dma-mapping.c 15.8 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  linux/arch/arm/mm/dma-mapping.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13
 *
 *  Copyright (C) 2000-2004 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 *  DMA uncached mapping support.
 */
#include <linux/module.h>
#include <linux/mm.h>
14
#include <linux/gfp.h>
L
Linus Torvalds 已提交
15 16 17 18 19 20
#include <linux/errno.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>

21
#include <asm/memory.h>
22
#include <asm/highmem.h>
L
Linus Torvalds 已提交
23 24
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
25 26
#include <asm/sizes.h>

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
static u64 get_coherent_dma_mask(struct device *dev)
{
	u64 mask = ISA_DMA_THRESHOLD;

	if (dev) {
		mask = dev->coherent_dma_mask;

		/*
		 * Sanity check the DMA mask - it must be non-zero, and
		 * must be able to be satisfied by a DMA allocation.
		 */
		if (mask == 0) {
			dev_warn(dev, "coherent DMA mask is unset\n");
			return 0;
		}

		if ((~mask) & ISA_DMA_THRESHOLD) {
			dev_warn(dev, "coherent DMA mask %#llx is smaller "
				 "than system GFP_DMA mask %#llx\n",
				 mask, (unsigned long long)ISA_DMA_THRESHOLD);
			return 0;
		}
	}
L
Linus Torvalds 已提交
50

51 52 53
	return mask;
}

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
/*
 * Allocate a DMA buffer for 'dev' of size 'size' using the
 * specified gfp mask.  Note that 'size' must be page aligned.
 */
static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
{
	unsigned long order = get_order(size);
	struct page *page, *p, *e;
	void *ptr;
	u64 mask = get_coherent_dma_mask(dev);

#ifdef CONFIG_DMA_API_DEBUG
	u64 limit = (mask + 1) & ~mask;
	if (limit && size >= limit) {
		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
			size, mask);
		return NULL;
	}
#endif

	if (!mask)
		return NULL;

	if (mask < 0xffffffffULL)
		gfp |= GFP_DMA;

	page = alloc_pages(gfp, order);
	if (!page)
		return NULL;

	/*
	 * Now split the huge page and free the excess pages
	 */
	split_page(page, order);
	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
		__free_page(p);

	/*
	 * Ensure that the allocated pages are zeroed, and that any data
	 * lurking in the kernel direct-mapped region is invalidated.
	 */
	ptr = page_address(page);
	memset(ptr, 0, size);
	dmac_flush_range(ptr, ptr + size);
	outer_flush_range(__pa(ptr), __pa(ptr) + size);

	return page;
}

/*
 * Free a DMA buffer.  'size' must be page aligned.
 */
static void __dma_free_buffer(struct page *page, size_t size)
{
	struct page *e = page + (size >> PAGE_SHIFT);

	while (page < e) {
		__free_page(page);
		page++;
	}
}

116
#ifdef CONFIG_MMU
117 118 119 120 121 122 123 124 125
/* Sanity check size */
#if (CONSISTENT_DMA_SIZE % SZ_2M)
#error "CONSISTENT_DMA_SIZE must be multiple of 2MiB"
#endif

#define CONSISTENT_OFFSET(x)	(((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT)
#define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PGDIR_SHIFT)
#define NUM_CONSISTENT_PTES (CONSISTENT_DMA_SIZE >> PGDIR_SHIFT)

L
Linus Torvalds 已提交
126
/*
127
 * These are the page tables (2MB each) covering uncached, DMA consistent allocations
L
Linus Torvalds 已提交
128
 */
129
static pte_t *consistent_pte[NUM_CONSISTENT_PTES];
L
Linus Torvalds 已提交
130

131
#include "vmregion.h"
L
Linus Torvalds 已提交
132

133 134
static struct arm_vmregion_head consistent_head = {
	.vm_lock	= __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
L
Linus Torvalds 已提交
135 136 137 138 139 140 141 142 143
	.vm_list	= LIST_HEAD_INIT(consistent_head.vm_list),
	.vm_start	= CONSISTENT_BASE,
	.vm_end		= CONSISTENT_END,
};

#ifdef CONFIG_HUGETLB_PAGE
#error ARM Coherent DMA allocator does not (yet) support huge TLB
#endif

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
/*
 * Initialise the consistent memory allocation.
 */
static int __init consistent_init(void)
{
	int ret = 0;
	pgd_t *pgd;
	pmd_t *pmd;
	pte_t *pte;
	int i = 0;
	u32 base = CONSISTENT_BASE;

	do {
		pgd = pgd_offset(&init_mm, base);
		pmd = pmd_alloc(&init_mm, pgd, base);
		if (!pmd) {
			printk(KERN_ERR "%s: no pmd tables\n", __func__);
			ret = -ENOMEM;
			break;
		}
		WARN_ON(!pmd_none(*pmd));

		pte = pte_alloc_kernel(pmd, base);
		if (!pte) {
			printk(KERN_ERR "%s: no pte tables\n", __func__);
			ret = -ENOMEM;
			break;
		}

		consistent_pte[i++] = pte;
		base += (1 << PGDIR_SHIFT);
	} while (base < CONSISTENT_END);

	return ret;
}

core_initcall(consistent_init);

L
Linus Torvalds 已提交
182
static void *
183
__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot)
L
Linus Torvalds 已提交
184
{
185
	struct arm_vmregion *c;
186 187
	size_t align;
	int bit;
L
Linus Torvalds 已提交
188

189 190 191 192 193 194
	if (!consistent_pte[0]) {
		printk(KERN_ERR "%s: not initialised\n", __func__);
		dump_stack();
		return NULL;
	}

195 196 197 198 199 200
	/*
	 * Align the virtual region allocation - maximum alignment is
	 * a section size, minimum is a page size.  This helps reduce
	 * fragmentation of the DMA space, and also prevents allocations
	 * smaller than a section from crossing a section boundary.
	 */
201
	bit = fls(size - 1);
202 203 204 205
	if (bit > SECTION_SHIFT)
		bit = SECTION_SHIFT;
	align = 1 << bit;

L
Linus Torvalds 已提交
206 207 208
	/*
	 * Allocate a virtual address in the consistent mapping region.
	 */
209
	c = arm_vmregion_alloc(&consistent_head, align, size,
L
Linus Torvalds 已提交
210 211
			    gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
	if (c) {
212 213 214
		pte_t *pte;
		int idx = CONSISTENT_PTE_INDEX(c->vm_start);
		u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
L
Linus Torvalds 已提交
215

216
		pte = consistent_pte[idx] + off;
L
Linus Torvalds 已提交
217 218 219 220 221
		c->vm_pages = page;

		do {
			BUG_ON(!pte_none(*pte));

R
Russell King 已提交
222
			set_pte_ext(pte, mk_pte(page, prot), 0);
L
Linus Torvalds 已提交
223 224
			page++;
			pte++;
225 226 227 228 229
			off++;
			if (off >= PTRS_PER_PTE) {
				off = 0;
				pte = consistent_pte[++idx];
			}
L
Linus Torvalds 已提交
230 231
		} while (size -= PAGE_SIZE);

232 233
		dsb();

L
Linus Torvalds 已提交
234 235 236 237
		return (void *)c->vm_start;
	}
	return NULL;
}
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276

static void __dma_free_remap(void *cpu_addr, size_t size)
{
	struct arm_vmregion *c;
	unsigned long addr;
	pte_t *ptep;
	int idx;
	u32 off;

	c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
	if (!c) {
		printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
		       __func__, cpu_addr);
		dump_stack();
		return;
	}

	if ((c->vm_end - c->vm_start) != size) {
		printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
		       __func__, c->vm_end - c->vm_start, size);
		dump_stack();
		size = c->vm_end - c->vm_start;
	}

	idx = CONSISTENT_PTE_INDEX(c->vm_start);
	off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
	ptep = consistent_pte[idx] + off;
	addr = c->vm_start;
	do {
		pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);

		ptep++;
		addr += PAGE_SIZE;
		off++;
		if (off >= PTRS_PER_PTE) {
			off = 0;
			ptep = consistent_pte[++idx];
		}

277 278 279
		if (pte_none(pte) || !pte_present(pte))
			printk(KERN_CRIT "%s: bad page in kernel page table\n",
			       __func__);
280 281 282 283 284 285 286
	} while (size -= PAGE_SIZE);

	flush_tlb_kernel_range(c->vm_start, c->vm_end);

	arm_vmregion_free(&consistent_head, c);
}

287
#else	/* !CONFIG_MMU */
288

289 290 291 292 293
#define __dma_alloc_remap(page, size, gfp, prot)	page_address(page)
#define __dma_free_remap(addr, size)			do { } while (0)

#endif	/* CONFIG_MMU */

294 295 296 297
static void *
__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
	    pgprot_t prot)
{
298
	struct page *page;
299
	void *addr;
300

301 302
	*handle = ~0;
	size = PAGE_ALIGN(size);
303

304 305 306
	page = __dma_alloc_buffer(dev, size, gfp);
	if (!page)
		return NULL;
307

308 309 310 311
	if (!arch_is_coherent())
		addr = __dma_alloc_remap(page, size, gfp, prot);
	else
		addr = page_address(page);
312

313 314
	if (addr)
		*handle = page_to_dma(dev, page);
315

316 317
	return addr;
}
L
Linus Torvalds 已提交
318 319 320 321 322 323

/*
 * Allocate DMA-coherent memory space and return both the kernel remapped
 * virtual and bus address for that space.
 */
void *
A
Al Viro 已提交
324
dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
L
Linus Torvalds 已提交
325
{
326 327 328 329 330
	void *memory;

	if (dma_alloc_from_coherent(dev, size, handle, &memory))
		return memory;

L
Linus Torvalds 已提交
331
	return __dma_alloc(dev, size, handle, gfp,
332
			   pgprot_dmacoherent(pgprot_kernel));
L
Linus Torvalds 已提交
333 334 335 336 337 338 339 340
}
EXPORT_SYMBOL(dma_alloc_coherent);

/*
 * Allocate a writecombining region, in much the same way as
 * dma_alloc_coherent above.
 */
void *
A
Al Viro 已提交
341
dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
L
Linus Torvalds 已提交
342 343 344 345 346 347 348 349 350
{
	return __dma_alloc(dev, size, handle, gfp,
			   pgprot_writecombine(pgprot_kernel));
}
EXPORT_SYMBOL(dma_alloc_writecombine);

static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
		    void *cpu_addr, dma_addr_t dma_addr, size_t size)
{
351 352
	int ret = -ENXIO;
#ifdef CONFIG_MMU
353 354
	unsigned long user_size, kern_size;
	struct arm_vmregion *c;
L
Linus Torvalds 已提交
355 356 357

	user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;

358
	c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
L
Linus Torvalds 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371
	if (c) {
		unsigned long off = vma->vm_pgoff;

		kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;

		if (off < kern_size &&
		    user_size <= (kern_size - off)) {
			ret = remap_pfn_range(vma, vma->vm_start,
					      page_to_pfn(c->vm_pages) + off,
					      user_size << PAGE_SHIFT,
					      vma->vm_page_prot);
		}
	}
372
#endif	/* CONFIG_MMU */
L
Linus Torvalds 已提交
373 374 375 376 377 378 379

	return ret;
}

int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
		      void *cpu_addr, dma_addr_t dma_addr, size_t size)
{
380
	vma->vm_page_prot = pgprot_dmacoherent(vma->vm_page_prot);
L
Linus Torvalds 已提交
381 382 383 384 385 386 387 388 389 390 391 392 393 394
	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
}
EXPORT_SYMBOL(dma_mmap_coherent);

int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
			  void *cpu_addr, dma_addr_t dma_addr, size_t size)
{
	vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
}
EXPORT_SYMBOL(dma_mmap_writecombine);

/*
 * free a page as defined by the above mapping.
395
 * Must not be called with IRQs disabled.
L
Linus Torvalds 已提交
396 397 398
 */
void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
{
399 400
	WARN_ON(irqs_disabled());

401 402 403
	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
		return;

404 405
	size = PAGE_ALIGN(size);

406 407
	if (!arch_is_coherent())
		__dma_free_remap(cpu_addr, size);
408 409

	__dma_free_buffer(dma_to_page(dev, handle), size);
L
Linus Torvalds 已提交
410 411 412 413 414
}
EXPORT_SYMBOL(dma_free_coherent);

/*
 * Make an area consistent for devices.
415 416 417
 * Note: Drivers should NOT use this function directly, as it will break
 * platforms with CONFIG_DMABOUNCE.
 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
L
Linus Torvalds 已提交
418
 */
419 420 421
void ___dma_single_cpu_to_dev(const void *kaddr, size_t size,
	enum dma_data_direction dir)
{
422 423
	unsigned long paddr;

424 425 426
	BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));

	dmac_map_area(kaddr, size, dir);
427 428 429 430 431 432 433 434

	paddr = __pa(kaddr);
	if (dir == DMA_FROM_DEVICE) {
		outer_inv_range(paddr, paddr + size);
	} else {
		outer_clean_range(paddr, paddr + size);
	}
	/* FIXME: non-speculating: flush on bidirectional mappings? */
435 436 437 438 439 440
}
EXPORT_SYMBOL(___dma_single_cpu_to_dev);

void ___dma_single_dev_to_cpu(const void *kaddr, size_t size,
	enum dma_data_direction dir)
{
441 442
	BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));

443 444 445 446 447 448 449
	/* FIXME: non-speculating: not required */
	/* don't bother invalidating if DMA to device */
	if (dir != DMA_TO_DEVICE) {
		unsigned long paddr = __pa(kaddr);
		outer_inv_range(paddr, paddr + size);
	}

450
	dmac_unmap_area(kaddr, size, dir);
451 452
}
EXPORT_SYMBOL(___dma_single_dev_to_cpu);
453

454
static void dma_cache_maint_page(struct page *page, unsigned long offset,
455 456
	size_t size, enum dma_data_direction dir,
	void (*op)(const void *, size_t, int))
457 458 459 460 461 462 463 464 465 466
{
	/*
	 * A single sg entry may refer to multiple physically contiguous
	 * pages.  But we still need to process highmem pages individually.
	 * If highmem is not configured then the bulk of this loop gets
	 * optimized out.
	 */
	size_t left = size;
	do {
		size_t len = left;
467 468 469 470 471 472 473 474 475 476 477 478 479
		void *vaddr;

		if (PageHighMem(page)) {
			if (len + offset > PAGE_SIZE) {
				if (offset >= PAGE_SIZE) {
					page += offset / PAGE_SIZE;
					offset %= PAGE_SIZE;
				}
				len = PAGE_SIZE - offset;
			}
			vaddr = kmap_high_get(page);
			if (vaddr) {
				vaddr += offset;
480
				op(vaddr, len, dir);
481
				kunmap_high(page);
482 483 484 485 486
			} else if (cache_is_vipt()) {
				pte_t saved_pte;
				vaddr = kmap_high_l1_vipt(page, &saved_pte);
				op(vaddr + offset, len, dir);
				kunmap_high_l1_vipt(page, saved_pte);
487
			}
488 489
		} else {
			vaddr = page_address(page) + offset;
490
			op(vaddr, len, dir);
491 492 493 494 495 496
		}
		offset = 0;
		page++;
		left -= len;
	} while (left);
}
497 498 499 500

void ___dma_page_cpu_to_dev(struct page *page, unsigned long off,
	size_t size, enum dma_data_direction dir)
{
501 502
	unsigned long paddr;

503
	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
504 505

	paddr = page_to_phys(page) + off;
506 507 508 509 510 511
	if (dir == DMA_FROM_DEVICE) {
		outer_inv_range(paddr, paddr + size);
	} else {
		outer_clean_range(paddr, paddr + size);
	}
	/* FIXME: non-speculating: flush on bidirectional mappings? */
512 513 514 515 516 517
}
EXPORT_SYMBOL(___dma_page_cpu_to_dev);

void ___dma_page_dev_to_cpu(struct page *page, unsigned long off,
	size_t size, enum dma_data_direction dir)
{
518 519 520 521 522 523 524
	unsigned long paddr = page_to_phys(page) + off;

	/* FIXME: non-speculating: not required */
	/* don't bother invalidating if DMA to device */
	if (dir != DMA_TO_DEVICE)
		outer_inv_range(paddr, paddr + size);

525
	dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
526 527 528 529 530 531

	/*
	 * Mark the D-cache clean for this page to avoid extra flushing.
	 */
	if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
		set_bit(PG_dcache_clean, &page->flags);
532 533
}
EXPORT_SYMBOL(___dma_page_dev_to_cpu);
534

535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
/**
 * dma_map_sg - map a set of SG buffers for streaming mode DMA
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map
 * @dir: DMA transfer direction
 *
 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 * This is the scatter-gather version of the dma_map_single interface.
 * Here the scatter gather list elements are each tagged with the
 * appropriate dma address and length.  They are obtained via
 * sg_dma_{address,length}.
 *
 * Device ownership issues as mentioned for dma_map_single are the same
 * here.
 */
int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
		enum dma_data_direction dir)
{
	struct scatterlist *s;
555
	int i, j;
556 557

	for_each_sg(sg, s, nents, i) {
558 559 560 561
		s->dma_address = dma_map_page(dev, sg_page(s), s->offset,
						s->length, dir);
		if (dma_mapping_error(dev, s->dma_address))
			goto bad_mapping;
562 563
	}
	return nents;
564 565 566 567 568

 bad_mapping:
	for_each_sg(sg, s, i, j)
		dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
	return 0;
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
}
EXPORT_SYMBOL(dma_map_sg);

/**
 * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to unmap (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 *
 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 * rules concerning calls here are the same as for dma_unmap_single().
 */
void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
		enum dma_data_direction dir)
{
585 586 587 588 589
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i)
		dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
}
EXPORT_SYMBOL(dma_unmap_sg);

/**
 * dma_sync_sg_for_cpu
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
			int nents, enum dma_data_direction dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i) {
607 608 609 610 611 612
		if (!dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0,
					    sg_dma_len(s), dir))
			continue;

		__dma_page_dev_to_cpu(sg_page(s), s->offset,
				      s->length, dir);
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
	}
}
EXPORT_SYMBOL(dma_sync_sg_for_cpu);

/**
 * dma_sync_sg_for_device
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
			int nents, enum dma_data_direction dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i) {
631 632 633 634
		if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0,
					sg_dma_len(s), dir))
			continue;

635 636
		__dma_page_cpu_to_dev(sg_page(s), s->offset,
				      s->length, dir);
637 638 639
	}
}
EXPORT_SYMBOL(dma_sync_sg_for_device);