mct.c 11.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* linux/arch/arm/mach-exynos4/mct.c
 *
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
 *
 * EXYNOS4 MCT(Multi-Core Timer) support
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
*/

#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/clockchips.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/percpu.h>

23
#include <asm/hardware/gic.h>
24
#include <asm/localtimer.h>
25 26 27

#include <plat/cpu.h>

28
#include <mach/map.h>
29
#include <mach/irqs.h>
30 31 32
#include <mach/regs-mct.h>
#include <asm/mach/time.h>

33 34
#define TICK_BASE_CNT	1

35 36 37 38 39
enum {
	MCT_INT_SPI,
	MCT_INT_PPI
};

40
static unsigned long clk_rate;
41
static unsigned int mct_int_type;
42 43 44 45

struct mct_clock_event_device {
	struct clock_event_device *evt;
	void __iomem *base;
46
	char name[10];
47 48 49 50 51 52 53 54 55 56
};

static void exynos4_mct_write(unsigned int value, void *addr)
{
	void __iomem *stat_addr;
	u32 mask;
	u32 i;

	__raw_writel(value, addr);

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
	if (likely(addr >= EXYNOS4_MCT_L_BASE(0))) {
		u32 base = (u32) addr & EXYNOS4_MCT_L_MASK;
		switch ((u32) addr & ~EXYNOS4_MCT_L_MASK) {
		case (u32) MCT_L_TCON_OFFSET:
			stat_addr = (void __iomem *) base + MCT_L_WSTAT_OFFSET;
			mask = 1 << 3;		/* L_TCON write status */
			break;
		case (u32) MCT_L_ICNTB_OFFSET:
			stat_addr = (void __iomem *) base + MCT_L_WSTAT_OFFSET;
			mask = 1 << 1;		/* L_ICNTB write status */
			break;
		case (u32) MCT_L_TCNTB_OFFSET:
			stat_addr = (void __iomem *) base + MCT_L_WSTAT_OFFSET;
			mask = 1 << 0;		/* L_TCNTB write status */
			break;
		default:
			return;
		}
	} else {
		switch ((u32) addr) {
		case (u32) EXYNOS4_MCT_G_TCON:
			stat_addr = EXYNOS4_MCT_G_WSTAT;
			mask = 1 << 16;		/* G_TCON write status */
			break;
		case (u32) EXYNOS4_MCT_G_COMP0_L:
			stat_addr = EXYNOS4_MCT_G_WSTAT;
			mask = 1 << 0;		/* G_COMP0_L write status */
			break;
		case (u32) EXYNOS4_MCT_G_COMP0_U:
			stat_addr = EXYNOS4_MCT_G_WSTAT;
			mask = 1 << 1;		/* G_COMP0_U write status */
			break;
		case (u32) EXYNOS4_MCT_G_COMP0_ADD_INCR:
			stat_addr = EXYNOS4_MCT_G_WSTAT;
			mask = 1 << 2;		/* G_COMP0_ADD_INCR w status */
			break;
		case (u32) EXYNOS4_MCT_G_CNT_L:
			stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
			mask = 1 << 0;		/* G_CNT_L write status */
			break;
		case (u32) EXYNOS4_MCT_G_CNT_U:
			stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
			mask = 1 << 1;		/* G_CNT_U write status */
			break;
		default:
			return;
		}
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
	}

	/* Wait maximum 1 ms until written values are applied */
	for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
		if (__raw_readl(stat_addr) & mask) {
			__raw_writel(mask, stat_addr);
			return;
		}

	panic("MCT hangs after writing %d (addr:0x%08x)\n", value, (u32)addr);
}

/* Clocksource handling */
static void exynos4_mct_frc_start(u32 hi, u32 lo)
{
	u32 reg;

	exynos4_mct_write(lo, EXYNOS4_MCT_G_CNT_L);
	exynos4_mct_write(hi, EXYNOS4_MCT_G_CNT_U);

	reg = __raw_readl(EXYNOS4_MCT_G_TCON);
	reg |= MCT_G_TCON_START;
	exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
}

static cycle_t exynos4_frc_read(struct clocksource *cs)
{
	unsigned int lo, hi;
	u32 hi2 = __raw_readl(EXYNOS4_MCT_G_CNT_U);

	do {
		hi = hi2;
		lo = __raw_readl(EXYNOS4_MCT_G_CNT_L);
		hi2 = __raw_readl(EXYNOS4_MCT_G_CNT_U);
	} while (hi != hi2);

	return ((cycle_t)hi << 32) | lo;
}

143 144 145 146 147
static void exynos4_frc_resume(struct clocksource *cs)
{
	exynos4_mct_frc_start(0, 0);
}

148 149 150 151 152 153
struct clocksource mct_frc = {
	.name		= "mct-frc",
	.rating		= 400,
	.read		= exynos4_frc_read,
	.mask		= CLOCKSOURCE_MASK(64),
	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
154
	.resume		= exynos4_frc_resume,
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
};

static void __init exynos4_clocksource_init(void)
{
	exynos4_mct_frc_start(0, 0);

	if (clocksource_register_hz(&mct_frc, clk_rate))
		panic("%s: can't register clocksource\n", mct_frc.name);
}

static void exynos4_mct_comp0_stop(void)
{
	unsigned int tcon;

	tcon = __raw_readl(EXYNOS4_MCT_G_TCON);
	tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);

	exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
	exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
}

static void exynos4_mct_comp0_start(enum clock_event_mode mode,
				    unsigned long cycles)
{
	unsigned int tcon;
	cycle_t comp_cycle;

	tcon = __raw_readl(EXYNOS4_MCT_G_TCON);

	if (mode == CLOCK_EVT_MODE_PERIODIC) {
		tcon |= MCT_G_TCON_COMP0_AUTO_INC;
		exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
	}

	comp_cycle = exynos4_frc_read(&mct_frc) + cycles;
	exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
	exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);

	exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);

	tcon |= MCT_G_TCON_COMP0_ENABLE;
	exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
}

static int exynos4_comp_set_next_event(unsigned long cycles,
				       struct clock_event_device *evt)
{
	exynos4_mct_comp0_start(evt->mode, cycles);

	return 0;
}

static void exynos4_comp_set_mode(enum clock_event_mode mode,
				  struct clock_event_device *evt)
{
210
	unsigned long cycles_per_jiffy;
211 212 213 214
	exynos4_mct_comp0_stop();

	switch (mode) {
	case CLOCK_EVT_MODE_PERIODIC:
215 216 217
		cycles_per_jiffy =
			(((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
		exynos4_mct_comp0_start(mode, cycles_per_jiffy);
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
		break;

	case CLOCK_EVT_MODE_ONESHOT:
	case CLOCK_EVT_MODE_UNUSED:
	case CLOCK_EVT_MODE_SHUTDOWN:
	case CLOCK_EVT_MODE_RESUME:
		break;
	}
}

static struct clock_event_device mct_comp_device = {
	.name		= "mct-comp",
	.features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
	.rating		= 250,
	.set_next_event	= exynos4_comp_set_next_event,
	.set_mode	= exynos4_comp_set_mode,
};

static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);

	evt->event_handler(evt);

	return IRQ_HANDLED;
}

static struct irqaction mct_comp_event_irq = {
	.name		= "mct_comp_irq",
	.flags		= IRQF_TIMER | IRQF_IRQPOLL,
	.handler	= exynos4_mct_comp_isr,
	.dev_id		= &mct_comp_device,
};

static void exynos4_clockevent_init(void)
{
256
	clockevents_calc_mult_shift(&mct_comp_device, clk_rate, 5);
257 258 259 260 261 262 263
	mct_comp_device.max_delta_ns =
		clockevent_delta2ns(0xffffffff, &mct_comp_device);
	mct_comp_device.min_delta_ns =
		clockevent_delta2ns(0xf, &mct_comp_device);
	mct_comp_device.cpumask = cpumask_of(0);
	clockevents_register_device(&mct_comp_device);

264 265 266 267
	if (soc_is_exynos5250())
		setup_irq(EXYNOS5_IRQ_MCT_G0, &mct_comp_event_irq);
	else
		setup_irq(EXYNOS4_IRQ_MCT_G0, &mct_comp_event_irq);
268 269 270
}

#ifdef CONFIG_LOCAL_TIMERS
271 272 273

static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
/* Clock event handling */
static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
{
	unsigned long tmp;
	unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
	void __iomem *addr = mevt->base + MCT_L_TCON_OFFSET;

	tmp = __raw_readl(addr);
	if (tmp & mask) {
		tmp &= ~mask;
		exynos4_mct_write(tmp, addr);
	}
}

static void exynos4_mct_tick_start(unsigned long cycles,
				   struct mct_clock_event_device *mevt)
{
	unsigned long tmp;

	exynos4_mct_tick_stop(mevt);

	tmp = (1 << 31) | cycles;	/* MCT_L_UPDATE_ICNTB */

	/* update interrupt count buffer */
	exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);

L
Lucas De Marchi 已提交
300
	/* enable MCT tick interrupt */
301 302 303 304 305 306 307 308 309 310 311
	exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);

	tmp = __raw_readl(mevt->base + MCT_L_TCON_OFFSET);
	tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
	       MCT_L_TCON_INTERVAL_MODE;
	exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
}

static int exynos4_tick_set_next_event(unsigned long cycles,
				       struct clock_event_device *evt)
{
312
	struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
313 314 315 316 317 318 319 320 321

	exynos4_mct_tick_start(cycles, mevt);

	return 0;
}

static inline void exynos4_tick_set_mode(enum clock_event_mode mode,
					 struct clock_event_device *evt)
{
322
	struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
323
	unsigned long cycles_per_jiffy;
324 325 326 327 328

	exynos4_mct_tick_stop(mevt);

	switch (mode) {
	case CLOCK_EVT_MODE_PERIODIC:
329 330 331
		cycles_per_jiffy =
			(((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
		exynos4_mct_tick_start(cycles_per_jiffy, mevt);
332 333 334 335 336 337 338 339 340 341
		break;

	case CLOCK_EVT_MODE_ONESHOT:
	case CLOCK_EVT_MODE_UNUSED:
	case CLOCK_EVT_MODE_SHUTDOWN:
	case CLOCK_EVT_MODE_RESUME:
		break;
	}
}

342
static int exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
343 344 345 346 347 348 349 350 351 352 353 354
{
	struct clock_event_device *evt = mevt->evt;

	/*
	 * This is for supporting oneshot mode.
	 * Mct would generate interrupt periodically
	 * without explicit stopping.
	 */
	if (evt->mode != CLOCK_EVT_MODE_PERIODIC)
		exynos4_mct_tick_stop(mevt);

	/* Clear the MCT tick interrupt */
355 356 357 358 359 360 361 362 363 364 365 366 367 368
	if (__raw_readl(mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1) {
		exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
		return 1;
	} else {
		return 0;
	}
}

static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
{
	struct mct_clock_event_device *mevt = dev_id;
	struct clock_event_device *evt = mevt->evt;

	exynos4_mct_tick_clear(mevt);
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386

	evt->event_handler(evt);

	return IRQ_HANDLED;
}

static struct irqaction mct_tick0_event_irq = {
	.name		= "mct_tick0_irq",
	.flags		= IRQF_TIMER | IRQF_NOBALANCING,
	.handler	= exynos4_mct_tick_isr,
};

static struct irqaction mct_tick1_event_irq = {
	.name		= "mct_tick1_irq",
	.flags		= IRQF_TIMER | IRQF_NOBALANCING,
	.handler	= exynos4_mct_tick_isr,
};

387
static int __cpuinit exynos4_local_timer_setup(struct clock_event_device *evt)
388
{
389
	struct mct_clock_event_device *mevt;
390 391
	unsigned int cpu = smp_processor_id();

392 393
	mevt = this_cpu_ptr(&percpu_mct_tick);
	mevt->evt = evt;
394

395 396
	mevt->base = EXYNOS4_MCT_L_BASE(cpu);
	sprintf(mevt->name, "mct_tick%d", cpu);
397

398
	evt->name = mevt->name;
399 400 401 402 403 404
	evt->cpumask = cpumask_of(cpu);
	evt->set_next_event = exynos4_tick_set_next_event;
	evt->set_mode = exynos4_tick_set_mode;
	evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
	evt->rating = 450;

405
	clockevents_calc_mult_shift(evt, clk_rate / (TICK_BASE_CNT + 1), 5);
406 407 408 409 410 411 412
	evt->max_delta_ns =
		clockevent_delta2ns(0x7fffffff, evt);
	evt->min_delta_ns =
		clockevent_delta2ns(0xf, evt);

	clockevents_register_device(evt);

413
	exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
414

415 416
	if (mct_int_type == MCT_INT_SPI) {
		if (cpu == 0) {
417
			mct_tick0_event_irq.dev_id = mevt;
418 419
			evt->irq = EXYNOS4_IRQ_MCT_L0;
			setup_irq(EXYNOS4_IRQ_MCT_L0, &mct_tick0_event_irq);
420
		} else {
421
			mct_tick1_event_irq.dev_id = mevt;
422 423 424
			evt->irq = EXYNOS4_IRQ_MCT_L1;
			setup_irq(EXYNOS4_IRQ_MCT_L1, &mct_tick1_event_irq);
			irq_set_affinity(EXYNOS4_IRQ_MCT_L1, cpumask_of(1));
425
		}
426
	} else {
427
		enable_percpu_irq(EXYNOS_IRQ_MCT_LOCALTIMER, 0);
428
	}
429 430

	return 0;
431 432
}

433
static void exynos4_local_timer_stop(struct clock_event_device *evt)
434
{
435
	unsigned int cpu = smp_processor_id();
436
	evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
437
	if (mct_int_type == MCT_INT_SPI)
438 439 440 441
		if (cpu == 0)
			remove_irq(evt->irq, &mct_tick0_event_irq);
		else
			remove_irq(evt->irq, &mct_tick1_event_irq);
442
	else
443
		disable_percpu_irq(EXYNOS_IRQ_MCT_LOCALTIMER);
444
}
445 446 447 448 449

static struct local_timer_ops exynos4_mct_tick_ops __cpuinitdata = {
	.setup	= exynos4_local_timer_setup,
	.stop	= exynos4_local_timer_stop,
};
450 451 452 453 454 455 456 457
#endif /* CONFIG_LOCAL_TIMERS */

static void __init exynos4_timer_resources(void)
{
	struct clk *mct_clk;
	mct_clk = clk_get(NULL, "xtal");

	clk_rate = clk_get_rate(mct_clk);
458

459
#ifdef CONFIG_LOCAL_TIMERS
460 461 462
	if (mct_int_type == MCT_INT_PPI) {
		int err;

463
		err = request_percpu_irq(EXYNOS_IRQ_MCT_LOCALTIMER,
464 465 466
					 exynos4_mct_tick_isr, "MCT",
					 &percpu_mct_tick);
		WARN(err, "MCT: can't request IRQ %d (%d)\n",
467
		     EXYNOS_IRQ_MCT_LOCALTIMER, err);
468
	}
469 470

	local_timer_register(&exynos4_mct_tick_ops);
471
#endif /* CONFIG_LOCAL_TIMERS */
472 473 474 475
}

static void __init exynos4_timer_init(void)
{
476 477 478 479 480
	if (soc_is_exynos4210())
		mct_int_type = MCT_INT_SPI;
	else
		mct_int_type = MCT_INT_PPI;

481 482 483 484 485 486 487 488
	exynos4_timer_resources();
	exynos4_clocksource_init();
	exynos4_clockevent_init();
}

struct sys_timer exynos4_timer = {
	.init		= exynos4_timer_init,
};