request.c 33.2 KB
Newer Older
K
Kent Overstreet 已提交
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Main bcache entry point - handle a read or a write request and decide what to
 * do with it; the make_request functions are called by the block layer.
 *
 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
 * Copyright 2012 Google, Inc.
 */

#include "bcache.h"
#include "btree.h"
#include "debug.h"
#include "request.h"
13
#include "writeback.h"
K
Kent Overstreet 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

#include <linux/cgroup.h>
#include <linux/module.h>
#include <linux/hash.h>
#include <linux/random.h>
#include "blk-cgroup.h"

#include <trace/events/bcache.h>

#define CUTOFF_CACHE_ADD	95
#define CUTOFF_CACHE_READA	90

struct kmem_cache *bch_search_cache;

/* Cgroup interface */

#ifdef CONFIG_CGROUP_BCACHE
static struct bch_cgroup bcache_default_cgroup = { .cache_mode = -1 };

static struct bch_cgroup *cgroup_to_bcache(struct cgroup *cgroup)
{
	struct cgroup_subsys_state *css;
	return cgroup &&
		(css = cgroup_subsys_state(cgroup, bcache_subsys_id))
		? container_of(css, struct bch_cgroup, css)
		: &bcache_default_cgroup;
}

struct bch_cgroup *bch_bio_to_cgroup(struct bio *bio)
{
	struct cgroup_subsys_state *css = bio->bi_css
		? cgroup_subsys_state(bio->bi_css->cgroup, bcache_subsys_id)
		: task_subsys_state(current, bcache_subsys_id);

	return css
		? container_of(css, struct bch_cgroup, css)
		: &bcache_default_cgroup;
}

static ssize_t cache_mode_read(struct cgroup *cgrp, struct cftype *cft,
			struct file *file,
			char __user *buf, size_t nbytes, loff_t *ppos)
{
	char tmp[1024];
58 59
	int len = bch_snprint_string_list(tmp, PAGE_SIZE, bch_cache_modes,
					  cgroup_to_bcache(cgrp)->cache_mode + 1);
K
Kent Overstreet 已提交
60 61 62 63 64 65 66 67 68 69

	if (len < 0)
		return len;

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

static int cache_mode_write(struct cgroup *cgrp, struct cftype *cft,
			    const char *buf)
{
70
	int v = bch_read_string_list(buf, bch_cache_modes);
K
Kent Overstreet 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
	if (v < 0)
		return v;

	cgroup_to_bcache(cgrp)->cache_mode = v - 1;
	return 0;
}

static u64 bch_verify_read(struct cgroup *cgrp, struct cftype *cft)
{
	return cgroup_to_bcache(cgrp)->verify;
}

static int bch_verify_write(struct cgroup *cgrp, struct cftype *cft, u64 val)
{
	cgroup_to_bcache(cgrp)->verify = val;
	return 0;
}

static u64 bch_cache_hits_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
	return atomic_read(&bcachecg->stats.cache_hits);
}

static u64 bch_cache_misses_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
	return atomic_read(&bcachecg->stats.cache_misses);
}

static u64 bch_cache_bypass_hits_read(struct cgroup *cgrp,
					 struct cftype *cft)
{
	struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
	return atomic_read(&bcachecg->stats.cache_bypass_hits);
}

static u64 bch_cache_bypass_misses_read(struct cgroup *cgrp,
					   struct cftype *cft)
{
	struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
	return atomic_read(&bcachecg->stats.cache_bypass_misses);
}

static struct cftype bch_files[] = {
	{
		.name		= "cache_mode",
		.read		= cache_mode_read,
		.write_string	= cache_mode_write,
	},
	{
		.name		= "verify",
		.read_u64	= bch_verify_read,
		.write_u64	= bch_verify_write,
	},
	{
		.name		= "cache_hits",
		.read_u64	= bch_cache_hits_read,
	},
	{
		.name		= "cache_misses",
		.read_u64	= bch_cache_misses_read,
	},
	{
		.name		= "cache_bypass_hits",
		.read_u64	= bch_cache_bypass_hits_read,
	},
	{
		.name		= "cache_bypass_misses",
		.read_u64	= bch_cache_bypass_misses_read,
	},
	{ }	/* terminate */
};

static void init_bch_cgroup(struct bch_cgroup *cg)
{
	cg->cache_mode = -1;
}

static struct cgroup_subsys_state *bcachecg_create(struct cgroup *cgroup)
{
	struct bch_cgroup *cg;

	cg = kzalloc(sizeof(*cg), GFP_KERNEL);
	if (!cg)
		return ERR_PTR(-ENOMEM);
	init_bch_cgroup(cg);
	return &cg->css;
}

static void bcachecg_destroy(struct cgroup *cgroup)
{
	struct bch_cgroup *cg = cgroup_to_bcache(cgroup);
	free_css_id(&bcache_subsys, &cg->css);
	kfree(cg);
}

struct cgroup_subsys bcache_subsys = {
	.create		= bcachecg_create,
	.destroy	= bcachecg_destroy,
	.subsys_id	= bcache_subsys_id,
	.name		= "bcache",
	.module		= THIS_MODULE,
};
EXPORT_SYMBOL_GPL(bcache_subsys);
#endif

static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
{
#ifdef CONFIG_CGROUP_BCACHE
	int r = bch_bio_to_cgroup(bio)->cache_mode;
	if (r >= 0)
		return r;
#endif
	return BDEV_CACHE_MODE(&dc->sb);
}

static bool verify(struct cached_dev *dc, struct bio *bio)
{
#ifdef CONFIG_CGROUP_BCACHE
	if (bch_bio_to_cgroup(bio)->verify)
		return true;
#endif
	return dc->verify;
}

static void bio_csum(struct bio *bio, struct bkey *k)
{
	struct bio_vec *bv;
	uint64_t csum = 0;
	int i;

	bio_for_each_segment(bv, bio, i) {
		void *d = kmap(bv->bv_page) + bv->bv_offset;
205
		csum = bch_crc64_update(csum, d, bv->bv_len);
K
Kent Overstreet 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
		kunmap(bv->bv_page);
	}

	k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
}

/* Insert data into cache */

static void bio_invalidate(struct closure *cl)
{
	struct btree_op *op = container_of(cl, struct btree_op, cl);
	struct bio *bio = op->cache_bio;

	pr_debug("invalidating %i sectors from %llu",
		 bio_sectors(bio), (uint64_t) bio->bi_sector);

	while (bio_sectors(bio)) {
		unsigned len = min(bio_sectors(bio), 1U << 14);

		if (bch_keylist_realloc(&op->keys, 0, op->c))
			goto out;

		bio->bi_sector	+= len;
		bio->bi_size	-= len << 9;

		bch_keylist_add(&op->keys,
				&KEY(op->inode, bio->bi_sector, len));
	}

	op->insert_data_done = true;
	bio_put(bio);
out:
	continue_at(cl, bch_journal, bcache_wq);
}

struct open_bucket {
	struct list_head	list;
	struct task_struct	*last;
	unsigned		sectors_free;
	BKEY_PADDED(key);
};

void bch_open_buckets_free(struct cache_set *c)
{
	struct open_bucket *b;

	while (!list_empty(&c->data_buckets)) {
		b = list_first_entry(&c->data_buckets,
				     struct open_bucket, list);
		list_del(&b->list);
		kfree(b);
	}
}

int bch_open_buckets_alloc(struct cache_set *c)
{
	int i;

	spin_lock_init(&c->data_bucket_lock);

	for (i = 0; i < 6; i++) {
		struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL);
		if (!b)
			return -ENOMEM;

		list_add(&b->list, &c->data_buckets);
	}

	return 0;
}

/*
 * We keep multiple buckets open for writes, and try to segregate different
 * write streams for better cache utilization: first we look for a bucket where
 * the last write to it was sequential with the current write, and failing that
 * we look for a bucket that was last used by the same task.
 *
 * The ideas is if you've got multiple tasks pulling data into the cache at the
 * same time, you'll get better cache utilization if you try to segregate their
 * data and preserve locality.
 *
 * For example, say you've starting Firefox at the same time you're copying a
 * bunch of files. Firefox will likely end up being fairly hot and stay in the
 * cache awhile, but the data you copied might not be; if you wrote all that
 * data to the same buckets it'd get invalidated at the same time.
 *
 * Both of those tasks will be doing fairly random IO so we can't rely on
 * detecting sequential IO to segregate their data, but going off of the task
 * should be a sane heuristic.
 */
static struct open_bucket *pick_data_bucket(struct cache_set *c,
					    const struct bkey *search,
					    struct task_struct *task,
					    struct bkey *alloc)
{
	struct open_bucket *ret, *ret_task = NULL;

	list_for_each_entry_reverse(ret, &c->data_buckets, list)
		if (!bkey_cmp(&ret->key, search))
			goto found;
		else if (ret->last == task)
			ret_task = ret;

	ret = ret_task ?: list_first_entry(&c->data_buckets,
					   struct open_bucket, list);
found:
	if (!ret->sectors_free && KEY_PTRS(alloc)) {
		ret->sectors_free = c->sb.bucket_size;
		bkey_copy(&ret->key, alloc);
		bkey_init(alloc);
	}

	if (!ret->sectors_free)
		ret = NULL;

	return ret;
}

/*
 * Allocates some space in the cache to write to, and k to point to the newly
 * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
 * end of the newly allocated space).
 *
 * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
 * sectors were actually allocated.
 *
 * If s->writeback is true, will not fail.
 */
static bool bch_alloc_sectors(struct bkey *k, unsigned sectors,
			      struct search *s)
{
	struct cache_set *c = s->op.c;
	struct open_bucket *b;
	BKEY_PADDED(key) alloc;
	struct closure cl, *w = NULL;
	unsigned i;

	if (s->writeback) {
		closure_init_stack(&cl);
		w = &cl;
	}

	/*
	 * We might have to allocate a new bucket, which we can't do with a
	 * spinlock held. So if we have to allocate, we drop the lock, allocate
	 * and then retry. KEY_PTRS() indicates whether alloc points to
	 * allocated bucket(s).
	 */

	bkey_init(&alloc.key);
	spin_lock(&c->data_bucket_lock);

	while (!(b = pick_data_bucket(c, k, s->task, &alloc.key))) {
		unsigned watermark = s->op.write_prio
			? WATERMARK_MOVINGGC
			: WATERMARK_NONE;

		spin_unlock(&c->data_bucket_lock);

		if (bch_bucket_alloc_set(c, watermark, &alloc.key, 1, w))
			return false;

		spin_lock(&c->data_bucket_lock);
	}

	/*
	 * If we had to allocate, we might race and not need to allocate the
	 * second time we call find_data_bucket(). If we allocated a bucket but
	 * didn't use it, drop the refcount bch_bucket_alloc_set() took:
	 */
	if (KEY_PTRS(&alloc.key))
		__bkey_put(c, &alloc.key);

	for (i = 0; i < KEY_PTRS(&b->key); i++)
		EBUG_ON(ptr_stale(c, &b->key, i));

	/* Set up the pointer to the space we're allocating: */

	for (i = 0; i < KEY_PTRS(&b->key); i++)
		k->ptr[i] = b->key.ptr[i];

	sectors = min(sectors, b->sectors_free);

	SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors);
	SET_KEY_SIZE(k, sectors);
	SET_KEY_PTRS(k, KEY_PTRS(&b->key));

	/*
	 * Move b to the end of the lru, and keep track of what this bucket was
	 * last used for:
	 */
	list_move_tail(&b->list, &c->data_buckets);
	bkey_copy_key(&b->key, k);
	b->last = s->task;

	b->sectors_free	-= sectors;

	for (i = 0; i < KEY_PTRS(&b->key); i++) {
		SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors);

		atomic_long_add(sectors,
				&PTR_CACHE(c, &b->key, i)->sectors_written);
	}

	if (b->sectors_free < c->sb.block_size)
		b->sectors_free = 0;

	/*
	 * k takes refcounts on the buckets it points to until it's inserted
	 * into the btree, but if we're done with this bucket we just transfer
	 * get_data_bucket()'s refcount.
	 */
	if (b->sectors_free)
		for (i = 0; i < KEY_PTRS(&b->key); i++)
			atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin);

	spin_unlock(&c->data_bucket_lock);
	return true;
}

static void bch_insert_data_error(struct closure *cl)
{
	struct btree_op *op = container_of(cl, struct btree_op, cl);

	/*
	 * Our data write just errored, which means we've got a bunch of keys to
	 * insert that point to data that wasn't succesfully written.
	 *
	 * We don't have to insert those keys but we still have to invalidate
	 * that region of the cache - so, if we just strip off all the pointers
	 * from the keys we'll accomplish just that.
	 */

K
Kent Overstreet 已提交
439
	struct bkey *src = op->keys.keys, *dst = op->keys.keys;
K
Kent Overstreet 已提交
440 441 442 443 444

	while (src != op->keys.top) {
		struct bkey *n = bkey_next(src);

		SET_KEY_PTRS(src, 0);
K
Kent Overstreet 已提交
445
		memmove(dst, src, bkey_bytes(src));
K
Kent Overstreet 已提交
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480

		dst = bkey_next(dst);
		src = n;
	}

	op->keys.top = dst;

	bch_journal(cl);
}

static void bch_insert_data_endio(struct bio *bio, int error)
{
	struct closure *cl = bio->bi_private;
	struct btree_op *op = container_of(cl, struct btree_op, cl);
	struct search *s = container_of(op, struct search, op);

	if (error) {
		/* TODO: We could try to recover from this. */
		if (s->writeback)
			s->error = error;
		else if (s->write)
			set_closure_fn(cl, bch_insert_data_error, bcache_wq);
		else
			set_closure_fn(cl, NULL, NULL);
	}

	bch_bbio_endio(op->c, bio, error, "writing data to cache");
}

static void bch_insert_data_loop(struct closure *cl)
{
	struct btree_op *op = container_of(cl, struct btree_op, cl);
	struct search *s = container_of(op, struct search, op);
	struct bio *bio = op->cache_bio, *n;

K
Kent Overstreet 已提交
481
	if (op->bypass)
K
Kent Overstreet 已提交
482 483 484 485 486 487 488
		return bio_invalidate(cl);

	if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) {
		set_gc_sectors(op->c);
		bch_queue_gc(op->c);
	}

489 490 491 492 493 494
	/*
	 * Journal writes are marked REQ_FLUSH; if the original write was a
	 * flush, it'll wait on the journal write.
	 */
	bio->bi_rw &= ~(REQ_FLUSH|REQ_FUA);

K
Kent Overstreet 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
	do {
		unsigned i;
		struct bkey *k;
		struct bio_set *split = s->d
			? s->d->bio_split : op->c->bio_split;

		/* 1 for the device pointer and 1 for the chksum */
		if (bch_keylist_realloc(&op->keys,
					1 + (op->csum ? 1 : 0),
					op->c))
			continue_at(cl, bch_journal, bcache_wq);

		k = op->keys.top;
		bkey_init(k);
		SET_KEY_INODE(k, op->inode);
		SET_KEY_OFFSET(k, bio->bi_sector);

		if (!bch_alloc_sectors(k, bio_sectors(bio), s))
			goto err;

		n = bch_bio_split(bio, KEY_SIZE(k), GFP_NOIO, split);

		n->bi_end_io	= bch_insert_data_endio;
		n->bi_private	= cl;

		if (s->writeback) {
			SET_KEY_DIRTY(k, true);

			for (i = 0; i < KEY_PTRS(k); i++)
				SET_GC_MARK(PTR_BUCKET(op->c, k, i),
					    GC_MARK_DIRTY);
		}

		SET_KEY_CSUM(k, op->csum);
		if (KEY_CSUM(k))
			bio_csum(n, k);

K
Kent Overstreet 已提交
532
		trace_bcache_cache_insert(k);
K
Kent Overstreet 已提交
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
		bch_keylist_push(&op->keys);

		n->bi_rw |= REQ_WRITE;
		bch_submit_bbio(n, op->c, k, 0);
	} while (n != bio);

	op->insert_data_done = true;
	continue_at(cl, bch_journal, bcache_wq);
err:
	/* bch_alloc_sectors() blocks if s->writeback = true */
	BUG_ON(s->writeback);

	/*
	 * But if it's not a writeback write we'd rather just bail out if
	 * there aren't any buckets ready to write to - it might take awhile and
	 * we might be starving btree writes for gc or something.
	 */

	if (s->write) {
		/*
		 * Writethrough write: We can't complete the write until we've
		 * updated the index. But we don't want to delay the write while
		 * we wait for buckets to be freed up, so just invalidate the
		 * rest of the write.
		 */
K
Kent Overstreet 已提交
558
		op->bypass = true;
K
Kent Overstreet 已提交
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
		return bio_invalidate(cl);
	} else {
		/*
		 * From a cache miss, we can just insert the keys for the data
		 * we have written or bail out if we didn't do anything.
		 */
		op->insert_data_done = true;
		bio_put(bio);

		if (!bch_keylist_empty(&op->keys))
			continue_at(cl, bch_journal, bcache_wq);
		else
			closure_return(cl);
	}
}

/**
 * bch_insert_data - stick some data in the cache
 *
 * This is the starting point for any data to end up in a cache device; it could
 * be from a normal write, or a writeback write, or a write to a flash only
 * volume - it's also used by the moving garbage collector to compact data in
 * mostly empty buckets.
 *
 * It first writes the data to the cache, creating a list of keys to be inserted
 * (if the data had to be fragmented there will be multiple keys); after the
 * data is written it calls bch_journal, and after the keys have been added to
 * the next journal write they're inserted into the btree.
 *
 * It inserts the data in op->cache_bio; bi_sector is used for the key offset,
 * and op->inode is used for the key inode.
 *
K
Kent Overstreet 已提交
591 592
 * If op->bypass is true, instead of inserting the data it invalidates the
 * region of the cache represented by op->cache_bio and op->inode.
K
Kent Overstreet 已提交
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
 */
void bch_insert_data(struct closure *cl)
{
	struct btree_op *op = container_of(cl, struct btree_op, cl);

	bch_keylist_init(&op->keys);
	bio_get(op->cache_bio);
	bch_insert_data_loop(cl);
}

void bch_btree_insert_async(struct closure *cl)
{
	struct btree_op *op = container_of(cl, struct btree_op, cl);
	struct search *s = container_of(op, struct search, op);

608
	if (bch_btree_insert(op, op->c, &op->keys)) {
K
Kent Overstreet 已提交
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
		s->error		= -ENOMEM;
		op->insert_data_done	= true;
	}

	if (op->insert_data_done) {
		bch_keylist_free(&op->keys);
		closure_return(cl);
	} else
		continue_at(cl, bch_insert_data_loop, bcache_wq);
}

/* Common code for the make_request functions */

static void request_endio(struct bio *bio, int error)
{
	struct closure *cl = bio->bi_private;

	if (error) {
		struct search *s = container_of(cl, struct search, cl);
		s->error = error;
		/* Only cache read errors are recoverable */
		s->recoverable = false;
	}

	bio_put(bio);
	closure_put(cl);
}

void bch_cache_read_endio(struct bio *bio, int error)
{
	struct bbio *b = container_of(bio, struct bbio, bio);
	struct closure *cl = bio->bi_private;
	struct search *s = container_of(cl, struct search, cl);

	/*
	 * If the bucket was reused while our bio was in flight, we might have
	 * read the wrong data. Set s->error but not error so it doesn't get
	 * counted against the cache device, but we'll still reread the data
	 * from the backing device.
	 */

	if (error)
		s->error = error;
	else if (ptr_stale(s->op.c, &b->key, 0)) {
		atomic_long_inc(&s->op.c->cache_read_races);
		s->error = -EINTR;
	}

	bch_bbio_endio(s->op.c, bio, error, "reading from cache");
}

static void bio_complete(struct search *s)
{
	if (s->orig_bio) {
		int cpu, rw = bio_data_dir(s->orig_bio);
		unsigned long duration = jiffies - s->start_time;

		cpu = part_stat_lock();
		part_round_stats(cpu, &s->d->disk->part0);
		part_stat_add(cpu, &s->d->disk->part0, ticks[rw], duration);
		part_stat_unlock();

		trace_bcache_request_end(s, s->orig_bio);
		bio_endio(s->orig_bio, s->error);
		s->orig_bio = NULL;
	}
}

static void do_bio_hook(struct search *s)
{
	struct bio *bio = &s->bio.bio;
	memcpy(bio, s->orig_bio, sizeof(struct bio));

	bio->bi_end_io		= request_endio;
	bio->bi_private		= &s->cl;
	atomic_set(&bio->bi_cnt, 3);
}

static void search_free(struct closure *cl)
{
	struct search *s = container_of(cl, struct search, cl);
	bio_complete(s);

	if (s->op.cache_bio)
		bio_put(s->op.cache_bio);

	if (s->unaligned_bvec)
		mempool_free(s->bio.bio.bi_io_vec, s->d->unaligned_bvec);

	closure_debug_destroy(cl);
	mempool_free(s, s->d->c->search);
}

static struct search *search_alloc(struct bio *bio, struct bcache_device *d)
{
	struct bio_vec *bv;
	struct search *s = mempool_alloc(d->c->search, GFP_NOIO);
	memset(s, 0, offsetof(struct search, op.keys));

	__closure_init(&s->cl, NULL);

	s->op.inode		= d->id;
	s->op.c			= d->c;
	s->d			= d;
	s->op.lock		= -1;
	s->task			= current;
	s->orig_bio		= bio;
	s->write		= (bio->bi_rw & REQ_WRITE) != 0;
717
	s->op.flush_journal	= (bio->bi_rw & (REQ_FLUSH|REQ_FUA)) != 0;
K
Kent Overstreet 已提交
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
	s->recoverable		= 1;
	s->start_time		= jiffies;
	do_bio_hook(s);

	if (bio->bi_size != bio_segments(bio) * PAGE_SIZE) {
		bv = mempool_alloc(d->unaligned_bvec, GFP_NOIO);
		memcpy(bv, bio_iovec(bio),
		       sizeof(struct bio_vec) * bio_segments(bio));

		s->bio.bio.bi_io_vec	= bv;
		s->unaligned_bvec	= 1;
	}

	return s;
}

static void btree_read_async(struct closure *cl)
{
	struct btree_op *op = container_of(cl, struct btree_op, cl);

	int ret = btree_root(search_recurse, op->c, op);

	if (ret == -EAGAIN)
		continue_at(cl, btree_read_async, bcache_wq);

	closure_return(cl);
}

/* Cached devices */

static void cached_dev_bio_complete(struct closure *cl)
{
	struct search *s = container_of(cl, struct search, cl);
	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);

	search_free(cl);
	cached_dev_put(dc);
}

K
Kent Overstreet 已提交
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
unsigned bch_get_congested(struct cache_set *c)
{
	int i;
	long rand;

	if (!c->congested_read_threshold_us &&
	    !c->congested_write_threshold_us)
		return 0;

	i = (local_clock_us() - c->congested_last_us) / 1024;
	if (i < 0)
		return 0;

	i += atomic_read(&c->congested);
	if (i >= 0)
		return 0;

	i += CONGESTED_MAX;

	if (i > 0)
		i = fract_exp_two(i, 6);

	rand = get_random_int();
	i -= bitmap_weight(&rand, BITS_PER_LONG);

	return i > 0 ? i : 1;
}

static void add_sequential(struct task_struct *t)
{
	ewma_add(t->sequential_io_avg,
		 t->sequential_io, 8, 0);

	t->sequential_io = 0;
}

static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
{
	return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
}

static bool check_should_bypass(struct cached_dev *dc, struct search *s)
{
	struct cache_set *c = s->op.c;
	struct bio *bio = &s->bio.bio;
	unsigned mode = cache_mode(dc, bio);
	unsigned sectors, congested = bch_get_congested(c);

	if (atomic_read(&dc->disk.detaching) ||
	    c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
	    (bio->bi_rw & REQ_DISCARD))
		goto skip;

	if (mode == CACHE_MODE_NONE ||
	    (mode == CACHE_MODE_WRITEAROUND &&
	     (bio->bi_rw & REQ_WRITE)))
		goto skip;

	if (bio->bi_sector & (c->sb.block_size - 1) ||
	    bio_sectors(bio) & (c->sb.block_size - 1)) {
		pr_debug("skipping unaligned io");
		goto skip;
	}

	if (!congested && !dc->sequential_cutoff)
		goto rescale;

	if (!congested &&
	    mode == CACHE_MODE_WRITEBACK &&
	    (bio->bi_rw & REQ_WRITE) &&
	    (bio->bi_rw & REQ_SYNC))
		goto rescale;

	if (dc->sequential_merge) {
		struct io *i;

		spin_lock(&dc->io_lock);

		hlist_for_each_entry(i, iohash(dc, bio->bi_sector), hash)
			if (i->last == bio->bi_sector &&
			    time_before(jiffies, i->jiffies))
				goto found;

		i = list_first_entry(&dc->io_lru, struct io, lru);

		add_sequential(s->task);
		i->sequential = 0;
found:
		if (i->sequential + bio->bi_size > i->sequential)
			i->sequential	+= bio->bi_size;

		i->last			 = bio_end_sector(bio);
		i->jiffies		 = jiffies + msecs_to_jiffies(5000);
		s->task->sequential_io	 = i->sequential;

		hlist_del(&i->hash);
		hlist_add_head(&i->hash, iohash(dc, i->last));
		list_move_tail(&i->lru, &dc->io_lru);

		spin_unlock(&dc->io_lock);
	} else {
		s->task->sequential_io = bio->bi_size;

		add_sequential(s->task);
	}

	sectors = max(s->task->sequential_io,
		      s->task->sequential_io_avg) >> 9;

	if (dc->sequential_cutoff &&
	    sectors >= dc->sequential_cutoff >> 9) {
		trace_bcache_bypass_sequential(s->orig_bio);
		goto skip;
	}

	if (congested && sectors >= congested) {
		trace_bcache_bypass_congested(s->orig_bio);
		goto skip;
	}

rescale:
	bch_rescale_priorities(c, bio_sectors(bio));
	return false;
skip:
	bch_mark_sectors_bypassed(s, bio_sectors(bio));
	return true;
}

K
Kent Overstreet 已提交
885 886
/* Process reads */

887
static void cached_dev_cache_miss_done(struct closure *cl)
K
Kent Overstreet 已提交
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
{
	struct search *s = container_of(cl, struct search, cl);

	if (s->op.insert_collision)
		bch_mark_cache_miss_collision(s);

	if (s->op.cache_bio) {
		int i;
		struct bio_vec *bv;

		__bio_for_each_segment(bv, s->op.cache_bio, i, 0)
			__free_page(bv->bv_page);
	}

	cached_dev_bio_complete(cl);
}

905
static void cached_dev_read_error(struct closure *cl)
K
Kent Overstreet 已提交
906 907
{
	struct search *s = container_of(cl, struct search, cl);
908
	struct bio *bio = &s->bio.bio;
K
Kent Overstreet 已提交
909 910 911 912
	struct bio_vec *bv;
	int i;

	if (s->recoverable) {
K
Kent Overstreet 已提交
913 914
		/* Retry from the backing device: */
		trace_bcache_read_retry(s->orig_bio);
K
Kent Overstreet 已提交
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931

		s->error = 0;
		bv = s->bio.bio.bi_io_vec;
		do_bio_hook(s);
		s->bio.bio.bi_io_vec = bv;

		if (!s->unaligned_bvec)
			bio_for_each_segment(bv, s->orig_bio, i)
				bv->bv_offset = 0, bv->bv_len = PAGE_SIZE;
		else
			memcpy(s->bio.bio.bi_io_vec,
			       bio_iovec(s->orig_bio),
			       sizeof(struct bio_vec) *
			       bio_segments(s->orig_bio));

		/* XXX: invalidate cache */

932
		closure_bio_submit(bio, cl, s->d);
K
Kent Overstreet 已提交
933 934
	}

935
	continue_at(cl, cached_dev_cache_miss_done, NULL);
K
Kent Overstreet 已提交
936 937
}

938
static void cached_dev_read_done(struct closure *cl)
K
Kent Overstreet 已提交
939 940 941 942 943
{
	struct search *s = container_of(cl, struct search, cl);
	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);

	/*
944 945
	 * We had a cache miss; cache_bio now contains data ready to be inserted
	 * into the cache.
K
Kent Overstreet 已提交
946 947 948 949 950 951 952 953 954 955
	 *
	 * First, we copy the data we just read from cache_bio's bounce buffers
	 * to the buffers the original bio pointed to:
	 */

	if (s->op.cache_bio) {
		bio_reset(s->op.cache_bio);
		s->op.cache_bio->bi_sector	= s->cache_miss->bi_sector;
		s->op.cache_bio->bi_bdev	= s->cache_miss->bi_bdev;
		s->op.cache_bio->bi_size	= s->cache_bio_sectors << 9;
956
		bch_bio_map(s->op.cache_bio, NULL);
K
Kent Overstreet 已提交
957

958
		bio_copy_data(s->cache_miss, s->op.cache_bio);
K
Kent Overstreet 已提交
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974

		bio_put(s->cache_miss);
		s->cache_miss = NULL;
	}

	if (verify(dc, &s->bio.bio) && s->recoverable)
		bch_data_verify(s);

	bio_complete(s);

	if (s->op.cache_bio &&
	    !test_bit(CACHE_SET_STOPPING, &s->op.c->flags)) {
		s->op.type = BTREE_REPLACE;
		closure_call(&s->op.cl, bch_insert_data, NULL, cl);
	}

975
	continue_at(cl, cached_dev_cache_miss_done, NULL);
K
Kent Overstreet 已提交
976 977
}

978
static void cached_dev_read_done_bh(struct closure *cl)
K
Kent Overstreet 已提交
979 980 981 982
{
	struct search *s = container_of(cl, struct search, cl);
	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);

K
Kent Overstreet 已提交
983 984
	bch_mark_cache_accounting(s, !s->cache_miss, s->op.bypass);
	trace_bcache_read(s->orig_bio, !s->cache_miss, s->op.bypass);
K
Kent Overstreet 已提交
985 986

	if (s->error)
987
		continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
K
Kent Overstreet 已提交
988
	else if (s->op.cache_bio || verify(dc, &s->bio.bio))
989
		continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
K
Kent Overstreet 已提交
990
	else
991
		continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
K
Kent Overstreet 已提交
992 993 994 995 996 997
}

static int cached_dev_cache_miss(struct btree *b, struct search *s,
				 struct bio *bio, unsigned sectors)
{
	int ret = 0;
998
	unsigned reada = 0;
K
Kent Overstreet 已提交
999
	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
1000
	struct bio *miss, *cache_bio;
K
Kent Overstreet 已提交
1001

K
Kent Overstreet 已提交
1002
	if (s->cache_miss || s->op.bypass) {
1003 1004 1005 1006 1007
		miss = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split);
		if (miss == bio)
			s->op.lookup_done = true;
		goto out_submit;
	}
K
Kent Overstreet 已提交
1008

1009 1010 1011 1012 1013
	if (!(bio->bi_rw & REQ_RAHEAD) &&
	    !(bio->bi_rw & REQ_META) &&
	    s->op.c->gc_stats.in_use < CUTOFF_CACHE_READA)
		reada = min_t(sector_t, dc->readahead >> 9,
			      bdev_sectors(bio->bi_bdev) - bio_end_sector(bio));
K
Kent Overstreet 已提交
1014

1015
	s->cache_bio_sectors = min(sectors, bio_sectors(bio) + reada);
K
Kent Overstreet 已提交
1016

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
	s->op.replace = KEY(s->op.inode, bio->bi_sector +
			    s->cache_bio_sectors, s->cache_bio_sectors);

	ret = bch_btree_insert_check_key(b, &s->op, &s->op.replace);
	if (ret)
		return ret;

	miss = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split);
	if (miss == bio)
		s->op.lookup_done = true;
	else
		/* btree_search_recurse()'s btree iterator is no good anymore */
		ret = -EINTR;
K
Kent Overstreet 已提交
1030

1031
	cache_bio = bio_alloc_bioset(GFP_NOWAIT,
K
Kent Overstreet 已提交
1032 1033
			DIV_ROUND_UP(s->cache_bio_sectors, PAGE_SECTORS),
			dc->disk.bio_split);
1034
	if (!cache_bio)
K
Kent Overstreet 已提交
1035 1036
		goto out_submit;

1037 1038 1039
	cache_bio->bi_sector	= miss->bi_sector;
	cache_bio->bi_bdev	= miss->bi_bdev;
	cache_bio->bi_size	= s->cache_bio_sectors << 9;
K
Kent Overstreet 已提交
1040

1041 1042
	cache_bio->bi_end_io	= request_endio;
	cache_bio->bi_private	= &s->cl;
K
Kent Overstreet 已提交
1043

1044 1045
	bch_bio_map(cache_bio, NULL);
	if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
K
Kent Overstreet 已提交
1046 1047
		goto out_put;

1048 1049 1050 1051
	s->cache_miss	= miss;
	s->op.cache_bio = cache_bio;
	bio_get(cache_bio);
	closure_bio_submit(cache_bio, &s->cl, s->d);
K
Kent Overstreet 已提交
1052 1053 1054

	return ret;
out_put:
1055
	bio_put(cache_bio);
K
Kent Overstreet 已提交
1056
out_submit:
1057 1058
	miss->bi_end_io		= request_endio;
	miss->bi_private	= &s->cl;
K
Kent Overstreet 已提交
1059 1060 1061 1062
	closure_bio_submit(miss, &s->cl, s->d);
	return ret;
}

1063
static void cached_dev_read(struct cached_dev *dc, struct search *s)
K
Kent Overstreet 已提交
1064 1065 1066 1067
{
	struct closure *cl = &s->cl;

	closure_call(&s->op.cl, btree_read_async, NULL, cl);
1068
	continue_at(cl, cached_dev_read_done_bh, NULL);
K
Kent Overstreet 已提交
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
}

/* Process writes */

static void cached_dev_write_complete(struct closure *cl)
{
	struct search *s = container_of(cl, struct search, cl);
	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);

	up_read_non_owner(&dc->writeback_lock);
	cached_dev_bio_complete(cl);
}

1082
static void cached_dev_write(struct cached_dev *dc, struct search *s)
K
Kent Overstreet 已提交
1083 1084 1085
{
	struct closure *cl = &s->cl;
	struct bio *bio = &s->bio.bio;
K
Kent Overstreet 已提交
1086 1087
	struct bkey start = KEY(dc->disk.id, bio->bi_sector, 0);
	struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
K
Kent Overstreet 已提交
1088 1089 1090 1091 1092

	bch_keybuf_check_overlapping(&s->op.c->moving_gc_keys, &start, &end);

	down_read_non_owner(&dc->writeback_lock);
	if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
K
Kent Overstreet 已提交
1093 1094 1095 1096 1097
		/*
		 * We overlap with some dirty data undergoing background
		 * writeback, force this write to writeback
		 */
		s->op.bypass	= false;
K
Kent Overstreet 已提交
1098 1099 1100
		s->writeback	= true;
	}

K
Kent Overstreet 已提交
1101 1102 1103 1104 1105 1106 1107
	/*
	 * Discards aren't _required_ to do anything, so skipping if
	 * check_overlapping returned true is ok
	 *
	 * But check_overlapping drops dirty keys for which io hasn't started,
	 * so we still want to call it.
	 */
K
Kent Overstreet 已提交
1108
	if (bio->bi_rw & REQ_DISCARD)
K
Kent Overstreet 已提交
1109
		s->op.bypass = true;
K
Kent Overstreet 已提交
1110

K
Kent Overstreet 已提交
1111 1112
	if (should_writeback(dc, s->orig_bio,
			     cache_mode(dc, bio),
K
Kent Overstreet 已提交
1113 1114
			     s->op.bypass)) {
		s->op.bypass = false;
K
Kent Overstreet 已提交
1115 1116 1117
		s->writeback = true;
	}

K
Kent Overstreet 已提交
1118
	trace_bcache_write(s->orig_bio, s->writeback, s->op.bypass);
K
Kent Overstreet 已提交
1119

K
Kent Overstreet 已提交
1120 1121 1122
	if (s->op.bypass) {
		s->op.cache_bio = s->orig_bio;
		bio_get(s->op.cache_bio);
K
Kent Overstreet 已提交
1123

K
Kent Overstreet 已提交
1124 1125 1126 1127
		if (!(bio->bi_rw & REQ_DISCARD) ||
		    blk_queue_discard(bdev_get_queue(dc->bdev)))
			closure_bio_submit(bio, cl, s->d);
	} else if (s->writeback) {
1128
		bch_writeback_add(dc);
1129
		s->op.cache_bio = bio;
K
Kent Overstreet 已提交
1130

1131
		if (bio->bi_rw & REQ_FLUSH) {
K
Kent Overstreet 已提交
1132
			/* Also need to send a flush to the backing device */
1133
			struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
1134
							     dc->disk.bio_split);
K
Kent Overstreet 已提交
1135

1136 1137 1138 1139 1140 1141
			flush->bi_rw	= WRITE_FLUSH;
			flush->bi_bdev	= bio->bi_bdev;
			flush->bi_end_io = request_endio;
			flush->bi_private = cl;

			closure_bio_submit(flush, cl, s->d);
K
Kent Overstreet 已提交
1142
		}
K
Kent Overstreet 已提交
1143 1144 1145 1146 1147
	} else {
		s->op.cache_bio = bio_clone_bioset(bio, GFP_NOIO,
						   dc->disk.bio_split);

		closure_bio_submit(bio, cl, s->d);
K
Kent Overstreet 已提交
1148
	}
K
Kent Overstreet 已提交
1149

K
Kent Overstreet 已提交
1150 1151 1152 1153
	closure_call(&s->op.cl, bch_insert_data, NULL, cl);
	continue_at(cl, cached_dev_write_complete, NULL);
}

1154
static void cached_dev_nodata(struct cached_dev *dc, struct search *s)
K
Kent Overstreet 已提交
1155 1156 1157 1158 1159 1160 1161
{
	struct closure *cl = &s->cl;
	struct bio *bio = &s->bio.bio;

	if (s->op.flush_journal)
		bch_journal_meta(s->op.c, cl);

K
Kent Overstreet 已提交
1162
	/* If it's a flush, we send the flush to the backing device too */
K
Kent Overstreet 已提交
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
	closure_bio_submit(bio, cl, s->d);

	continue_at(cl, cached_dev_bio_complete, NULL);
}

/* Cached devices - read & write stuff */

static void cached_dev_make_request(struct request_queue *q, struct bio *bio)
{
	struct search *s;
	struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
	int cpu, rw = bio_data_dir(bio);

	cpu = part_stat_lock();
	part_stat_inc(cpu, &d->disk->part0, ios[rw]);
	part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
	part_stat_unlock();

	bio->bi_bdev = dc->bdev;
1183
	bio->bi_sector += dc->sb.data_offset;
K
Kent Overstreet 已提交
1184 1185 1186 1187 1188

	if (cached_dev_get(dc)) {
		s = search_alloc(bio, d);
		trace_bcache_request_start(s, bio);

K
Kent Overstreet 已提交
1189
		if (!bio->bi_size)
1190
			cached_dev_nodata(dc, s);
K
Kent Overstreet 已提交
1191 1192 1193 1194
		else {
			s->op.bypass = check_should_bypass(dc, s);

			if (rw)
1195
				cached_dev_write(dc, s);
K
Kent Overstreet 已提交
1196
			else
1197
				cached_dev_read(dc, s);
K
Kent Overstreet 已提交
1198
		}
K
Kent Overstreet 已提交
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
	} else {
		if ((bio->bi_rw & REQ_DISCARD) &&
		    !blk_queue_discard(bdev_get_queue(dc->bdev)))
			bio_endio(bio, 0);
		else
			bch_generic_make_request(bio, &d->bio_split_hook);
	}
}

static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
			    unsigned int cmd, unsigned long arg)
{
	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
	return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
}

static int cached_dev_congested(void *data, int bits)
{
	struct bcache_device *d = data;
	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
	struct request_queue *q = bdev_get_queue(dc->bdev);
	int ret = 0;

	if (bdi_congested(&q->backing_dev_info, bits))
		return 1;

	if (cached_dev_get(dc)) {
		unsigned i;
		struct cache *ca;

		for_each_cache(ca, d->c, i) {
			q = bdev_get_queue(ca->bdev);
			ret |= bdi_congested(&q->backing_dev_info, bits);
		}

		cached_dev_put(dc);
	}

	return ret;
}

void bch_cached_dev_request_init(struct cached_dev *dc)
{
	struct gendisk *g = dc->disk.disk;

	g->queue->make_request_fn		= cached_dev_make_request;
	g->queue->backing_dev_info.congested_fn = cached_dev_congested;
	dc->disk.cache_miss			= cached_dev_cache_miss;
	dc->disk.ioctl				= cached_dev_ioctl;
}

/* Flash backed devices */

static int flash_dev_cache_miss(struct btree *b, struct search *s,
				struct bio *bio, unsigned sectors)
{
1255 1256 1257
	struct bio_vec *bv;
	int i;

K
Kent Overstreet 已提交
1258 1259
	/* Zero fill bio */

1260
	bio_for_each_segment(bv, bio, i) {
K
Kent Overstreet 已提交
1261 1262 1263 1264 1265 1266
		unsigned j = min(bv->bv_len >> 9, sectors);

		void *p = kmap(bv->bv_page);
		memset(p + bv->bv_offset, 0, j << 9);
		kunmap(bv->bv_page);

1267
		sectors	-= j;
K
Kent Overstreet 已提交
1268 1269
	}

1270 1271 1272 1273
	bio_advance(bio, min(sectors << 9, bio->bi_size));

	if (!bio->bi_size)
		s->op.lookup_done = true;
K
Kent Overstreet 已提交
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295

	return 0;
}

static void flash_dev_make_request(struct request_queue *q, struct bio *bio)
{
	struct search *s;
	struct closure *cl;
	struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
	int cpu, rw = bio_data_dir(bio);

	cpu = part_stat_lock();
	part_stat_inc(cpu, &d->disk->part0, ios[rw]);
	part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
	part_stat_unlock();

	s = search_alloc(bio, d);
	cl = &s->cl;
	bio = &s->bio.bio;

	trace_bcache_request_start(s, bio);

K
Kent Overstreet 已提交
1296 1297 1298 1299
	if (!bio->bi_size) {
		if (s->op.flush_journal)
			bch_journal_meta(s->op.c, cl);
	} else if (rw) {
K
Kent Overstreet 已提交
1300
		bch_keybuf_check_overlapping(&s->op.c->moving_gc_keys,
1301 1302
					&KEY(d->id, bio->bi_sector, 0),
					&KEY(d->id, bio_end_sector(bio), 0));
K
Kent Overstreet 已提交
1303

K
Kent Overstreet 已提交
1304
		s->op.bypass	= (bio->bi_rw & REQ_DISCARD) != 0;
K
Kent Overstreet 已提交
1305 1306 1307 1308 1309
		s->writeback	= true;
		s->op.cache_bio	= bio;

		closure_call(&s->op.cl, bch_insert_data, NULL, cl);
	} else {
K
Kent Overstreet 已提交
1310
		closure_call(&s->op.cl, btree_read_async, NULL, cl);
K
Kent Overstreet 已提交
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
	}

	continue_at(cl, search_free, NULL);
}

static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
			   unsigned int cmd, unsigned long arg)
{
	return -ENOTTY;
}

static int flash_dev_congested(void *data, int bits)
{
	struct bcache_device *d = data;
	struct request_queue *q;
	struct cache *ca;
	unsigned i;
	int ret = 0;

	for_each_cache(ca, d->c, i) {
		q = bdev_get_queue(ca->bdev);
		ret |= bdi_congested(&q->backing_dev_info, bits);
	}

	return ret;
}

void bch_flash_dev_request_init(struct bcache_device *d)
{
	struct gendisk *g = d->disk;

	g->queue->make_request_fn		= flash_dev_make_request;
	g->queue->backing_dev_info.congested_fn = flash_dev_congested;
	d->cache_miss				= flash_dev_cache_miss;
	d->ioctl				= flash_dev_ioctl;
}

void bch_request_exit(void)
{
#ifdef CONFIG_CGROUP_BCACHE
	cgroup_unload_subsys(&bcache_subsys);
#endif
	if (bch_search_cache)
		kmem_cache_destroy(bch_search_cache);
}

int __init bch_request_init(void)
{
	bch_search_cache = KMEM_CACHE(search, 0);
	if (!bch_search_cache)
		return -ENOMEM;

#ifdef CONFIG_CGROUP_BCACHE
	cgroup_load_subsys(&bcache_subsys);
	init_bch_cgroup(&bcache_default_cgroup);

	cgroup_add_cftypes(&bcache_subsys, bch_files);
#endif
	return 0;
}