki->inum, fscki->xattr_sz,
2210 2211 2212 2213
				  fscki->calc_xsz);
			goto out_dump;
		}
		if (fscki->xattr_cnt != fscki->calc_xcnt) {
2214
			ubifs_err("inode %lu has %u xattrs, but calculated count is %lld",
A
Artem Bityutskiy 已提交
2215
				  (unsigned long)fscki->inum,
2216 2217 2218 2219
				  fscki->xattr_cnt, fscki->calc_xcnt);
			goto out_dump;
		}
		if (fscki->xattr_nms != fscki->calc_xnms) {
2220
			ubifs_err("inode %lu has xattr names' size %u, but calculated names' size is %lld",
A
Artem Bityutskiy 已提交
2221
				  (unsigned long)fscki->inum, fscki->xattr_nms,
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
				  fscki->calc_xnms);
			goto out_dump;
		}
	}

	return 0;

out_dump:
	/* Read the bad inode and dump it */
	ino_key_init(c, &key, fscki->inum);
	err = ubifs_lookup_level0(c, &key, &znode, &n);
	if (!err) {
A
Artem Bityutskiy 已提交
2234 2235
		ubifs_err("inode %lu not found in index",
			  (unsigned long)fscki->inum);
2236 2237 2238
		return -ENOENT;
	} else if (err < 0) {
		ubifs_err("error %d while looking up inode %lu",
A
Artem Bityutskiy 已提交
2239
			  err, (unsigned long)fscki->inum);
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
		return err;
	}

	zbr = &znode->zbranch[n];
	ino = kmalloc(zbr->len, GFP_NOFS);
	if (!ino)
		return -ENOMEM;

	err = ubifs_tnc_read_node(c, zbr, ino);
	if (err) {
		ubifs_err("cannot read inode node at LEB %d:%d, error %d",
			  zbr->lnum, zbr->offs, err);
		kfree(ino);
		return err;
	}

	ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
A
Artem Bityutskiy 已提交
2257
		  (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2258
	ubifs_dump_node(c, ino);
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
	kfree(ino);
	return -EINVAL;
}

/**
 * dbg_check_filesystem - check the file-system.
 * @c: UBIFS file-system description object
 *
 * This function checks the file system, namely:
 * o makes sure that all leaf nodes exist and their CRCs are correct;
 * o makes sure inode nlink, size, xattr size/count are correct (for all
 *   inodes).
 *
 * The function reads whole indexing tree and all nodes, so it is pretty
 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
 * not, and a negative error code in case of failure.
 */
int dbg_check_filesystem(struct ubifs_info *c)
{
	int err;
	struct fsck_data fsckd;

2281
	if (!dbg_is_chk_fs(c))
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
		return 0;

	fsckd.inodes = RB_ROOT;
	err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
	if (err)
		goto out_free;

	err = check_inodes(c, &fsckd);
	if (err)
		goto out_free;

	free_inodes(&fsckd);
	return 0;

out_free:
	ubifs_err("file-system check failed with error %d", err);
	dump_stack();
	free_inodes(&fsckd);
	return err;
}

2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
/**
 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
 * @c: UBIFS file-system description object
 * @head: the list of nodes ('struct ubifs_scan_node' objects)
 *
 * This function returns zero if the list of data nodes is sorted correctly,
 * and %-EINVAL if not.
 */
int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
{
	struct list_head *cur;
	struct ubifs_scan_node *sa, *sb;

2316
	if (!dbg_is_chk_gen(c))
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
		return 0;

	for (cur = head->next; cur->next != head; cur = cur->next) {
		ino_t inuma, inumb;
		uint32_t blka, blkb;

		cond_resched();
		sa = container_of(cur, struct ubifs_scan_node, list);
		sb = container_of(cur->next, struct ubifs_scan_node, list);

		if (sa->type != UBIFS_DATA_NODE) {
			ubifs_err("bad node type %d", sa->type);
2329
			ubifs_dump_node(c, sa->node);
2330 2331 2332 2333
			return -EINVAL;
		}
		if (sb->type != UBIFS_DATA_NODE) {
			ubifs_err("bad node type %d", sb->type);
2334
			ubifs_dump_node(c, sb->node);
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
			return -EINVAL;
		}

		inuma = key_inum(c, &sa->key);
		inumb = key_inum(c, &sb->key);

		if (inuma < inumb)
			continue;
		if (inuma > inumb) {
			ubifs_err("larger inum %lu goes before inum %lu",
				  (unsigned long)inuma, (unsigned long)inumb);
			goto error_dump;
		}

		blka = key_block(c, &sa->key);
		blkb = key_block(c, &sb->key);

		if (blka > blkb) {
			ubifs_err("larger block %u goes before %u", blka, blkb);
			goto error_dump;
		}
		if (blka == blkb) {
			ubifs_err("two data nodes for the same block");
			goto error_dump;
		}
	}

	return 0;

error_dump:
2365 2366
	ubifs_dump_node(c, sa->node);
	ubifs_dump_node(c, sb->node);
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
	return -EINVAL;
}

/**
 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
 * @c: UBIFS file-system description object
 * @head: the list of nodes ('struct ubifs_scan_node' objects)
 *
 * This function returns zero if the list of non-data nodes is sorted correctly,
 * and %-EINVAL if not.
 */
int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
{
	struct list_head *cur;
	struct ubifs_scan_node *sa, *sb;

2383
	if (!dbg_is_chk_gen(c))
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
		return 0;

	for (cur = head->next; cur->next != head; cur = cur->next) {
		ino_t inuma, inumb;
		uint32_t hasha, hashb;

		cond_resched();
		sa = container_of(cur, struct ubifs_scan_node, list);
		sb = container_of(cur->next, struct ubifs_scan_node, list);

		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
		    sa->type != UBIFS_XENT_NODE) {
			ubifs_err("bad node type %d", sa->type);
2397
			ubifs_dump_node(c, sa->node);
2398 2399 2400 2401 2402
			return -EINVAL;
		}
		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
		    sa->type != UBIFS_XENT_NODE) {
			ubifs_err("bad node type %d", sb->type);
2403
			ubifs_dump_node(c, sb->node);
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
			return -EINVAL;
		}

		if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
			ubifs_err("non-inode node goes before inode node");
			goto error_dump;
		}

		if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
			continue;

		if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
			/* Inode nodes are sorted in descending size order */
			if (sa->len < sb->len) {
				ubifs_err("smaller inode node goes first");
				goto error_dump;
			}
			continue;
		}

		/*
		 * This is either a dentry or xentry, which should be sorted in
		 * ascending (parent ino, hash) order.
		 */
		inuma = key_inum(c, &sa->key);
		inumb = key_inum(c, &sb->key);

		if (inuma < inumb)
			continue;
		if (inuma > inumb) {
			ubifs_err("larger inum %lu goes before inum %lu",
				  (unsigned long)inuma, (unsigned long)inumb);
			goto error_dump;
		}

		hasha = key_block(c, &sa->key);
		hashb = key_block(c, &sb->key);

		if (hasha > hashb) {
2443 2444
			ubifs_err("larger hash %u goes before %u",
				  hasha, hashb);
2445 2446 2447 2448 2449 2450 2451 2452
			goto error_dump;
		}
	}

	return 0;

error_dump:
	ubifs_msg("dumping first node");
2453
	ubifs_dump_node(c, sa->node);
2454
	ubifs_msg("dumping second node");
2455
	ubifs_dump_node(c, sb->node);
2456 2457 2458 2459
	return -EINVAL;
	return 0;
}

2460
static inline int chance(unsigned int n, unsigned int out_of)
2461
{
2462 2463
	return !!((random32() % out_of) + 1 <= n);

2464 2465
}

2466
static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2467
{
2468
	struct ubifs_debug_info *d = c->dbg;
2469

2470
	ubifs_assert(dbg_is_tst_rcvry(c));
2471

2472 2473
	if (!d->pc_cnt) {
		/* First call - decide delay to the power cut */
2474
		if (chance(1, 2)) {
2475
			unsigned long delay;
2476 2477

			if (chance(1, 2)) {
2478
				d->pc_delay = 1;
2479 2480 2481 2482 2483
				/* Fail withing 1 minute */
				delay = random32() % 60000;
				d->pc_timeout = jiffies;
				d->pc_timeout += msecs_to_jiffies(delay);
				ubifs_warn("failing after %lums", delay);
2484
			} else {
2485
				d->pc_delay = 2;
2486 2487
				delay = random32() % 10000;
				/* Fail within 10000 operations */
2488
				d->pc_cnt_max = delay;
2489
				ubifs_warn("failing after %lu calls", delay);
2490 2491
			}
		}
2492

2493
		d->pc_cnt += 1;
2494
	}
2495

2496
	/* Determine if failure delay has expired */
2497
	if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2498
			return 0;
2499
	if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2500
			return 0;
2501

2502
	if (lnum == UBIFS_SB_LNUM) {
2503 2504 2505
		if (write && chance(1, 2))
			return 0;
		if (chance(19, 20))
2506
			return 0;
2507
		ubifs_warn("failing in super block LEB %d", lnum);
2508 2509 2510
	} else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
		if (chance(19, 20))
			return 0;
2511
		ubifs_warn("failing in master LEB %d", lnum);
2512
	} else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2513 2514 2515
		if (write && chance(99, 100))
			return 0;
		if (chance(399, 400))
2516
			return 0;
2517
		ubifs_warn("failing in log LEB %d", lnum);
2518
	} else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2519 2520 2521
		if (write && chance(7, 8))
			return 0;
		if (chance(19, 20))
2522
			return 0;
2523
		ubifs_warn("failing in LPT LEB %d", lnum);
2524
	} else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2525 2526 2527
		if (write && chance(1, 2))
			return 0;
		if (chance(9, 10))
2528
			return 0;
2529
		ubifs_warn("failing in orphan LEB %d", lnum);
2530 2531 2532
	} else if (lnum == c->ihead_lnum) {
		if (chance(99, 100))
			return 0;
2533
		ubifs_warn("failing in index head LEB %d", lnum);
2534 2535 2536
	} else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
		if (chance(9, 10))
			return 0;
2537
		ubifs_warn("failing in GC head LEB %d", lnum);
2538 2539 2540 2541
	} else if (write && !RB_EMPTY_ROOT(&c->buds) &&
		   !ubifs_search_bud(c, lnum)) {
		if (chance(19, 20))
			return 0;
2542
		ubifs_warn("failing in non-bud LEB %d", lnum);
2543 2544 2545 2546
	} else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
		   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
		if (chance(999, 1000))
			return 0;
2547
		ubifs_warn("failing in bud LEB %d commit running", lnum);
2548 2549 2550
	} else {
		if (chance(9999, 10000))
			return 0;
2551
		ubifs_warn("failing in bud LEB %d commit not running", lnum);
2552
	}
2553

2554
	d->pc_happened = 1;
2555
	ubifs_warn("========== Power cut emulated ==========");
2556 2557 2558 2559
	dump_stack();
	return 1;
}

2560 2561
static int corrupt_data(const struct ubifs_info *c, const void *buf,
			unsigned int len)
2562
{
A
Akinobu Mita 已提交
2563
	unsigned int from, to, ffs = chance(1, 2);
2564 2565
	unsigned char *p = (void *)buf;

2566
	from = random32() % (len + 1);
2567 2568
	/* Corruption may only span one max. write unit */
	to = min(len, ALIGN(from, c->max_write_size));
2569

2570 2571
	ubifs_warn("filled bytes %u-%u with %s", from, to - 1,
		   ffs ? "0xFFs" : "random data");
2572 2573

	if (ffs)
A
Akinobu Mita 已提交
2574
		memset(p + from, 0xFF, to - from);
2575
	else
A
Akinobu Mita 已提交
2576
		prandom_bytes(p + from, to - from);
2577 2578

	return to;
2579 2580
}

2581
int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
R
Richard Weinberger 已提交
2582
		  int offs, int len)
2583
{
2584
	int err, failing;
2585

2586
	if (c->dbg->pc_happened)
2587
		return -EROFS;
2588 2589

	failing = power_cut_emulated(c, lnum, 1);
2590
	if (failing)
2591 2592 2593
		len = corrupt_data(c, buf, len);
	ubifs_warn("actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
		   len, lnum, offs);
R
Richard Weinberger 已提交
2594
	err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2595 2596
	if (err)
		return err;
2597
	if (failing)
2598
		return -EROFS;
2599 2600 2601
	return 0;
}

2602
int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
R
Richard Weinberger 已提交
2603
		   int len)
2604 2605 2606
{
	int err;

2607 2608 2609
	if (c->dbg->pc_happened)
		return -EROFS;
	if (power_cut_emulated(c, lnum, 1))
2610
		return -EROFS;
R
Richard Weinberger 已提交
2611
	err = ubi_leb_change(c->ubi, lnum, buf, len);
2612 2613
	if (err)
		return err;
2614
	if (power_cut_emulated(c, lnum, 1))
2615
		return -EROFS;
2616 2617 2618
	return 0;
}

2619
int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2620 2621 2622
{
	int err;

2623 2624 2625
	if (c->dbg->pc_happened)
		return -EROFS;
	if (power_cut_emulated(c, lnum, 0))
2626
		return -EROFS;
2627
	err = ubi_leb_unmap(c->ubi, lnum);
2628 2629
	if (err)
		return err;
2630
	if (power_cut_emulated(c, lnum, 0))
2631
		return -EROFS;
2632 2633 2634
	return 0;
}

R
Richard Weinberger 已提交
2635
int dbg_leb_map(struct ubifs_info *c, int lnum)
2636 2637 2638
{
	int err;

2639 2640 2641
	if (c->dbg->pc_happened)
		return -EROFS;
	if (power_cut_emulated(c, lnum, 0))
2642
		return -EROFS;
R
Richard Weinberger 已提交
2643
	err = ubi_leb_map(c->ubi, lnum);
2644 2645
	if (err)
		return err;
2646
	if (power_cut_emulated(c, lnum, 0))
2647
		return -EROFS;
2648 2649 2650
	return 0;
}

A
Artem Bityutskiy 已提交
2651 2652 2653 2654
/*
 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
 * contain the stuff specific to particular file-system mounts.
 */
2655
static struct dentry *dfs_rootdir;
A
Artem Bityutskiy 已提交
2656

2657
static int dfs_file_open(struct inode *inode, struct file *file)
A
Artem Bityutskiy 已提交
2658 2659
{
	file->private_data = inode->i_private;
2660
	return nonseekable_open(inode, file);
A
Artem Bityutskiy 已提交
2661 2662
}

2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
/**
 * provide_user_output - provide output to the user reading a debugfs file.
 * @val: boolean value for the answer
 * @u: the buffer to store the answer at
 * @count: size of the buffer
 * @ppos: position in the @u output buffer
 *
 * This is a simple helper function which stores @val boolean value in the user
 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
 * bytes written to @u in case of success and a negative error code in case of
 * failure.
 */
static int provide_user_output(int val, char __user *u, size_t count,
			       loff_t *ppos)
{
	char buf[3];

	if (val)
		buf[0] = '1';
	else
		buf[0] = '0';
	buf[1] = '\n';
	buf[2] = 0x00;

	return simple_read_from_buffer(u, count, ppos, buf, 2);
}

2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
			     loff_t *ppos)
{
	struct dentry *dent = file->f_path.dentry;
	struct ubifs_info *c = file->private_data;
	struct ubifs_debug_info *d = c->dbg;
	int val;

	if (dent == d->dfs_chk_gen)
		val = d->chk_gen;
	else if (dent == d->dfs_chk_index)
		val = d->chk_index;
	else if (dent == d->dfs_chk_orph)
		val = d->chk_orph;
	else if (dent == d->dfs_chk_lprops)
		val = d->chk_lprops;
	else if (dent == d->dfs_chk_fs)
		val = d->chk_fs;
	else if (dent == d->dfs_tst_rcvry)
		val = d->tst_rcvry;
2710 2711
	else if (dent == d->dfs_ro_error)
		val = c->ro_error;
2712 2713 2714
	else
		return -EINVAL;

2715 2716
	return provide_user_output(val, u, count, ppos);
}
2717

2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
/**
 * interpret_user_input - interpret user debugfs file input.
 * @u: user-provided buffer with the input
 * @count: buffer size
 *
 * This is a helper function which interpret user input to a boolean UBIFS
 * debugfs file. Returns %0 or %1 in case of success and a negative error code
 * in case of failure.
 */
static int interpret_user_input(const char __user *u, size_t count)
{
	size_t buf_size;
	char buf[8];

	buf_size = min_t(size_t, count, (sizeof(buf) - 1));
	if (copy_from_user(buf, u, buf_size))
		return -EFAULT;

	if (buf[0] == '1')
		return 1;
	else if (buf[0] == '0')
		return 0;

	return -EINVAL;
2742 2743 2744 2745
}

static ssize_t dfs_file_write(struct file *file, const char __user *u,
			      size_t count, loff_t *ppos)
A
Artem Bityutskiy 已提交
2746 2747 2748
{
	struct ubifs_info *c = file->private_data;
	struct ubifs_debug_info *d = c->dbg;
2749 2750
	struct dentry *dent = file->f_path.dentry;
	int val;
A
Artem Bityutskiy 已提交
2751

2752
	/*
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
	 * TODO: this is racy - the file-system might have already been
	 * unmounted and we'd oops in this case. The plan is to fix it with
	 * help of 'iterate_supers_type()' which we should have in v3.0: when
	 * a debugfs opened, we rember FS's UUID in file->private_data. Then
	 * whenever we access the FS via a debugfs file, we iterate all UBIFS
	 * superblocks and fine the one with the same UUID, and take the
	 * locking right.
	 *
	 * The other way to go suggested by Al Viro is to create a separate
	 * 'ubifs-debug' file-system instead.
2763 2764
	 */
	if (file->f_path.dentry == d->dfs_dump_lprops) {
2765
		ubifs_dump_lprops(c);
2766 2767 2768
		return count;
	}
	if (file->f_path.dentry == d->dfs_dump_budg) {
2769
		ubifs_dump_budg(c, &c->bi);
2770 2771 2772
		return count;
	}
	if (file->f_path.dentry == d->dfs_dump_tnc) {
A
Artem Bityutskiy 已提交
2773
		mutex_lock(&c->tnc_mutex);
2774
		ubifs_dump_tnc(c);
A
Artem Bityutskiy 已提交
2775
		mutex_unlock(&c->tnc_mutex);
2776 2777 2778
		return count;
	}

2779 2780 2781
	val = interpret_user_input(u, count);
	if (val < 0)
		return val;
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794

	if (dent == d->dfs_chk_gen)
		d->chk_gen = val;
	else if (dent == d->dfs_chk_index)
		d->chk_index = val;
	else if (dent == d->dfs_chk_orph)
		d->chk_orph = val;
	else if (dent == d->dfs_chk_lprops)
		d->chk_lprops = val;
	else if (dent == d->dfs_chk_fs)
		d->chk_fs = val;
	else if (dent == d->dfs_tst_rcvry)
		d->tst_rcvry = val;
2795 2796
	else if (dent == d->dfs_ro_error)
		c->ro_error = !!val;
2797
	else
A
Artem Bityutskiy 已提交
2798 2799 2800 2801 2802
		return -EINVAL;

	return count;
}

2803
static const struct file_operations dfs_fops = {
2804
	.open = dfs_file_open,
2805 2806
	.read = dfs_file_read,
	.write = dfs_file_write,
A
Artem Bityutskiy 已提交
2807
	.owner = THIS_MODULE,
2808
	.llseek = no_llseek,
A
Artem Bityutskiy 已提交
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
};

/**
 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
 * @c: UBIFS file-system description object
 *
 * This function creates all debugfs files for this instance of UBIFS. Returns
 * zero in case of success and a negative error code in case of failure.
 *
 * Note, the only reason we have not merged this function with the
 * 'ubifs_debugging_init()' function is because it is better to initialize
 * debugfs interfaces at the very end of the mount process, and remove them at
 * the very beginning of the mount process.
 */
int dbg_debugfs_init_fs(struct ubifs_info *c)
{
2825
	int err, n;
A
Artem Bityutskiy 已提交
2826 2827 2828 2829
	const char *fname;
	struct dentry *dent;
	struct ubifs_debug_info *d = c->dbg;

2830
	if (!IS_ENABLED(CONFIG_DEBUG_FS))
2831 2832
		return 0;

2833 2834 2835 2836 2837 2838 2839 2840 2841
	n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
		     c->vi.ubi_num, c->vi.vol_id);
	if (n == UBIFS_DFS_DIR_LEN) {
		/* The array size is too small */
		fname = UBIFS_DFS_DIR_NAME;
		dent = ERR_PTR(-EINVAL);
		goto out;
	}

2842 2843
	fname = d->dfs_dir_name;
	dent = debugfs_create_dir(fname, dfs_rootdir);
2844
	if (IS_ERR_OR_NULL(dent))
A
Artem Bityutskiy 已提交
2845
		goto out;
2846
	d->dfs_dir = dent;
A
Artem Bityutskiy 已提交
2847 2848

	fname = "dump_lprops";
2849
	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2850
	if (IS_ERR_OR_NULL(dent))
A
Artem Bityutskiy 已提交
2851
		goto out_remove;
2852
	d->dfs_dump_lprops = dent;
A
Artem Bityutskiy 已提交
2853 2854

	fname = "dump_budg";
2855
	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2856
	if (IS_ERR_OR_NULL(dent))
A
Artem Bityutskiy 已提交
2857
		goto out_remove;
2858
	d->dfs_dump_budg = dent;
A
Artem Bityutskiy 已提交
2859 2860

	fname = "dump_tnc";
2861
	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2862
	if (IS_ERR_OR_NULL(dent))
A
Artem Bityutskiy 已提交
2863
		goto out_remove;
2864
	d->dfs_dump_tnc = dent;
A
Artem Bityutskiy 已提交
2865

2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
	fname = "chk_general";
	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
				   &dfs_fops);
	if (IS_ERR_OR_NULL(dent))
		goto out_remove;
	d->dfs_chk_gen = dent;

	fname = "chk_index";
	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
				   &dfs_fops);
	if (IS_ERR_OR_NULL(dent))
		goto out_remove;
	d->dfs_chk_index = dent;

	fname = "chk_orphans";
	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
				   &dfs_fops);
	if (IS_ERR_OR_NULL(dent))
		goto out_remove;
	d->dfs_chk_orph = dent;

	fname = "chk_lprops";
	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
				   &dfs_fops);
	if (IS_ERR_OR_NULL(dent))
		goto out_remove;
	d->dfs_chk_lprops = dent;

	fname = "chk_fs";
	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
				   &dfs_fops);
	if (IS_ERR_OR_NULL(dent))
		goto out_remove;
	d->dfs_chk_fs = dent;

	fname = "tst_recovery";
	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
				   &dfs_fops);
	if (IS_ERR_OR_NULL(dent))
		goto out_remove;
	d->dfs_tst_rcvry = dent;

2908 2909 2910 2911 2912 2913 2914
	fname = "ro_error";
	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
				   &dfs_fops);
	if (IS_ERR_OR_NULL(dent))
		goto out_remove;
	d->dfs_ro_error = dent;

A
Artem Bityutskiy 已提交
2915 2916 2917
	return 0;

out_remove:
2918 2919
	debugfs_remove_recursive(d->dfs_dir);
out:
2920
	err = dent ? PTR_ERR(dent) : -ENODEV;
2921
	ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
A
Artem Bityutskiy 已提交
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
		  fname, err);
	return err;
}

/**
 * dbg_debugfs_exit_fs - remove all debugfs files.
 * @c: UBIFS file-system description object
 */
void dbg_debugfs_exit_fs(struct ubifs_info *c)
{
2932
	if (IS_ENABLED(CONFIG_DEBUG_FS))
2933
		debugfs_remove_recursive(c->dbg->dfs_dir);
A
Artem Bityutskiy 已提交
2934 2935
}

2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
struct ubifs_global_debug_info ubifs_dbg;

static struct dentry *dfs_chk_gen;
static struct dentry *dfs_chk_index;
static struct dentry *dfs_chk_orph;
static struct dentry *dfs_chk_lprops;
static struct dentry *dfs_chk_fs;
static struct dentry *dfs_tst_rcvry;

static ssize_t dfs_global_file_read(struct file *file, char __user *u,
				    size_t count, loff_t *ppos)
{
	struct dentry *dent = file->f_path.dentry;
	int val;

	if (dent == dfs_chk_gen)
		val = ubifs_dbg.chk_gen;
	else if (dent == dfs_chk_index)
		val = ubifs_dbg.chk_index;
	else if (dent == dfs_chk_orph)
		val = ubifs_dbg.chk_orph;
	else if (dent == dfs_chk_lprops)
		val = ubifs_dbg.chk_lprops;
	else if (dent == dfs_chk_fs)
		val = ubifs_dbg.chk_fs;
	else if (dent == dfs_tst_rcvry)
		val = ubifs_dbg.tst_rcvry;
	else
		return -EINVAL;

	return provide_user_output(val, u, count, ppos);
}

static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
				     size_t count, loff_t *ppos)
{
	struct dentry *dent = file->f_path.dentry;
	int val;

	val = interpret_user_input(u, count);
	if (val < 0)
		return val;

	if (dent == dfs_chk_gen)
		ubifs_dbg.chk_gen = val;
	else if (dent == dfs_chk_index)
		ubifs_dbg.chk_index = val;
	else if (dent == dfs_chk_orph)
		ubifs_dbg.chk_orph = val;
	else if (dent == dfs_chk_lprops)
		ubifs_dbg.chk_lprops = val;
	else if (dent == dfs_chk_fs)
		ubifs_dbg.chk_fs = val;
	else if (dent == dfs_tst_rcvry)
		ubifs_dbg.tst_rcvry = val;
	else
		return -EINVAL;

	return count;
}

static const struct file_operations dfs_global_fops = {
	.read = dfs_global_file_read,
	.write = dfs_global_file_write,
	.owner = THIS_MODULE,
	.llseek = no_llseek,
};

3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
/**
 * dbg_debugfs_init - initialize debugfs file-system.
 *
 * UBIFS uses debugfs file-system to expose various debugging knobs to
 * user-space. This function creates "ubifs" directory in the debugfs
 * file-system. Returns zero in case of success and a negative error code in
 * case of failure.
 */
int dbg_debugfs_init(void)
{
3014 3015 3016 3017
	int err;
	const char *fname;
	struct dentry *dent;

3018
	if (!IS_ENABLED(CONFIG_DEBUG_FS))
3019 3020
		return 0;

3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
	fname = "ubifs";
	dent = debugfs_create_dir(fname, NULL);
	if (IS_ERR_OR_NULL(dent))
		goto out;
	dfs_rootdir = dent;

	fname = "chk_general";
	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
				   &dfs_global_fops);
	if (IS_ERR_OR_NULL(dent))
		goto out_remove;
	dfs_chk_gen = dent;

	fname = "chk_index";
	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
				   &dfs_global_fops);
	if (IS_ERR_OR_NULL(dent))
		goto out_remove;
	dfs_chk_index = dent;

	fname = "chk_orphans";
	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
				   &dfs_global_fops);
	if (IS_ERR_OR_NULL(dent))
		goto out_remove;
	dfs_chk_orph = dent;

	fname = "chk_lprops";
	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
				   &dfs_global_fops);
	if (IS_ERR_OR_NULL(dent))
		goto out_remove;
	dfs_chk_lprops = dent;

	fname = "chk_fs";
	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
				   &dfs_global_fops);
	if (IS_ERR_OR_NULL(dent))
		goto out_remove;
	dfs_chk_fs = dent;

	fname = "tst_recovery";
	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
				   &dfs_global_fops);
	if (IS_ERR_OR_NULL(dent))
		goto out_remove;
	dfs_tst_rcvry = dent;
3068 3069

	return 0;
3070 3071 3072 3073 3074 3075 3076 3077

out_remove:
	debugfs_remove_recursive(dfs_rootdir);
out:
	err = dent ? PTR_ERR(dent) : -ENODEV;
	ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
		  fname, err);
	return err;
3078 3079 3080 3081 3082 3083 3084
}

/**
 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
 */
void dbg_debugfs_exit(void)
{
3085
	if (IS_ENABLED(CONFIG_DEBUG_FS))
3086
		debugfs_remove_recursive(dfs_rootdir);
3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113
}

/**
 * ubifs_debugging_init - initialize UBIFS debugging.
 * @c: UBIFS file-system description object
 *
 * This function initializes debugging-related data for the file system.
 * Returns zero in case of success and a negative error code in case of
 * failure.
 */
int ubifs_debugging_init(struct ubifs_info *c)
{
	c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
	if (!c->dbg)
		return -ENOMEM;

	return 0;
}

/**
 * ubifs_debugging_exit - free debugging data.
 * @c: UBIFS file-system description object
 */
void ubifs_debugging_exit(struct ubifs_info *c)
{
	kfree(c->dbg);
}