bcm2835.c 36.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
/*
 * bcm2835 sdhost driver.
 *
 * The 2835 has two SD controllers: The Arasan sdhci controller
 * (supported by the iproc driver) and a custom sdhost controller
 * (supported by this driver).
 *
 * The sdhci controller supports both sdcard and sdio.  The sdhost
 * controller supports the sdcard only, but has better performance.
 * Also note that the rpi3 has sdio wifi, so driving the sdcard with
 * the sdhost controller allows to use the sdhci controller for wifi
 * support.
 *
 * The configuration is done by devicetree via pin muxing.  Both
 * SD controller are available on the same pins (2 pin groups = pin 22
 * to 27 + pin 48 to 53).  So it's possible to use both SD controllers
 * at the same time with different pin groups.
 *
 * Author:      Phil Elwell <phil@raspberrypi.org>
 *              Copyright (C) 2015-2016 Raspberry Pi (Trading) Ltd.
 *
 * Based on
 *  mmc-bcm2835.c by Gellert Weisz
 * which is, in turn, based on
 *  sdhci-bcm2708.c by Broadcom
 *  sdhci-bcm2835.c by Stephen Warren and Oleksandr Tymoshenko
 *  sdhci.c and sdhci-pci.c by Pierre Ossman
 */
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/highmem.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/platform_device.h>
#include <linux/scatterlist.h>
#include <linux/time.h>
#include <linux/workqueue.h>

#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sd.h>

#define SDCMD  0x00 /* Command to SD card              - 16 R/W */
#define SDARG  0x04 /* Argument to SD card             - 32 R/W */
#define SDTOUT 0x08 /* Start value for timeout counter - 32 R/W */
#define SDCDIV 0x0c /* Start value for clock divider   - 11 R/W */
#define SDRSP0 0x10 /* SD card response (31:0)         - 32 R   */
#define SDRSP1 0x14 /* SD card response (63:32)        - 32 R   */
#define SDRSP2 0x18 /* SD card response (95:64)        - 32 R   */
#define SDRSP3 0x1c /* SD card response (127:96)       - 32 R   */
#define SDHSTS 0x20 /* SD host status                  - 11 R/W */
#define SDVDD  0x30 /* SD card power control           -  1 R/W */
#define SDEDM  0x34 /* Emergency Debug Mode            - 13 R/W */
#define SDHCFG 0x38 /* Host configuration              -  2 R/W */
#define SDHBCT 0x3c /* Host byte count (debug)         - 32 R/W */
#define SDDATA 0x40 /* Data to/from SD card            - 32 R/W */
#define SDHBLC 0x50 /* Host block count (SDIO/SDHC)    -  9 R/W */

#define SDCMD_NEW_FLAG			0x8000
#define SDCMD_FAIL_FLAG			0x4000
#define SDCMD_BUSYWAIT			0x800
#define SDCMD_NO_RESPONSE		0x400
#define SDCMD_LONG_RESPONSE		0x200
#define SDCMD_WRITE_CMD			0x80
#define SDCMD_READ_CMD			0x40
#define SDCMD_CMD_MASK			0x3f

#define SDCDIV_MAX_CDIV			0x7ff

#define SDHSTS_BUSY_IRPT		0x400
#define SDHSTS_BLOCK_IRPT		0x200
#define SDHSTS_SDIO_IRPT		0x100
#define SDHSTS_REW_TIME_OUT		0x80
#define SDHSTS_CMD_TIME_OUT		0x40
#define SDHSTS_CRC16_ERROR		0x20
#define SDHSTS_CRC7_ERROR		0x10
#define SDHSTS_FIFO_ERROR		0x08
/* Reserved */
/* Reserved */
#define SDHSTS_DATA_FLAG		0x01

#define SDHSTS_TRANSFER_ERROR_MASK	(SDHSTS_CRC7_ERROR | \
					 SDHSTS_CRC16_ERROR | \
					 SDHSTS_REW_TIME_OUT | \
					 SDHSTS_FIFO_ERROR)

#define SDHSTS_ERROR_MASK		(SDHSTS_CMD_TIME_OUT | \
					 SDHSTS_TRANSFER_ERROR_MASK)

#define SDHCFG_BUSY_IRPT_EN	BIT(10)
#define SDHCFG_BLOCK_IRPT_EN	BIT(8)
#define SDHCFG_SDIO_IRPT_EN	BIT(5)
#define SDHCFG_DATA_IRPT_EN	BIT(4)
#define SDHCFG_SLOW_CARD	BIT(3)
#define SDHCFG_WIDE_EXT_BUS	BIT(2)
#define SDHCFG_WIDE_INT_BUS	BIT(1)
#define SDHCFG_REL_CMD_LINE	BIT(0)

#define SDVDD_POWER_OFF		0
#define SDVDD_POWER_ON		1

#define SDEDM_FORCE_DATA_MODE	BIT(19)
#define SDEDM_CLOCK_PULSE	BIT(20)
#define SDEDM_BYPASS		BIT(21)

#define SDEDM_WRITE_THRESHOLD_SHIFT	9
#define SDEDM_READ_THRESHOLD_SHIFT	14
#define SDEDM_THRESHOLD_MASK		0x1f

#define SDEDM_FSM_MASK		0xf
#define SDEDM_FSM_IDENTMODE	0x0
#define SDEDM_FSM_DATAMODE	0x1
#define SDEDM_FSM_READDATA	0x2
#define SDEDM_FSM_WRITEDATA	0x3
#define SDEDM_FSM_READWAIT	0x4
#define SDEDM_FSM_READCRC	0x5
#define SDEDM_FSM_WRITECRC	0x6
#define SDEDM_FSM_WRITEWAIT1	0x7
#define SDEDM_FSM_POWERDOWN	0x8
#define SDEDM_FSM_POWERUP	0x9
#define SDEDM_FSM_WRITESTART1	0xa
#define SDEDM_FSM_WRITESTART2	0xb
#define SDEDM_FSM_GENPULSES	0xc
#define SDEDM_FSM_WRITEWAIT2	0xd
#define SDEDM_FSM_STARTPOWDOWN	0xf

#define SDDATA_FIFO_WORDS	16

#define FIFO_READ_THRESHOLD	4
#define FIFO_WRITE_THRESHOLD	4
#define SDDATA_FIFO_PIO_BURST	8

#define PIO_THRESHOLD	1  /* Maximum block count for PIO (0 = always DMA) */

struct bcm2835_host {
	spinlock_t		lock;
	struct mutex		mutex;

	void __iomem		*ioaddr;
	u32			phys_addr;

	struct mmc_host		*mmc;
	struct platform_device	*pdev;

	int			clock;		/* Current clock speed */
	unsigned int		max_clk;	/* Max possible freq */
	struct work_struct	dma_work;
	struct delayed_work	timeout_work;	/* Timer for timeouts */
	struct sg_mapping_iter	sg_miter;	/* SG state for PIO */
	unsigned int		blocks;		/* remaining PIO blocks */
	int			irq;		/* Device IRQ */

	u32			ns_per_fifo_word;

	/* cached registers */
	u32			hcfg;
	u32			cdiv;

	struct mmc_request	*mrq;		/* Current request */
	struct mmc_command	*cmd;		/* Current command */
	struct mmc_data		*data;		/* Current data request */
	bool			data_complete:1;/* Data finished before cmd */
	bool			use_busy:1;	/* Wait for busy interrupt */
	bool			use_sbc:1;	/* Send CMD23 */

	/* for threaded irq handler */
	bool			irq_block;
	bool			irq_busy;
	bool			irq_data;

	/* DMA part */
	struct dma_chan		*dma_chan_rxtx;
	struct dma_chan		*dma_chan;
	struct dma_slave_config dma_cfg_rx;
	struct dma_slave_config dma_cfg_tx;
	struct dma_async_tx_descriptor	*dma_desc;
	u32			dma_dir;
	u32			drain_words;
	struct page		*drain_page;
	u32			drain_offset;
	bool			use_dma;
};

static void bcm2835_dumpcmd(struct bcm2835_host *host, struct mmc_command *cmd,
			    const char *label)
{
	struct device *dev = &host->pdev->dev;

	if (!cmd)
		return;

	dev_dbg(dev, "%c%s op %d arg 0x%x flags 0x%x - resp %08x %08x %08x %08x, err %d\n",
		(cmd == host->cmd) ? '>' : ' ',
		label, cmd->opcode, cmd->arg, cmd->flags,
		cmd->resp[0], cmd->resp[1], cmd->resp[2], cmd->resp[3],
		cmd->error);
}

static void bcm2835_dumpregs(struct bcm2835_host *host)
{
	struct mmc_request *mrq = host->mrq;
	struct device *dev = &host->pdev->dev;

	if (mrq) {
		bcm2835_dumpcmd(host, mrq->sbc, "sbc");
		bcm2835_dumpcmd(host, mrq->cmd, "cmd");
		if (mrq->data) {
			dev_dbg(dev, "data blocks %x blksz %x - err %d\n",
				mrq->data->blocks,
				mrq->data->blksz,
				mrq->data->error);
		}
		bcm2835_dumpcmd(host, mrq->stop, "stop");
	}

	dev_dbg(dev, "=========== REGISTER DUMP ===========\n");
	dev_dbg(dev, "SDCMD  0x%08x\n", readl(host->ioaddr + SDCMD));
	dev_dbg(dev, "SDARG  0x%08x\n", readl(host->ioaddr + SDARG));
	dev_dbg(dev, "SDTOUT 0x%08x\n", readl(host->ioaddr + SDTOUT));
	dev_dbg(dev, "SDCDIV 0x%08x\n", readl(host->ioaddr + SDCDIV));
	dev_dbg(dev, "SDRSP0 0x%08x\n", readl(host->ioaddr + SDRSP0));
	dev_dbg(dev, "SDRSP1 0x%08x\n", readl(host->ioaddr + SDRSP1));
	dev_dbg(dev, "SDRSP2 0x%08x\n", readl(host->ioaddr + SDRSP2));
	dev_dbg(dev, "SDRSP3 0x%08x\n", readl(host->ioaddr + SDRSP3));
	dev_dbg(dev, "SDHSTS 0x%08x\n", readl(host->ioaddr + SDHSTS));
	dev_dbg(dev, "SDVDD  0x%08x\n", readl(host->ioaddr + SDVDD));
	dev_dbg(dev, "SDEDM  0x%08x\n", readl(host->ioaddr + SDEDM));
	dev_dbg(dev, "SDHCFG 0x%08x\n", readl(host->ioaddr + SDHCFG));
	dev_dbg(dev, "SDHBCT 0x%08x\n", readl(host->ioaddr + SDHBCT));
	dev_dbg(dev, "SDHBLC 0x%08x\n", readl(host->ioaddr + SDHBLC));
	dev_dbg(dev, "===========================================\n");
}

static void bcm2835_reset_internal(struct bcm2835_host *host)
{
	u32 temp;

	writel(SDVDD_POWER_OFF, host->ioaddr + SDVDD);
	writel(0, host->ioaddr + SDCMD);
	writel(0, host->ioaddr + SDARG);
	writel(0xf00000, host->ioaddr + SDTOUT);
	writel(0, host->ioaddr + SDCDIV);
	writel(0x7f8, host->ioaddr + SDHSTS); /* Write 1s to clear */
	writel(0, host->ioaddr + SDHCFG);
	writel(0, host->ioaddr + SDHBCT);
	writel(0, host->ioaddr + SDHBLC);

	/* Limit fifo usage due to silicon bug */
	temp = readl(host->ioaddr + SDEDM);
	temp &= ~((SDEDM_THRESHOLD_MASK << SDEDM_READ_THRESHOLD_SHIFT) |
		  (SDEDM_THRESHOLD_MASK << SDEDM_WRITE_THRESHOLD_SHIFT));
	temp |= (FIFO_READ_THRESHOLD << SDEDM_READ_THRESHOLD_SHIFT) |
		(FIFO_WRITE_THRESHOLD << SDEDM_WRITE_THRESHOLD_SHIFT);
	writel(temp, host->ioaddr + SDEDM);
	msleep(20);
	writel(SDVDD_POWER_ON, host->ioaddr + SDVDD);
	msleep(20);
	host->clock = 0;
	writel(host->hcfg, host->ioaddr + SDHCFG);
	writel(host->cdiv, host->ioaddr + SDCDIV);
}

static void bcm2835_reset(struct mmc_host *mmc)
{
	struct bcm2835_host *host = mmc_priv(mmc);

	if (host->dma_chan)
		dmaengine_terminate_sync(host->dma_chan);
278
	host->dma_chan = NULL;
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
	bcm2835_reset_internal(host);
}

static void bcm2835_finish_command(struct bcm2835_host *host);

static void bcm2835_wait_transfer_complete(struct bcm2835_host *host)
{
	int timediff;
	u32 alternate_idle;

	alternate_idle = (host->mrq->data->flags & MMC_DATA_READ) ?
		SDEDM_FSM_READWAIT : SDEDM_FSM_WRITESTART1;

	timediff = 0;

	while (1) {
		u32 edm, fsm;

		edm = readl(host->ioaddr + SDEDM);
		fsm = edm & SDEDM_FSM_MASK;

		if ((fsm == SDEDM_FSM_IDENTMODE) ||
		    (fsm == SDEDM_FSM_DATAMODE))
			break;
		if (fsm == alternate_idle) {
			writel(edm | SDEDM_FORCE_DATA_MODE,
			       host->ioaddr + SDEDM);
			break;
		}

		timediff++;
		if (timediff == 100000) {
			dev_err(&host->pdev->dev,
				"wait_transfer_complete - still waiting after %d retries\n",
				timediff);
			bcm2835_dumpregs(host);
			host->mrq->data->error = -ETIMEDOUT;
			return;
		}
		cpu_relax();
	}
}

static void bcm2835_dma_complete(void *param)
{
	struct bcm2835_host *host = param;

	schedule_work(&host->dma_work);
}

static void bcm2835_transfer_block_pio(struct bcm2835_host *host, bool is_read)
{
	unsigned long flags;
	size_t blksize;
	unsigned long wait_max;

	blksize = host->data->blksz;

	wait_max = jiffies + msecs_to_jiffies(500);

	local_irq_save(flags);

	while (blksize) {
		int copy_words;
		u32 hsts = 0;
		size_t len;
		u32 *buf;

		if (!sg_miter_next(&host->sg_miter)) {
			host->data->error = -EINVAL;
			break;
		}

		len = min(host->sg_miter.length, blksize);
		if (len % 4) {
			host->data->error = -EINVAL;
			break;
		}

		blksize -= len;
		host->sg_miter.consumed = len;

		buf = (u32 *)host->sg_miter.addr;

		copy_words = len / 4;

		while (copy_words) {
			int burst_words, words;
			u32 edm;

			burst_words = min(SDDATA_FIFO_PIO_BURST, copy_words);
			edm = readl(host->ioaddr + SDEDM);
			if (is_read)
				words = ((edm >> 4) & 0x1f);
			else
				words = SDDATA_FIFO_WORDS - ((edm >> 4) & 0x1f);

			if (words < burst_words) {
				int fsm_state = (edm & SDEDM_FSM_MASK);
				struct device *dev = &host->pdev->dev;

				if ((is_read &&
				     (fsm_state != SDEDM_FSM_READDATA &&
				      fsm_state != SDEDM_FSM_READWAIT &&
				      fsm_state != SDEDM_FSM_READCRC)) ||
				    (!is_read &&
				     (fsm_state != SDEDM_FSM_WRITEDATA &&
				      fsm_state != SDEDM_FSM_WRITESTART1 &&
				      fsm_state != SDEDM_FSM_WRITESTART2))) {
					hsts = readl(host->ioaddr + SDHSTS);
					dev_err(dev, "fsm %x, hsts %08x\n",
						fsm_state, hsts);
					if (hsts & SDHSTS_ERROR_MASK)
						break;
				}

				if (time_after(jiffies, wait_max)) {
					dev_err(dev, "PIO %s timeout - EDM %08x\n",
						is_read ? "read" : "write",
						edm);
					hsts = SDHSTS_REW_TIME_OUT;
					break;
				}
				ndelay((burst_words - words) *
				       host->ns_per_fifo_word);
				continue;
			} else if (words > copy_words) {
				words = copy_words;
			}

			copy_words -= words;

			while (words) {
				if (is_read)
					*(buf++) = readl(host->ioaddr + SDDATA);
				else
					writel(*(buf++), host->ioaddr + SDDATA);
				words--;
			}
		}

		if (hsts & SDHSTS_ERROR_MASK)
			break;
	}

	sg_miter_stop(&host->sg_miter);

	local_irq_restore(flags);
}

static void bcm2835_transfer_pio(struct bcm2835_host *host)
{
	struct device *dev = &host->pdev->dev;
	u32 sdhsts;
	bool is_read;

	is_read = (host->data->flags & MMC_DATA_READ) != 0;
	bcm2835_transfer_block_pio(host, is_read);

	sdhsts = readl(host->ioaddr + SDHSTS);
	if (sdhsts & (SDHSTS_CRC16_ERROR |
		      SDHSTS_CRC7_ERROR |
		      SDHSTS_FIFO_ERROR)) {
		dev_err(dev, "%s transfer error - HSTS %08x\n",
			is_read ? "read" : "write", sdhsts);
		host->data->error = -EILSEQ;
	} else if ((sdhsts & (SDHSTS_CMD_TIME_OUT |
			      SDHSTS_REW_TIME_OUT))) {
		dev_err(dev, "%s timeout error - HSTS %08x\n",
			is_read ? "read" : "write", sdhsts);
		host->data->error = -ETIMEDOUT;
	}
}

static
void bcm2835_prepare_dma(struct bcm2835_host *host, struct mmc_data *data)
{
456
	int sg_len, dir_data, dir_slave;
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
	struct dma_async_tx_descriptor *desc = NULL;
	struct dma_chan *dma_chan;

	dma_chan = host->dma_chan_rxtx;
	if (data->flags & MMC_DATA_READ) {
		dir_data = DMA_FROM_DEVICE;
		dir_slave = DMA_DEV_TO_MEM;
	} else {
		dir_data = DMA_TO_DEVICE;
		dir_slave = DMA_MEM_TO_DEV;
	}

	/* The block doesn't manage the FIFO DREQs properly for
	 * multi-block transfers, so don't attempt to DMA the final
	 * few words.  Unfortunately this requires the final sg entry
	 * to be trimmed.  N.B. This code demands that the overspill
	 * is contained in a single sg entry.
	 */

	host->drain_words = 0;
	if ((data->blocks > 1) && (dir_data == DMA_FROM_DEVICE)) {
		struct scatterlist *sg;
		u32 len;
		int i;

		len = min((u32)(FIFO_READ_THRESHOLD - 1) * 4,
			  (u32)data->blocks * data->blksz);

		for_each_sg(data->sg, sg, data->sg_len, i) {
			if (sg_is_last(sg)) {
				WARN_ON(sg->length < len);
				sg->length -= len;
				host->drain_page = sg_page(sg);
				host->drain_offset = sg->offset + sg->length;
			}
		}
		host->drain_words = len / 4;
	}

	/* The parameters have already been validated, so this will not fail */
	(void)dmaengine_slave_config(dma_chan,
				     (dir_data == DMA_FROM_DEVICE) ?
				     &host->dma_cfg_rx :
				     &host->dma_cfg_tx);

502 503 504 505
	sg_len = dma_map_sg(dma_chan->device->dev, data->sg, data->sg_len,
			    dir_data);
	if (!sg_len)
		return;
506

507 508
	desc = dmaengine_prep_slave_sg(dma_chan, data->sg, sg_len, dir_slave,
				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
509

510 511 512
	if (!desc) {
		dma_unmap_sg(dma_chan->device->dev, data->sg, sg_len, dir_data);
		return;
513
	}
514 515 516 517 518 519

	desc->callback = bcm2835_dma_complete;
	desc->callback_param = host;
	host->dma_desc = desc;
	host->dma_chan = dma_chan;
	host->dma_dir = dir_data;
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
}

static void bcm2835_start_dma(struct bcm2835_host *host)
{
	dmaengine_submit(host->dma_desc);
	dma_async_issue_pending(host->dma_chan);
}

static void bcm2835_set_transfer_irqs(struct bcm2835_host *host)
{
	u32 all_irqs = SDHCFG_DATA_IRPT_EN | SDHCFG_BLOCK_IRPT_EN |
		SDHCFG_BUSY_IRPT_EN;

	if (host->dma_desc) {
		host->hcfg = (host->hcfg & ~all_irqs) |
			SDHCFG_BUSY_IRPT_EN;
	} else {
		host->hcfg = (host->hcfg & ~all_irqs) |
			SDHCFG_DATA_IRPT_EN |
			SDHCFG_BUSY_IRPT_EN;
	}

	writel(host->hcfg, host->ioaddr + SDHCFG);
}

static
void bcm2835_prepare_data(struct bcm2835_host *host, struct mmc_command *cmd)
{
	struct mmc_data *data = cmd->data;

	WARN_ON(host->data);

	host->data = data;
	if (!data)
		return;

	host->data_complete = false;
	host->data->bytes_xfered = 0;

	if (!host->dma_desc) {
		/* Use PIO */
		int flags = SG_MITER_ATOMIC;

		if (data->flags & MMC_DATA_READ)
			flags |= SG_MITER_TO_SG;
		else
			flags |= SG_MITER_FROM_SG;
		sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
		host->blocks = data->blocks;
	}

	bcm2835_set_transfer_irqs(host);

	writel(data->blksz, host->ioaddr + SDHBCT);
	writel(data->blocks, host->ioaddr + SDHBLC);
}

static u32 bcm2835_read_wait_sdcmd(struct bcm2835_host *host, u32 max_ms)
{
	struct device *dev = &host->pdev->dev;
	u32 value;
	int ret;

	ret = readl_poll_timeout(host->ioaddr + SDCMD, value,
				 !(value & SDCMD_NEW_FLAG), 1, 10);
	if (ret == -ETIMEDOUT)
		/* if it takes a while make poll interval bigger */
		ret = readl_poll_timeout(host->ioaddr + SDCMD, value,
					 !(value & SDCMD_NEW_FLAG),
					 10, max_ms * 1000);
	if (ret == -ETIMEDOUT)
		dev_err(dev, "%s: timeout (%d ms)\n", __func__, max_ms);

	return value;
}

static void bcm2835_finish_request(struct bcm2835_host *host)
{
	struct dma_chan *terminate_chan = NULL;
	struct mmc_request *mrq;

601
	cancel_delayed_work_sync(&host->timeout_work);
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765

	mrq = host->mrq;

	host->mrq = NULL;
	host->cmd = NULL;
	host->data = NULL;

	host->dma_desc = NULL;
	terminate_chan = host->dma_chan;
	host->dma_chan = NULL;

	if (terminate_chan) {
		int err = dmaengine_terminate_all(terminate_chan);

		if (err)
			dev_err(&host->pdev->dev,
				"failed to terminate DMA (%d)\n", err);
	}

	mmc_request_done(host->mmc, mrq);
}

static
bool bcm2835_send_command(struct bcm2835_host *host, struct mmc_command *cmd)
{
	struct device *dev = &host->pdev->dev;
	u32 sdcmd, sdhsts;
	unsigned long timeout;

	WARN_ON(host->cmd);

	sdcmd = bcm2835_read_wait_sdcmd(host, 100);
	if (sdcmd & SDCMD_NEW_FLAG) {
		dev_err(dev, "previous command never completed.\n");
		bcm2835_dumpregs(host);
		cmd->error = -EILSEQ;
		bcm2835_finish_request(host);
		return false;
	}

	if (!cmd->data && cmd->busy_timeout > 9000)
		timeout = DIV_ROUND_UP(cmd->busy_timeout, 1000) * HZ + HZ;
	else
		timeout = 10 * HZ;
	schedule_delayed_work(&host->timeout_work, timeout);

	host->cmd = cmd;

	/* Clear any error flags */
	sdhsts = readl(host->ioaddr + SDHSTS);
	if (sdhsts & SDHSTS_ERROR_MASK)
		writel(sdhsts, host->ioaddr + SDHSTS);

	if ((cmd->flags & MMC_RSP_136) && (cmd->flags & MMC_RSP_BUSY)) {
		dev_err(dev, "unsupported response type!\n");
		cmd->error = -EINVAL;
		bcm2835_finish_request(host);
		return false;
	}

	bcm2835_prepare_data(host, cmd);

	writel(cmd->arg, host->ioaddr + SDARG);

	sdcmd = cmd->opcode & SDCMD_CMD_MASK;

	host->use_busy = false;
	if (!(cmd->flags & MMC_RSP_PRESENT)) {
		sdcmd |= SDCMD_NO_RESPONSE;
	} else {
		if (cmd->flags & MMC_RSP_136)
			sdcmd |= SDCMD_LONG_RESPONSE;
		if (cmd->flags & MMC_RSP_BUSY) {
			sdcmd |= SDCMD_BUSYWAIT;
			host->use_busy = true;
		}
	}

	if (cmd->data) {
		if (cmd->data->flags & MMC_DATA_WRITE)
			sdcmd |= SDCMD_WRITE_CMD;
		if (cmd->data->flags & MMC_DATA_READ)
			sdcmd |= SDCMD_READ_CMD;
	}

	writel(sdcmd | SDCMD_NEW_FLAG, host->ioaddr + SDCMD);

	return true;
}

static void bcm2835_transfer_complete(struct bcm2835_host *host)
{
	struct mmc_data *data;

	WARN_ON(!host->data_complete);

	data = host->data;
	host->data = NULL;

	/* Need to send CMD12 if -
	 * a) open-ended multiblock transfer (no CMD23)
	 * b) error in multiblock transfer
	 */
	if (host->mrq->stop && (data->error || !host->use_sbc)) {
		if (bcm2835_send_command(host, host->mrq->stop)) {
			/* No busy, so poll for completion */
			if (!host->use_busy)
				bcm2835_finish_command(host);
		}
	} else {
		bcm2835_wait_transfer_complete(host);
		bcm2835_finish_request(host);
	}
}

static void bcm2835_finish_data(struct bcm2835_host *host)
{
	struct device *dev = &host->pdev->dev;
	struct mmc_data *data;

	data = host->data;

	host->hcfg &= ~(SDHCFG_DATA_IRPT_EN | SDHCFG_BLOCK_IRPT_EN);
	writel(host->hcfg, host->ioaddr + SDHCFG);

	data->bytes_xfered = data->error ? 0 : (data->blksz * data->blocks);

	host->data_complete = true;

	if (host->cmd) {
		/* Data managed to finish before the
		 * command completed. Make sure we do
		 * things in the proper order.
		 */
		dev_dbg(dev, "Finished early - HSTS %08x\n",
			readl(host->ioaddr + SDHSTS));
	} else {
		bcm2835_transfer_complete(host);
	}
}

static void bcm2835_finish_command(struct bcm2835_host *host)
{
	struct device *dev = &host->pdev->dev;
	struct mmc_command *cmd = host->cmd;
	u32 sdcmd;

	sdcmd = bcm2835_read_wait_sdcmd(host, 100);

	/* Check for errors */
	if (sdcmd & SDCMD_NEW_FLAG) {
		dev_err(dev, "command never completed.\n");
		bcm2835_dumpregs(host);
		host->cmd->error = -EIO;
		bcm2835_finish_request(host);
		return;
	} else if (sdcmd & SDCMD_FAIL_FLAG) {
		u32 sdhsts = readl(host->ioaddr + SDHSTS);

		/* Clear the errors */
		writel(SDHSTS_ERROR_MASK, host->ioaddr + SDHSTS);

		if (!(sdhsts & SDHSTS_CRC7_ERROR) ||
		    (host->cmd->opcode != MMC_SEND_OP_COND)) {
766 767
			u32 edm, fsm;

768 769 770 771 772 773 774 775
			if (sdhsts & SDHSTS_CMD_TIME_OUT) {
				host->cmd->error = -ETIMEDOUT;
			} else {
				dev_err(dev, "unexpected command %d error\n",
					host->cmd->opcode);
				bcm2835_dumpregs(host);
				host->cmd->error = -EILSEQ;
			}
776 777 778 779 780 781 782
			edm = readl(host->ioaddr + SDEDM);
			fsm = edm & SDEDM_FSM_MASK;
			if (fsm == SDEDM_FSM_READWAIT ||
			    fsm == SDEDM_FSM_WRITESTART1)
				/* Kick the FSM out of its wait */
				writel(edm | SDEDM_FORCE_DATA_MODE,
				       host->ioaddr + SDEDM);
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
			bcm2835_finish_request(host);
			return;
		}
	}

	if (cmd->flags & MMC_RSP_PRESENT) {
		if (cmd->flags & MMC_RSP_136) {
			int i;

			for (i = 0; i < 4; i++) {
				cmd->resp[3 - i] =
					readl(host->ioaddr + SDRSP0 + i * 4);
			}
		} else {
			cmd->resp[0] = readl(host->ioaddr + SDRSP0);
		}
	}

	if (cmd == host->mrq->sbc) {
		/* Finished CMD23, now send actual command. */
		host->cmd = NULL;
		if (bcm2835_send_command(host, host->mrq->cmd)) {
			if (host->data && host->dma_desc)
				/* DMA transfer starts now, PIO starts
				 * after irq
				 */
				bcm2835_start_dma(host);

			if (!host->use_busy)
				bcm2835_finish_command(host);
		}
	} else if (cmd == host->mrq->stop) {
		/* Finished CMD12 */
		bcm2835_finish_request(host);
	} else {
		/* Processed actual command. */
		host->cmd = NULL;
		if (!host->data)
			bcm2835_finish_request(host);
		else if (host->data_complete)
			bcm2835_transfer_complete(host);
	}
}

static void bcm2835_timeout(struct work_struct *work)
{
	struct delayed_work *d = to_delayed_work(work);
	struct bcm2835_host *host =
		container_of(d, struct bcm2835_host, timeout_work);
	struct device *dev = &host->pdev->dev;

	mutex_lock(&host->mutex);

	if (host->mrq) {
		dev_err(dev, "timeout waiting for hardware interrupt.\n");
		bcm2835_dumpregs(host);

840 841
		bcm2835_reset(host->mmc);

842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
		if (host->data) {
			host->data->error = -ETIMEDOUT;
			bcm2835_finish_data(host);
		} else {
			if (host->cmd)
				host->cmd->error = -ETIMEDOUT;
			else
				host->mrq->cmd->error = -ETIMEDOUT;

			bcm2835_finish_request(host);
		}
	}

	mutex_unlock(&host->mutex);
}

static bool bcm2835_check_cmd_error(struct bcm2835_host *host, u32 intmask)
{
	struct device *dev = &host->pdev->dev;

	if (!(intmask & SDHSTS_ERROR_MASK))
		return false;

	if (!host->cmd)
		return true;

	dev_err(dev, "sdhost_busy_irq: intmask %08x\n", intmask);
	if (intmask & SDHSTS_CRC7_ERROR) {
		host->cmd->error = -EILSEQ;
	} else if (intmask & (SDHSTS_CRC16_ERROR |
			      SDHSTS_FIFO_ERROR)) {
		if (host->mrq->data)
			host->mrq->data->error = -EILSEQ;
		else
			host->cmd->error = -EILSEQ;
	} else if (intmask & SDHSTS_REW_TIME_OUT) {
		if (host->mrq->data)
			host->mrq->data->error = -ETIMEDOUT;
		else
			host->cmd->error = -ETIMEDOUT;
	} else if (intmask & SDHSTS_CMD_TIME_OUT) {
		host->cmd->error = -ETIMEDOUT;
	}
	bcm2835_dumpregs(host);
	return true;
}

static void bcm2835_check_data_error(struct bcm2835_host *host, u32 intmask)
{
	if (!host->data)
		return;
	if (intmask & (SDHSTS_CRC16_ERROR | SDHSTS_FIFO_ERROR))
		host->data->error = -EILSEQ;
	if (intmask & SDHSTS_REW_TIME_OUT)
		host->data->error = -ETIMEDOUT;
}

static void bcm2835_busy_irq(struct bcm2835_host *host)
{
	if (WARN_ON(!host->cmd)) {
		bcm2835_dumpregs(host);
		return;
	}

	if (WARN_ON(!host->use_busy)) {
		bcm2835_dumpregs(host);
		return;
	}
	host->use_busy = false;

	bcm2835_finish_command(host);
}

static void bcm2835_data_irq(struct bcm2835_host *host, u32 intmask)
{
	/* There are no dedicated data/space available interrupt
	 * status bits, so it is necessary to use the single shared
	 * data/space available FIFO status bits. It is therefore not
	 * an error to get here when there is no data transfer in
	 * progress.
	 */
	if (!host->data)
		return;

	bcm2835_check_data_error(host, intmask);
	if (host->data->error)
		goto finished;

	if (host->data->flags & MMC_DATA_WRITE) {
		/* Use the block interrupt for writes after the first block */
		host->hcfg &= ~(SDHCFG_DATA_IRPT_EN);
		host->hcfg |= SDHCFG_BLOCK_IRPT_EN;
		writel(host->hcfg, host->ioaddr + SDHCFG);
		bcm2835_transfer_pio(host);
	} else {
		bcm2835_transfer_pio(host);
		host->blocks--;
		if ((host->blocks == 0) || host->data->error)
			goto finished;
	}
	return;

finished:
	host->hcfg &= ~(SDHCFG_DATA_IRPT_EN | SDHCFG_BLOCK_IRPT_EN);
	writel(host->hcfg, host->ioaddr + SDHCFG);
}

static void bcm2835_data_threaded_irq(struct bcm2835_host *host)
{
	if (!host->data)
		return;
	if ((host->blocks == 0) || host->data->error)
		bcm2835_finish_data(host);
}

static void bcm2835_block_irq(struct bcm2835_host *host)
{
	if (WARN_ON(!host->data)) {
		bcm2835_dumpregs(host);
		return;
	}

	if (!host->dma_desc) {
		WARN_ON(!host->blocks);
		if (host->data->error || (--host->blocks == 0))
			bcm2835_finish_data(host);
		else
			bcm2835_transfer_pio(host);
	} else if (host->data->flags & MMC_DATA_WRITE) {
		bcm2835_finish_data(host);
	}
}

static irqreturn_t bcm2835_irq(int irq, void *dev_id)
{
	irqreturn_t result = IRQ_NONE;
	struct bcm2835_host *host = dev_id;
	u32 intmask;

	spin_lock(&host->lock);

	intmask = readl(host->ioaddr + SDHSTS);

	writel(SDHSTS_BUSY_IRPT |
	       SDHSTS_BLOCK_IRPT |
	       SDHSTS_SDIO_IRPT |
	       SDHSTS_DATA_FLAG,
	       host->ioaddr + SDHSTS);

	if (intmask & SDHSTS_BLOCK_IRPT) {
		bcm2835_check_data_error(host, intmask);
		host->irq_block = true;
		result = IRQ_WAKE_THREAD;
	}

	if (intmask & SDHSTS_BUSY_IRPT) {
		if (!bcm2835_check_cmd_error(host, intmask)) {
			host->irq_busy = true;
			result = IRQ_WAKE_THREAD;
		} else {
			result = IRQ_HANDLED;
		}
	}

	/* There is no true data interrupt status bit, so it is
	 * necessary to qualify the data flag with the interrupt
	 * enable bit.
	 */
	if ((intmask & SDHSTS_DATA_FLAG) &&
	    (host->hcfg & SDHCFG_DATA_IRPT_EN)) {
		bcm2835_data_irq(host, intmask);
		host->irq_data = true;
		result = IRQ_WAKE_THREAD;
	}

	spin_unlock(&host->lock);

	return result;
}

static irqreturn_t bcm2835_threaded_irq(int irq, void *dev_id)
{
	struct bcm2835_host *host = dev_id;
	unsigned long flags;
	bool block, busy, data;

	spin_lock_irqsave(&host->lock, flags);

	block = host->irq_block;
	busy  = host->irq_busy;
	data  = host->irq_data;
	host->irq_block = false;
	host->irq_busy  = false;
	host->irq_data  = false;

	spin_unlock_irqrestore(&host->lock, flags);

	mutex_lock(&host->mutex);

	if (block)
		bcm2835_block_irq(host);
	if (busy)
		bcm2835_busy_irq(host);
	if (data)
		bcm2835_data_threaded_irq(host);

	mutex_unlock(&host->mutex);

	return IRQ_HANDLED;
}

static void bcm2835_dma_complete_work(struct work_struct *work)
{
	struct bcm2835_host *host =
		container_of(work, struct bcm2835_host, dma_work);
1057
	struct mmc_data *data;
1058 1059 1060

	mutex_lock(&host->mutex);

1061 1062
	data = host->data;

1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
	if (host->dma_chan) {
		dma_unmap_sg(host->dma_chan->device->dev,
			     data->sg, data->sg_len,
			     host->dma_dir);

		host->dma_chan = NULL;
	}

	if (host->drain_words) {
		unsigned long flags;
		void *page;
		u32 *buf;

		if (host->drain_offset & PAGE_MASK) {
			host->drain_page += host->drain_offset >> PAGE_SHIFT;
			host->drain_offset &= ~PAGE_MASK;
		}
		local_irq_save(flags);
		page = kmap_atomic(host->drain_page);
		buf = page + host->drain_offset;

		while (host->drain_words) {
			u32 edm = readl(host->ioaddr + SDEDM);

			if ((edm >> 4) & 0x1f)
				*(buf++) = readl(host->ioaddr + SDDATA);
			host->drain_words--;
		}

		kunmap_atomic(page);
		local_irq_restore(flags);
	}

	bcm2835_finish_data(host);

	mutex_unlock(&host->mutex);
}

static void bcm2835_set_clock(struct bcm2835_host *host, unsigned int clock)
{
	int div;

	/* The SDCDIV register has 11 bits, and holds (div - 2).  But
	 * in data mode the max is 50MHz wihout a minimum, and only
	 * the bottom 3 bits are used. Since the switch over is
	 * automatic (unless we have marked the card as slow...),
	 * chosen values have to make sense in both modes.  Ident mode
	 * must be 100-400KHz, so can range check the requested
	 * clock. CMD15 must be used to return to data mode, so this
	 * can be monitored.
	 *
	 * clock 250MHz -> 0->125MHz, 1->83.3MHz, 2->62.5MHz, 3->50.0MHz
	 *                 4->41.7MHz, 5->35.7MHz, 6->31.3MHz, 7->27.8MHz
	 *
	 *		 623->400KHz/27.8MHz
	 *		 reset value (507)->491159/50MHz
	 *
	 * BUT, the 3-bit clock divisor in data mode is too small if
	 * the core clock is higher than 250MHz, so instead use the
	 * SLOW_CARD configuration bit to force the use of the ident
	 * clock divisor at all times.
	 */

	if (clock < 100000) {
		/* Can't stop the clock, but make it as slow as possible
		 * to show willing
		 */
		host->cdiv = SDCDIV_MAX_CDIV;
		writel(host->cdiv, host->ioaddr + SDCDIV);
		return;
	}

	div = host->max_clk / clock;
	if (div < 2)
		div = 2;
	if ((host->max_clk / div) > clock)
		div++;
	div -= 2;

	if (div > SDCDIV_MAX_CDIV)
		div = SDCDIV_MAX_CDIV;

	clock = host->max_clk / (div + 2);
	host->mmc->actual_clock = clock;

	/* Calibrate some delays */

	host->ns_per_fifo_word = (1000000000 / clock) *
		((host->mmc->caps & MMC_CAP_4_BIT_DATA) ? 8 : 32);

	host->cdiv = div;
	writel(host->cdiv, host->ioaddr + SDCDIV);

	/* Set the timeout to 500ms */
	writel(host->mmc->actual_clock / 2, host->ioaddr + SDTOUT);
}

static void bcm2835_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
	struct bcm2835_host *host = mmc_priv(mmc);
	struct device *dev = &host->pdev->dev;
	u32 edm, fsm;

	/* Reset the error statuses in case this is a retry */
	if (mrq->sbc)
		mrq->sbc->error = 0;
	if (mrq->cmd)
		mrq->cmd->error = 0;
	if (mrq->data)
		mrq->data->error = 0;
	if (mrq->stop)
		mrq->stop->error = 0;

	if (mrq->data && !is_power_of_2(mrq->data->blksz)) {
		dev_err(dev, "unsupported block size (%d bytes)\n",
			mrq->data->blksz);
1179 1180 1181 1182

		if (mrq->cmd)
			mrq->cmd->error = -EINVAL;

1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
		mmc_request_done(mmc, mrq);
		return;
	}

	mutex_lock(&host->mutex);

	WARN_ON(host->mrq);
	host->mrq = mrq;

	edm = readl(host->ioaddr + SDEDM);
	fsm = edm & SDEDM_FSM_MASK;

	if ((fsm != SDEDM_FSM_IDENTMODE) &&
	    (fsm != SDEDM_FSM_DATAMODE)) {
		dev_err(dev, "previous command (%d) not complete (EDM %08x)\n",
			readl(host->ioaddr + SDCMD) & SDCMD_CMD_MASK,
			edm);
		bcm2835_dumpregs(host);
1201 1202 1203 1204

		if (mrq->cmd)
			mrq->cmd->error = -EILSEQ;

1205 1206 1207 1208 1209
		bcm2835_finish_request(host);
		mutex_unlock(&host->mutex);
		return;
	}

1210 1211 1212
	if (host->use_dma && mrq->data && (mrq->data->blocks > PIO_THRESHOLD))
		bcm2835_prepare_dma(host, mrq->data);

1213 1214
	host->use_sbc = !!mrq->sbc && host->mrq->data &&
			(host->mrq->data->flags & MMC_DATA_READ);
1215 1216 1217 1218 1219
	if (host->use_sbc) {
		if (bcm2835_send_command(host, mrq->sbc)) {
			if (!host->use_busy)
				bcm2835_finish_command(host);
		}
1220
	} else if (mrq->cmd && bcm2835_send_command(host, mrq->cmd)) {
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
		if (host->data && host->dma_desc) {
			/* DMA transfer starts now, PIO starts after irq */
			bcm2835_start_dma(host);
		}

		if (!host->use_busy)
			bcm2835_finish_command(host);
	}

	mutex_unlock(&host->mutex);
}

static void bcm2835_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
	struct bcm2835_host *host = mmc_priv(mmc);

	mutex_lock(&host->mutex);

	if (!ios->clock || ios->clock != host->clock) {
		bcm2835_set_clock(host, ios->clock);
		host->clock = ios->clock;
	}

	/* set bus width */
	host->hcfg &= ~SDHCFG_WIDE_EXT_BUS;
	if (ios->bus_width == MMC_BUS_WIDTH_4)
		host->hcfg |= SDHCFG_WIDE_EXT_BUS;

	host->hcfg |= SDHCFG_WIDE_INT_BUS;

	/* Disable clever clock switching, to cope with fast core clocks */
	host->hcfg |= SDHCFG_SLOW_CARD;

	writel(host->hcfg, host->ioaddr + SDHCFG);

	mutex_unlock(&host->mutex);
}

1259
static const struct mmc_host_ops bcm2835_ops = {
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
	.request = bcm2835_request,
	.set_ios = bcm2835_set_ios,
	.hw_reset = bcm2835_reset,
};

static int bcm2835_add_host(struct bcm2835_host *host)
{
	struct mmc_host *mmc = host->mmc;
	struct device *dev = &host->pdev->dev;
	char pio_limit_string[20];
	int ret;

1272 1273
	if (!mmc->f_max || mmc->f_max > host->max_clk)
		mmc->f_max = host->max_clk;
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
	mmc->f_min = host->max_clk / SDCDIV_MAX_CDIV;

	mmc->max_busy_timeout = ~0 / (mmc->f_max / 1000);

	dev_dbg(dev, "f_max %d, f_min %d, max_busy_timeout %d\n",
		mmc->f_max, mmc->f_min, mmc->max_busy_timeout);

	/* host controller capabilities */
	mmc->caps |= MMC_CAP_SD_HIGHSPEED | MMC_CAP_MMC_HIGHSPEED |
		     MMC_CAP_NEEDS_POLL | MMC_CAP_HW_RESET | MMC_CAP_ERASE |
		     MMC_CAP_CMD23;

	spin_lock_init(&host->lock);
	mutex_init(&host->mutex);

	if (IS_ERR_OR_NULL(host->dma_chan_rxtx)) {
		dev_warn(dev, "unable to initialise DMA channel. Falling back to PIO\n");
		host->use_dma = false;
	} else {
		host->use_dma = true;

		host->dma_cfg_tx.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
		host->dma_cfg_tx.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
		host->dma_cfg_tx.slave_id = 13;		/* DREQ channel */
		host->dma_cfg_tx.direction = DMA_MEM_TO_DEV;
		host->dma_cfg_tx.src_addr = 0;
		host->dma_cfg_tx.dst_addr = host->phys_addr + SDDATA;

		host->dma_cfg_rx.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
		host->dma_cfg_rx.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
		host->dma_cfg_rx.slave_id = 13;		/* DREQ channel */
		host->dma_cfg_rx.direction = DMA_DEV_TO_MEM;
		host->dma_cfg_rx.src_addr = host->phys_addr + SDDATA;
		host->dma_cfg_rx.dst_addr = 0;

		if (dmaengine_slave_config(host->dma_chan_rxtx,
					   &host->dma_cfg_tx) != 0 ||
		    dmaengine_slave_config(host->dma_chan_rxtx,
					   &host->dma_cfg_rx) != 0)
			host->use_dma = false;
	}

	mmc->max_segs = 128;
	mmc->max_req_size = 524288;
	mmc->max_seg_size = mmc->max_req_size;
	mmc->max_blk_size = 1024;
	mmc->max_blk_count =  65535;

	/* report supported voltage ranges */
	mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;

	INIT_WORK(&host->dma_work, bcm2835_dma_complete_work);
	INIT_DELAYED_WORK(&host->timeout_work, bcm2835_timeout);

	/* Set interrupt enables */
	host->hcfg = SDHCFG_BUSY_IRPT_EN;

	bcm2835_reset_internal(host);

	ret = request_threaded_irq(host->irq, bcm2835_irq,
				   bcm2835_threaded_irq,
				   0, mmc_hostname(mmc), host);
	if (ret) {
		dev_err(dev, "failed to request IRQ %d: %d\n", host->irq, ret);
		return ret;
	}

	ret = mmc_add_host(mmc);
	if (ret) {
		free_irq(host->irq, host);
		return ret;
	}

	pio_limit_string[0] = '\0';
	if (host->use_dma && (PIO_THRESHOLD > 0))
		sprintf(pio_limit_string, " (>%d)", PIO_THRESHOLD);
	dev_info(dev, "loaded - DMA %s%s\n",
		 host->use_dma ? "enabled" : "disabled", pio_limit_string);

	return 0;
}

static int bcm2835_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct clk *clk;
	struct resource *iomem;
	struct bcm2835_host *host;
	struct mmc_host *mmc;
	const __be32 *regaddr_p;
	int ret;

	dev_dbg(dev, "%s\n", __func__);
	mmc = mmc_alloc_host(sizeof(*host), dev);
	if (!mmc)
		return -ENOMEM;

	mmc->ops = &bcm2835_ops;
	host = mmc_priv(mmc);
	host->mmc = mmc;
	host->pdev = pdev;
	spin_lock_init(&host->lock);

	iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	host->ioaddr = devm_ioremap_resource(dev, iomem);
	if (IS_ERR(host->ioaddr)) {
		ret = PTR_ERR(host->ioaddr);
		goto err;
	}

	/* Parse OF address directly to get the physical address for
	 * DMA to our registers.
	 */
	regaddr_p = of_get_address(pdev->dev.of_node, 0, NULL, NULL);
	if (!regaddr_p) {
		dev_err(dev, "Can't get phys address\n");
		ret = -EINVAL;
		goto err;
	}

	host->phys_addr = be32_to_cpup(regaddr_p);

	host->dma_chan = NULL;
	host->dma_desc = NULL;

	host->dma_chan_rxtx = dma_request_slave_channel(dev, "rx-tx");

	clk = devm_clk_get(dev, NULL);
	if (IS_ERR(clk)) {
		ret = PTR_ERR(clk);
		if (ret != -EPROBE_DEFER)
			dev_err(dev, "could not get clk: %d\n", ret);
		goto err;
	}

	host->max_clk = clk_get_rate(clk);

	host->irq = platform_get_irq(pdev, 0);
	if (host->irq <= 0) {
		dev_err(dev, "get IRQ failed\n");
		ret = -EINVAL;
		goto err;
	}

	ret = mmc_of_parse(mmc);
	if (ret)
		goto err;

	ret = bcm2835_add_host(host);
	if (ret)
		goto err;

	platform_set_drvdata(pdev, host);

	dev_dbg(dev, "%s -> OK\n", __func__);

	return 0;

err:
	dev_dbg(dev, "%s -> err %d\n", __func__, ret);
1434 1435
	if (host->dma_chan_rxtx)
		dma_release_channel(host->dma_chan_rxtx);
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
	mmc_free_host(mmc);

	return ret;
}

static int bcm2835_remove(struct platform_device *pdev)
{
	struct bcm2835_host *host = platform_get_drvdata(pdev);

	mmc_remove_host(host->mmc);

	writel(SDVDD_POWER_OFF, host->ioaddr + SDVDD);

	free_irq(host->irq, host);

	cancel_work_sync(&host->dma_work);
	cancel_delayed_work_sync(&host->timeout_work);

1454 1455 1456
	if (host->dma_chan_rxtx)
		dma_release_channel(host->dma_chan_rxtx);

1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
	mmc_free_host(host->mmc);
	platform_set_drvdata(pdev, NULL);

	return 0;
}

static const struct of_device_id bcm2835_match[] = {
	{ .compatible = "brcm,bcm2835-sdhost" },
	{ }
};
MODULE_DEVICE_TABLE(of, bcm2835_match);

static struct platform_driver bcm2835_driver = {
	.probe      = bcm2835_probe,
	.remove     = bcm2835_remove,
	.driver     = {
		.name		= "sdhost-bcm2835",
		.of_match_table	= bcm2835_match,
	},
};
module_platform_driver(bcm2835_driver);

MODULE_ALIAS("platform:sdhost-bcm2835");
MODULE_DESCRIPTION("BCM2835 SDHost driver");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Phil Elwell");