bio.c 48.2 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public Licens
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
 *
 */
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
22
#include <linux/uio.h>
23
#include <linux/iocontext.h>
L
Linus Torvalds 已提交
24 25 26
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/kernel.h>
27
#include <linux/export.h>
L
Linus Torvalds 已提交
28 29
#include <linux/mempool.h>
#include <linux/workqueue.h>
30
#include <linux/cgroup.h>
L
Linus Torvalds 已提交
31

32
#include <trace/events/block.h>
33

34 35 36 37 38 39
/*
 * Test patch to inline a certain number of bi_io_vec's inside the bio
 * itself, to shrink a bio data allocation from two mempool calls to one
 */
#define BIO_INLINE_VECS		4

L
Linus Torvalds 已提交
40 41 42 43 44 45
/*
 * if you change this list, also change bvec_alloc or things will
 * break badly! cannot be bigger than what you can fit into an
 * unsigned short
 */
#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
46
static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
L
Linus Torvalds 已提交
47 48 49 50 51 52 53 54
	BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
};
#undef BV

/*
 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
 * IO code that does not need private memory pools.
 */
55
struct bio_set *fs_bio_set;
56
EXPORT_SYMBOL(fs_bio_set);
L
Linus Torvalds 已提交
57

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
/*
 * Our slab pool management
 */
struct bio_slab {
	struct kmem_cache *slab;
	unsigned int slab_ref;
	unsigned int slab_size;
	char name[8];
};
static DEFINE_MUTEX(bio_slab_lock);
static struct bio_slab *bio_slabs;
static unsigned int bio_slab_nr, bio_slab_max;

static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
{
	unsigned int sz = sizeof(struct bio) + extra_size;
	struct kmem_cache *slab = NULL;
75
	struct bio_slab *bslab, *new_bio_slabs;
76
	unsigned int new_bio_slab_max;
77 78 79 80 81 82
	unsigned int i, entry = -1;

	mutex_lock(&bio_slab_lock);

	i = 0;
	while (i < bio_slab_nr) {
83
		bslab = &bio_slabs[i];
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98

		if (!bslab->slab && entry == -1)
			entry = i;
		else if (bslab->slab_size == sz) {
			slab = bslab->slab;
			bslab->slab_ref++;
			break;
		}
		i++;
	}

	if (slab)
		goto out_unlock;

	if (bio_slab_nr == bio_slab_max && entry == -1) {
99
		new_bio_slab_max = bio_slab_max << 1;
100
		new_bio_slabs = krealloc(bio_slabs,
101
					 new_bio_slab_max * sizeof(struct bio_slab),
102 103
					 GFP_KERNEL);
		if (!new_bio_slabs)
104
			goto out_unlock;
105
		bio_slab_max = new_bio_slab_max;
106
		bio_slabs = new_bio_slabs;
107 108 109 110 111 112 113
	}
	if (entry == -1)
		entry = bio_slab_nr++;

	bslab = &bio_slabs[entry];

	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
114 115
	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
				 SLAB_HWCACHE_ALIGN, NULL);
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
	if (!slab)
		goto out_unlock;

	bslab->slab = slab;
	bslab->slab_ref = 1;
	bslab->slab_size = sz;
out_unlock:
	mutex_unlock(&bio_slab_lock);
	return slab;
}

static void bio_put_slab(struct bio_set *bs)
{
	struct bio_slab *bslab = NULL;
	unsigned int i;

	mutex_lock(&bio_slab_lock);

	for (i = 0; i < bio_slab_nr; i++) {
		if (bs->bio_slab == bio_slabs[i].slab) {
			bslab = &bio_slabs[i];
			break;
		}
	}

	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
		goto out;

	WARN_ON(!bslab->slab_ref);

	if (--bslab->slab_ref)
		goto out;

	kmem_cache_destroy(bslab->slab);
	bslab->slab = NULL;

out:
	mutex_unlock(&bio_slab_lock);
}

156 157 158 159 160
unsigned int bvec_nr_vecs(unsigned short idx)
{
	return bvec_slabs[idx].nr_vecs;
}

161
void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
162 163 164 165
{
	BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);

	if (idx == BIOVEC_MAX_IDX)
166
		mempool_free(bv, pool);
167 168 169 170 171 172 173
	else {
		struct biovec_slab *bvs = bvec_slabs + idx;

		kmem_cache_free(bvs->slab, bv);
	}
}

174 175
struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
			   mempool_t *pool)
L
Linus Torvalds 已提交
176 177 178
{
	struct bio_vec *bvl;

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
	/*
	 * see comment near bvec_array define!
	 */
	switch (nr) {
	case 1:
		*idx = 0;
		break;
	case 2 ... 4:
		*idx = 1;
		break;
	case 5 ... 16:
		*idx = 2;
		break;
	case 17 ... 64:
		*idx = 3;
		break;
	case 65 ... 128:
		*idx = 4;
		break;
	case 129 ... BIO_MAX_PAGES:
		*idx = 5;
		break;
	default:
		return NULL;
	}

	/*
	 * idx now points to the pool we want to allocate from. only the
	 * 1-vec entry pool is mempool backed.
	 */
	if (*idx == BIOVEC_MAX_IDX) {
fallback:
211
		bvl = mempool_alloc(pool, gfp_mask);
212 213
	} else {
		struct biovec_slab *bvs = bvec_slabs + *idx;
214
		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
215

J
Jens Axboe 已提交
216
		/*
217 218 219
		 * Make this allocation restricted and don't dump info on
		 * allocation failures, since we'll fallback to the mempool
		 * in case of failure.
J
Jens Axboe 已提交
220
		 */
221
		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
L
Linus Torvalds 已提交
222

J
Jens Axboe 已提交
223
		/*
224
		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
225
		 * is set, retry with the 1-entry mempool
J
Jens Axboe 已提交
226
		 */
227
		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
228
		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
229 230 231 232 233
			*idx = BIOVEC_MAX_IDX;
			goto fallback;
		}
	}

L
Linus Torvalds 已提交
234 235 236
	return bvl;
}

237
static void __bio_free(struct bio *bio)
L
Linus Torvalds 已提交
238
{
239
	bio_disassociate_task(bio);
L
Linus Torvalds 已提交
240

241
	if (bio_integrity(bio))
242
		bio_integrity_free(bio);
243
}
244

245 246 247 248 249 250 251 252
static void bio_free(struct bio *bio)
{
	struct bio_set *bs = bio->bi_pool;
	void *p;

	__bio_free(bio);

	if (bs) {
253
		if (bio_flagged(bio, BIO_OWNS_VEC))
254
			bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
255 256 257 258 259

		/*
		 * If we have front padding, adjust the bio pointer before freeing
		 */
		p = bio;
260 261
		p -= bs->front_pad;

262 263 264 265 266
		mempool_free(p, bs->bio_pool);
	} else {
		/* Bio was allocated by bio_kmalloc() */
		kfree(bio);
	}
267 268
}

269
void bio_init(struct bio *bio)
L
Linus Torvalds 已提交
270
{
271
	memset(bio, 0, sizeof(*bio));
272
	atomic_set(&bio->__bi_remaining, 1);
273
	atomic_set(&bio->__bi_cnt, 1);
L
Linus Torvalds 已提交
274
}
275
EXPORT_SYMBOL(bio_init);
L
Linus Torvalds 已提交
276

K
Kent Overstreet 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289 290
/**
 * bio_reset - reinitialize a bio
 * @bio:	bio to reset
 *
 * Description:
 *   After calling bio_reset(), @bio will be in the same state as a freshly
 *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
 *   preserved are the ones that are initialized by bio_alloc_bioset(). See
 *   comment in struct bio.
 */
void bio_reset(struct bio *bio)
{
	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);

291
	__bio_free(bio);
K
Kent Overstreet 已提交
292 293

	memset(bio, 0, BIO_RESET_BYTES);
294
	bio->bi_flags = flags;
295
	atomic_set(&bio->__bi_remaining, 1);
K
Kent Overstreet 已提交
296 297 298
}
EXPORT_SYMBOL(bio_reset);

299
static struct bio *__bio_chain_endio(struct bio *bio)
300
{
301 302
	struct bio *parent = bio->bi_private;

303 304
	if (!parent->bi_error)
		parent->bi_error = bio->bi_error;
305
	bio_put(bio);
306 307 308 309 310 311
	return parent;
}

static void bio_chain_endio(struct bio *bio)
{
	bio_endio(__bio_chain_endio(bio));
312 313 314 315
}

/**
 * bio_chain - chain bio completions
316 317
 * @bio: the target bio
 * @parent: the @bio's parent bio
318 319 320 321 322 323 324 325 326 327 328 329 330
 *
 * The caller won't have a bi_end_io called when @bio completes - instead,
 * @parent's bi_end_io won't be called until both @parent and @bio have
 * completed; the chained bio will also be freed when it completes.
 *
 * The caller must not set bi_private or bi_end_io in @bio.
 */
void bio_chain(struct bio *bio, struct bio *parent)
{
	BUG_ON(bio->bi_private || bio->bi_end_io);

	bio->bi_private = parent;
	bio->bi_end_io	= bio_chain_endio;
331
	bio_inc_remaining(parent);
332 333 334
}
EXPORT_SYMBOL(bio_chain);

335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
static void bio_alloc_rescue(struct work_struct *work)
{
	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
	struct bio *bio;

	while (1) {
		spin_lock(&bs->rescue_lock);
		bio = bio_list_pop(&bs->rescue_list);
		spin_unlock(&bs->rescue_lock);

		if (!bio)
			break;

		generic_make_request(bio);
	}
}

static void punt_bios_to_rescuer(struct bio_set *bs)
{
	struct bio_list punt, nopunt;
	struct bio *bio;

	/*
	 * In order to guarantee forward progress we must punt only bios that
	 * were allocated from this bio_set; otherwise, if there was a bio on
	 * there for a stacking driver higher up in the stack, processing it
	 * could require allocating bios from this bio_set, and doing that from
	 * our own rescuer would be bad.
	 *
	 * Since bio lists are singly linked, pop them all instead of trying to
	 * remove from the middle of the list:
	 */

	bio_list_init(&punt);
	bio_list_init(&nopunt);

	while ((bio = bio_list_pop(current->bio_list)))
		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);

	*current->bio_list = nopunt;

	spin_lock(&bs->rescue_lock);
	bio_list_merge(&bs->rescue_list, &punt);
	spin_unlock(&bs->rescue_lock);

	queue_work(bs->rescue_workqueue, &bs->rescue_work);
}

L
Linus Torvalds 已提交
383 384 385 386
/**
 * bio_alloc_bioset - allocate a bio for I/O
 * @gfp_mask:   the GFP_ mask given to the slab allocator
 * @nr_iovecs:	number of iovecs to pre-allocate
387
 * @bs:		the bio_set to allocate from.
L
Linus Torvalds 已提交
388 389
 *
 * Description:
390 391 392
 *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
 *   backed by the @bs's mempool.
 *
393 394 395 396 397 398
 *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
 *   always be able to allocate a bio. This is due to the mempool guarantees.
 *   To make this work, callers must never allocate more than 1 bio at a time
 *   from this pool. Callers that need to allocate more than 1 bio must always
 *   submit the previously allocated bio for IO before attempting to allocate
 *   a new one. Failure to do so can cause deadlocks under memory pressure.
399
 *
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
 *   Note that when running under generic_make_request() (i.e. any block
 *   driver), bios are not submitted until after you return - see the code in
 *   generic_make_request() that converts recursion into iteration, to prevent
 *   stack overflows.
 *
 *   This would normally mean allocating multiple bios under
 *   generic_make_request() would be susceptible to deadlocks, but we have
 *   deadlock avoidance code that resubmits any blocked bios from a rescuer
 *   thread.
 *
 *   However, we do not guarantee forward progress for allocations from other
 *   mempools. Doing multiple allocations from the same mempool under
 *   generic_make_request() should be avoided - instead, use bio_set's front_pad
 *   for per bio allocations.
 *
415 416 417
 *   RETURNS:
 *   Pointer to new bio on success, NULL on failure.
 */
418
struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
L
Linus Torvalds 已提交
419
{
420
	gfp_t saved_gfp = gfp_mask;
421 422
	unsigned front_pad;
	unsigned inline_vecs;
T
Tejun Heo 已提交
423
	unsigned long idx = BIO_POOL_NONE;
424
	struct bio_vec *bvl = NULL;
T
Tejun Heo 已提交
425 426 427
	struct bio *bio;
	void *p;

428 429 430 431 432 433 434 435 436 437
	if (!bs) {
		if (nr_iovecs > UIO_MAXIOV)
			return NULL;

		p = kmalloc(sizeof(struct bio) +
			    nr_iovecs * sizeof(struct bio_vec),
			    gfp_mask);
		front_pad = 0;
		inline_vecs = nr_iovecs;
	} else {
438 439 440
		/* should not use nobvec bioset for nr_iovecs > 0 */
		if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
			return NULL;
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
		/*
		 * generic_make_request() converts recursion to iteration; this
		 * means if we're running beneath it, any bios we allocate and
		 * submit will not be submitted (and thus freed) until after we
		 * return.
		 *
		 * This exposes us to a potential deadlock if we allocate
		 * multiple bios from the same bio_set() while running
		 * underneath generic_make_request(). If we were to allocate
		 * multiple bios (say a stacking block driver that was splitting
		 * bios), we would deadlock if we exhausted the mempool's
		 * reserve.
		 *
		 * We solve this, and guarantee forward progress, with a rescuer
		 * workqueue per bio_set. If we go to allocate and there are
		 * bios on current->bio_list, we first try the allocation
457 458 459
		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
		 * bios we would be blocking to the rescuer workqueue before
		 * we retry with the original gfp_flags.
460 461 462
		 */

		if (current->bio_list && !bio_list_empty(current->bio_list))
463
			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
464

465
		p = mempool_alloc(bs->bio_pool, gfp_mask);
466 467 468 469 470 471
		if (!p && gfp_mask != saved_gfp) {
			punt_bios_to_rescuer(bs);
			gfp_mask = saved_gfp;
			p = mempool_alloc(bs->bio_pool, gfp_mask);
		}

472 473 474 475
		front_pad = bs->front_pad;
		inline_vecs = BIO_INLINE_VECS;
	}

T
Tejun Heo 已提交
476 477
	if (unlikely(!p))
		return NULL;
L
Linus Torvalds 已提交
478

479
	bio = p + front_pad;
480 481
	bio_init(bio);

482
	if (nr_iovecs > inline_vecs) {
483
		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
484 485 486
		if (!bvl && gfp_mask != saved_gfp) {
			punt_bios_to_rescuer(bs);
			gfp_mask = saved_gfp;
487
			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
488 489
		}

490 491
		if (unlikely(!bvl))
			goto err_free;
492

493
		bio_set_flag(bio, BIO_OWNS_VEC);
494 495
	} else if (nr_iovecs) {
		bvl = bio->bi_inline_vecs;
L
Linus Torvalds 已提交
496
	}
497 498

	bio->bi_pool = bs;
499 500 501
	bio->bi_flags |= idx << BIO_POOL_OFFSET;
	bio->bi_max_vecs = nr_iovecs;
	bio->bi_io_vec = bvl;
L
Linus Torvalds 已提交
502
	return bio;
503 504

err_free:
T
Tejun Heo 已提交
505
	mempool_free(p, bs->bio_pool);
506
	return NULL;
L
Linus Torvalds 已提交
507
}
508
EXPORT_SYMBOL(bio_alloc_bioset);
L
Linus Torvalds 已提交
509 510 511 512

void zero_fill_bio(struct bio *bio)
{
	unsigned long flags;
513 514
	struct bio_vec bv;
	struct bvec_iter iter;
L
Linus Torvalds 已提交
515

516 517 518 519
	bio_for_each_segment(bv, bio, iter) {
		char *data = bvec_kmap_irq(&bv, &flags);
		memset(data, 0, bv.bv_len);
		flush_dcache_page(bv.bv_page);
L
Linus Torvalds 已提交
520 521 522 523 524 525 526 527 528 529 530
		bvec_kunmap_irq(data, &flags);
	}
}
EXPORT_SYMBOL(zero_fill_bio);

/**
 * bio_put - release a reference to a bio
 * @bio:   bio to release reference to
 *
 * Description:
 *   Put a reference to a &struct bio, either one you have gotten with
531
 *   bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
L
Linus Torvalds 已提交
532 533 534
 **/
void bio_put(struct bio *bio)
{
535
	if (!bio_flagged(bio, BIO_REFFED))
536
		bio_free(bio);
537 538 539 540 541 542 543 544 545
	else {
		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));

		/*
		 * last put frees it
		 */
		if (atomic_dec_and_test(&bio->__bi_cnt))
			bio_free(bio);
	}
L
Linus Torvalds 已提交
546
}
547
EXPORT_SYMBOL(bio_put);
L
Linus Torvalds 已提交
548

549
inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
L
Linus Torvalds 已提交
550 551 552 553 554 555
{
	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
		blk_recount_segments(q, bio);

	return bio->bi_phys_segments;
}
556
EXPORT_SYMBOL(bio_phys_segments);
L
Linus Torvalds 已提交
557

558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
/**
 * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
 * 	@bio: destination bio
 * 	@bio_src: bio to clone
 *
 *	Clone a &bio. Caller will own the returned bio, but not
 *	the actual data it points to. Reference count of returned
 * 	bio will be one.
 *
 * 	Caller must ensure that @bio_src is not freed before @bio.
 */
void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
{
	BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE);

	/*
	 * most users will be overriding ->bi_bdev with a new target,
	 * so we don't set nor calculate new physical/hw segment counts here
	 */
	bio->bi_bdev = bio_src->bi_bdev;
578
	bio_set_flag(bio, BIO_CLONED);
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
	bio->bi_rw = bio_src->bi_rw;
	bio->bi_iter = bio_src->bi_iter;
	bio->bi_io_vec = bio_src->bi_io_vec;
}
EXPORT_SYMBOL(__bio_clone_fast);

/**
 *	bio_clone_fast - clone a bio that shares the original bio's biovec
 *	@bio: bio to clone
 *	@gfp_mask: allocation priority
 *	@bs: bio_set to allocate from
 *
 * 	Like __bio_clone_fast, only also allocates the returned bio
 */
struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
{
	struct bio *b;

	b = bio_alloc_bioset(gfp_mask, 0, bs);
	if (!b)
		return NULL;

	__bio_clone_fast(b, bio);

	if (bio_integrity(bio)) {
		int ret;

		ret = bio_integrity_clone(b, bio, gfp_mask);

		if (ret < 0) {
			bio_put(b);
			return NULL;
		}
	}

	return b;
}
EXPORT_SYMBOL(bio_clone_fast);

L
Linus Torvalds 已提交
618
/**
619 620
 * 	bio_clone_bioset - clone a bio
 * 	@bio_src: bio to clone
L
Linus Torvalds 已提交
621
 *	@gfp_mask: allocation priority
622
 *	@bs: bio_set to allocate from
L
Linus Torvalds 已提交
623
 *
624 625
 *	Clone bio. Caller will own the returned bio, but not the actual data it
 *	points to. Reference count of returned bio will be one.
L
Linus Torvalds 已提交
626
 */
627
struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
628
			     struct bio_set *bs)
L
Linus Torvalds 已提交
629
{
630 631 632
	struct bvec_iter iter;
	struct bio_vec bv;
	struct bio *bio;
L
Linus Torvalds 已提交
633

634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
	/*
	 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
	 * bio_src->bi_io_vec to bio->bi_io_vec.
	 *
	 * We can't do that anymore, because:
	 *
	 *  - The point of cloning the biovec is to produce a bio with a biovec
	 *    the caller can modify: bi_idx and bi_bvec_done should be 0.
	 *
	 *  - The original bio could've had more than BIO_MAX_PAGES biovecs; if
	 *    we tried to clone the whole thing bio_alloc_bioset() would fail.
	 *    But the clone should succeed as long as the number of biovecs we
	 *    actually need to allocate is fewer than BIO_MAX_PAGES.
	 *
	 *  - Lastly, bi_vcnt should not be looked at or relied upon by code
	 *    that does not own the bio - reason being drivers don't use it for
	 *    iterating over the biovec anymore, so expecting it to be kept up
	 *    to date (i.e. for clones that share the parent biovec) is just
	 *    asking for trouble and would force extra work on
	 *    __bio_clone_fast() anyways.
	 */

656
	bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
657
	if (!bio)
658 659
		return NULL;

660 661 662 663
	bio->bi_bdev		= bio_src->bi_bdev;
	bio->bi_rw		= bio_src->bi_rw;
	bio->bi_iter.bi_sector	= bio_src->bi_iter.bi_sector;
	bio->bi_iter.bi_size	= bio_src->bi_iter.bi_size;
664

665 666 667 668 669 670 671 672
	if (bio->bi_rw & REQ_DISCARD)
		goto integrity_clone;

	if (bio->bi_rw & REQ_WRITE_SAME) {
		bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
		goto integrity_clone;
	}

673 674
	bio_for_each_segment(bv, bio_src, iter)
		bio->bi_io_vec[bio->bi_vcnt++] = bv;
675

676
integrity_clone:
677 678
	if (bio_integrity(bio_src)) {
		int ret;
679

680
		ret = bio_integrity_clone(bio, bio_src, gfp_mask);
681
		if (ret < 0) {
682
			bio_put(bio);
683
			return NULL;
684
		}
685
	}
L
Linus Torvalds 已提交
686

687
	return bio;
L
Linus Torvalds 已提交
688
}
689
EXPORT_SYMBOL(bio_clone_bioset);
L
Linus Torvalds 已提交
690 691

/**
692 693 694 695 696 697
 *	bio_add_pc_page	-	attempt to add page to bio
 *	@q: the target queue
 *	@bio: destination bio
 *	@page: page to add
 *	@len: vec entry length
 *	@offset: vec entry offset
L
Linus Torvalds 已提交
698
 *
699 700 701 702 703 704
 *	Attempt to add a page to the bio_vec maplist. This can fail for a
 *	number of reasons, such as the bio being full or target block device
 *	limitations. The target block device must allow bio's up to PAGE_SIZE,
 *	so it is always possible to add a single page to an empty bio.
 *
 *	This should only be used by REQ_PC bios.
L
Linus Torvalds 已提交
705
 */
706 707
int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
		    *page, unsigned int len, unsigned int offset)
L
Linus Torvalds 已提交
708 709 710 711 712 713 714 715 716 717
{
	int retried_segments = 0;
	struct bio_vec *bvec;

	/*
	 * cloned bio must not modify vec list
	 */
	if (unlikely(bio_flagged(bio, BIO_CLONED)))
		return 0;

718
	if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
L
Linus Torvalds 已提交
719 720
		return 0;

721 722 723 724 725 726 727 728 729 730 731
	/*
	 * For filesystems with a blocksize smaller than the pagesize
	 * we will often be called with the same page as last time and
	 * a consecutive offset.  Optimize this special case.
	 */
	if (bio->bi_vcnt > 0) {
		struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];

		if (page == prev->bv_page &&
		    offset == prev->bv_offset + prev->bv_len) {
			prev->bv_len += len;
732
			bio->bi_iter.bi_size += len;
733 734
			goto done;
		}
735 736 737 738 739

		/*
		 * If the queue doesn't support SG gaps and adding this
		 * offset would create a gap, disallow it.
		 */
740
		if (bvec_gap_to_prev(q, prev, offset))
741
			return 0;
742 743 744
	}

	if (bio->bi_vcnt >= bio->bi_max_vecs)
L
Linus Torvalds 已提交
745 746 747
		return 0;

	/*
748 749 750 751 752 753 754 755 756 757 758 759 760 761
	 * setup the new entry, we might clear it again later if we
	 * cannot add the page
	 */
	bvec = &bio->bi_io_vec[bio->bi_vcnt];
	bvec->bv_page = page;
	bvec->bv_len = len;
	bvec->bv_offset = offset;
	bio->bi_vcnt++;
	bio->bi_phys_segments++;
	bio->bi_iter.bi_size += len;

	/*
	 * Perform a recount if the number of segments is greater
	 * than queue_max_segments(q).
L
Linus Torvalds 已提交
762 763
	 */

764
	while (bio->bi_phys_segments > queue_max_segments(q)) {
L
Linus Torvalds 已提交
765 766

		if (retried_segments)
767
			goto failed;
L
Linus Torvalds 已提交
768 769 770 771 772 773

		retried_segments = 1;
		blk_recount_segments(q, bio);
	}

	/* If we may be able to merge these biovecs, force a recount */
774
	if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
775
		bio_clear_flag(bio, BIO_SEG_VALID);
L
Linus Torvalds 已提交
776

777
 done:
L
Linus Torvalds 已提交
778
	return len;
779 780 781 782 783 784 785 786 787

 failed:
	bvec->bv_page = NULL;
	bvec->bv_len = 0;
	bvec->bv_offset = 0;
	bio->bi_vcnt--;
	bio->bi_iter.bi_size -= len;
	blk_recount_segments(q, bio);
	return 0;
L
Linus Torvalds 已提交
788
}
789
EXPORT_SYMBOL(bio_add_pc_page);
790

L
Linus Torvalds 已提交
791 792 793 794 795 796 797
/**
 *	bio_add_page	-	attempt to add page to bio
 *	@bio: destination bio
 *	@page: page to add
 *	@len: vec entry length
 *	@offset: vec entry offset
 *
798 799
 *	Attempt to add a page to the bio_vec maplist. This will only fail
 *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
L
Linus Torvalds 已提交
800
 */
801 802
int bio_add_page(struct bio *bio, struct page *page,
		 unsigned int len, unsigned int offset)
L
Linus Torvalds 已提交
803
{
804 805 806 807 808 809 810
	struct bio_vec *bv;

	/*
	 * cloned bio must not modify vec list
	 */
	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
		return 0;
811

812 813 814 815 816 817 818
	/*
	 * For filesystems with a blocksize smaller than the pagesize
	 * we will often be called with the same page as last time and
	 * a consecutive offset.  Optimize this special case.
	 */
	if (bio->bi_vcnt > 0) {
		bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
819

820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
		if (page == bv->bv_page &&
		    offset == bv->bv_offset + bv->bv_len) {
			bv->bv_len += len;
			goto done;
		}
	}

	if (bio->bi_vcnt >= bio->bi_max_vecs)
		return 0;

	bv		= &bio->bi_io_vec[bio->bi_vcnt];
	bv->bv_page	= page;
	bv->bv_len	= len;
	bv->bv_offset	= offset;

	bio->bi_vcnt++;
done:
	bio->bi_iter.bi_size += len;
	return len;
L
Linus Torvalds 已提交
839
}
840
EXPORT_SYMBOL(bio_add_page);
L
Linus Torvalds 已提交
841

842 843 844 845 846
struct submit_bio_ret {
	struct completion event;
	int error;
};

847
static void submit_bio_wait_endio(struct bio *bio)
848 849 850
{
	struct submit_bio_ret *ret = bio->bi_private;

851
	ret->error = bio->bi_error;
852 853 854 855 856 857 858 859 860 861
	complete(&ret->event);
}

/**
 * submit_bio_wait - submit a bio, and wait until it completes
 * @bio: The &struct bio which describes the I/O
 *
 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
 * bio_endio() on failure.
 */
862
int submit_bio_wait(struct bio *bio)
863 864 865 866 867 868
{
	struct submit_bio_ret ret;

	init_completion(&ret.event);
	bio->bi_private = &ret;
	bio->bi_end_io = submit_bio_wait_endio;
869 870
	bio->bi_rw |= REQ_SYNC;
	submit_bio(bio);
871
	wait_for_completion_io(&ret.event);
872 873 874 875 876

	return ret.error;
}
EXPORT_SYMBOL(submit_bio_wait);

877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
/**
 * bio_advance - increment/complete a bio by some number of bytes
 * @bio:	bio to advance
 * @bytes:	number of bytes to complete
 *
 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
 * be updated on the last bvec as well.
 *
 * @bio will then represent the remaining, uncompleted portion of the io.
 */
void bio_advance(struct bio *bio, unsigned bytes)
{
	if (bio_integrity(bio))
		bio_integrity_advance(bio, bytes);

893
	bio_advance_iter(bio, &bio->bi_iter, bytes);
894 895 896
}
EXPORT_SYMBOL(bio_advance);

897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
/**
 * bio_alloc_pages - allocates a single page for each bvec in a bio
 * @bio: bio to allocate pages for
 * @gfp_mask: flags for allocation
 *
 * Allocates pages up to @bio->bi_vcnt.
 *
 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
 * freed.
 */
int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
{
	int i;
	struct bio_vec *bv;

	bio_for_each_segment_all(bv, bio, i) {
		bv->bv_page = alloc_page(gfp_mask);
		if (!bv->bv_page) {
			while (--bv >= bio->bi_io_vec)
				__free_page(bv->bv_page);
			return -ENOMEM;
		}
	}

	return 0;
}
EXPORT_SYMBOL(bio_alloc_pages);

925 926 927 928 929 930 931 932 933 934 935 936 937 938
/**
 * bio_copy_data - copy contents of data buffers from one chain of bios to
 * another
 * @src: source bio list
 * @dst: destination bio list
 *
 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
 * @src and @dst as linked lists of bios.
 *
 * Stops when it reaches the end of either @src or @dst - that is, copies
 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
 */
void bio_copy_data(struct bio *dst, struct bio *src)
{
939 940
	struct bvec_iter src_iter, dst_iter;
	struct bio_vec src_bv, dst_bv;
941
	void *src_p, *dst_p;
942
	unsigned bytes;
943

944 945
	src_iter = src->bi_iter;
	dst_iter = dst->bi_iter;
946 947

	while (1) {
948 949 950 951
		if (!src_iter.bi_size) {
			src = src->bi_next;
			if (!src)
				break;
952

953
			src_iter = src->bi_iter;
954 955
		}

956 957 958 959
		if (!dst_iter.bi_size) {
			dst = dst->bi_next;
			if (!dst)
				break;
960

961
			dst_iter = dst->bi_iter;
962 963
		}

964 965 966 967
		src_bv = bio_iter_iovec(src, src_iter);
		dst_bv = bio_iter_iovec(dst, dst_iter);

		bytes = min(src_bv.bv_len, dst_bv.bv_len);
968

969 970
		src_p = kmap_atomic(src_bv.bv_page);
		dst_p = kmap_atomic(dst_bv.bv_page);
971

972 973
		memcpy(dst_p + dst_bv.bv_offset,
		       src_p + src_bv.bv_offset,
974 975 976 977 978
		       bytes);

		kunmap_atomic(dst_p);
		kunmap_atomic(src_p);

979 980
		bio_advance_iter(src, &src_iter, bytes);
		bio_advance_iter(dst, &dst_iter, bytes);
981 982 983 984
	}
}
EXPORT_SYMBOL(bio_copy_data);

L
Linus Torvalds 已提交
985
struct bio_map_data {
986
	int is_our_pages;
987 988
	struct iov_iter iter;
	struct iovec iov[];
L
Linus Torvalds 已提交
989 990
};

991
static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
992
					       gfp_t gfp_mask)
L
Linus Torvalds 已提交
993
{
994 995
	if (iov_count > UIO_MAXIOV)
		return NULL;
L
Linus Torvalds 已提交
996

997
	return kmalloc(sizeof(struct bio_map_data) +
998
		       sizeof(struct iovec) * iov_count, gfp_mask);
L
Linus Torvalds 已提交
999 1000
}

1001 1002 1003 1004 1005 1006 1007 1008 1009
/**
 * bio_copy_from_iter - copy all pages from iov_iter to bio
 * @bio: The &struct bio which describes the I/O as destination
 * @iter: iov_iter as source
 *
 * Copy all pages from iov_iter to bio.
 * Returns 0 on success, or error on failure.
 */
static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1010
{
1011
	int i;
1012 1013
	struct bio_vec *bvec;

1014
	bio_for_each_segment_all(bvec, bio, i) {
1015
		ssize_t ret;
1016

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
		ret = copy_page_from_iter(bvec->bv_page,
					  bvec->bv_offset,
					  bvec->bv_len,
					  &iter);

		if (!iov_iter_count(&iter))
			break;

		if (ret < bvec->bv_len)
			return -EFAULT;
1027 1028
	}

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
	return 0;
}

/**
 * bio_copy_to_iter - copy all pages from bio to iov_iter
 * @bio: The &struct bio which describes the I/O as source
 * @iter: iov_iter as destination
 *
 * Copy all pages from bio to iov_iter.
 * Returns 0 on success, or error on failure.
 */
static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
{
	int i;
	struct bio_vec *bvec;

	bio_for_each_segment_all(bvec, bio, i) {
		ssize_t ret;

		ret = copy_page_to_iter(bvec->bv_page,
					bvec->bv_offset,
					bvec->bv_len,
					&iter);

		if (!iov_iter_count(&iter))
			break;

		if (ret < bvec->bv_len)
			return -EFAULT;
	}

	return 0;
1061 1062
}

1063 1064 1065 1066 1067 1068 1069 1070 1071
static void bio_free_pages(struct bio *bio)
{
	struct bio_vec *bvec;
	int i;

	bio_for_each_segment_all(bvec, bio, i)
		__free_page(bvec->bv_page);
}

L
Linus Torvalds 已提交
1072 1073 1074 1075
/**
 *	bio_uncopy_user	-	finish previously mapped bio
 *	@bio: bio being terminated
 *
1076
 *	Free pages allocated from bio_copy_user_iov() and write back data
L
Linus Torvalds 已提交
1077 1078 1079 1080 1081
 *	to user space in case of a read.
 */
int bio_uncopy_user(struct bio *bio)
{
	struct bio_map_data *bmd = bio->bi_private;
1082
	int ret = 0;
L
Linus Torvalds 已提交
1083

1084 1085 1086
	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
		/*
		 * if we're in a workqueue, the request is orphaned, so
1087 1088
		 * don't copy into a random user address space, just free
		 * and return -EINTR so user space doesn't expect any data.
1089
		 */
1090 1091 1092
		if (!current->mm)
			ret = -EINTR;
		else if (bio_data_dir(bio) == READ)
1093
			ret = bio_copy_to_iter(bio, bmd->iter);
1094 1095
		if (bmd->is_our_pages)
			bio_free_pages(bio);
1096
	}
1097
	kfree(bmd);
L
Linus Torvalds 已提交
1098 1099 1100
	bio_put(bio);
	return ret;
}
1101
EXPORT_SYMBOL(bio_uncopy_user);
L
Linus Torvalds 已提交
1102 1103

/**
1104
 *	bio_copy_user_iov	-	copy user data to bio
1105 1106 1107 1108
 *	@q:		destination block queue
 *	@map_data:	pointer to the rq_map_data holding pages (if necessary)
 *	@iter:		iovec iterator
 *	@gfp_mask:	memory allocation flags
L
Linus Torvalds 已提交
1109 1110 1111 1112 1113
 *
 *	Prepares and returns a bio for indirect user io, bouncing data
 *	to/from kernel pages as necessary. Must be paired with
 *	call bio_uncopy_user() on io completion.
 */
1114 1115
struct bio *bio_copy_user_iov(struct request_queue *q,
			      struct rq_map_data *map_data,
1116 1117
			      const struct iov_iter *iter,
			      gfp_t gfp_mask)
L
Linus Torvalds 已提交
1118 1119 1120 1121 1122
{
	struct bio_map_data *bmd;
	struct page *page;
	struct bio *bio;
	int i, ret;
1123
	int nr_pages = 0;
1124
	unsigned int len = iter->count;
1125
	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
L
Linus Torvalds 已提交
1126

1127
	for (i = 0; i < iter->nr_segs; i++) {
1128 1129 1130 1131
		unsigned long uaddr;
		unsigned long end;
		unsigned long start;

1132 1133 1134
		uaddr = (unsigned long) iter->iov[i].iov_base;
		end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
			>> PAGE_SHIFT;
1135 1136
		start = uaddr >> PAGE_SHIFT;

1137 1138 1139 1140 1141 1142
		/*
		 * Overflow, abort
		 */
		if (end < start)
			return ERR_PTR(-EINVAL);

1143 1144 1145
		nr_pages += end - start;
	}

1146 1147 1148
	if (offset)
		nr_pages++;

1149
	bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
L
Linus Torvalds 已提交
1150 1151 1152
	if (!bmd)
		return ERR_PTR(-ENOMEM);

1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
	/*
	 * We need to do a deep copy of the iov_iter including the iovecs.
	 * The caller provided iov might point to an on-stack or otherwise
	 * shortlived one.
	 */
	bmd->is_our_pages = map_data ? 0 : 1;
	memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
	iov_iter_init(&bmd->iter, iter->type, bmd->iov,
			iter->nr_segs, iter->count);

L
Linus Torvalds 已提交
1163
	ret = -ENOMEM;
1164
	bio = bio_kmalloc(gfp_mask, nr_pages);
L
Linus Torvalds 已提交
1165 1166 1167
	if (!bio)
		goto out_bmd;

1168
	if (iter->type & WRITE)
1169
		bio->bi_rw |= REQ_WRITE;
L
Linus Torvalds 已提交
1170 1171

	ret = 0;
1172 1173

	if (map_data) {
1174
		nr_pages = 1 << map_data->page_order;
1175 1176
		i = map_data->offset / PAGE_SIZE;
	}
L
Linus Torvalds 已提交
1177
	while (len) {
1178
		unsigned int bytes = PAGE_SIZE;
L
Linus Torvalds 已提交
1179

1180 1181
		bytes -= offset;

L
Linus Torvalds 已提交
1182 1183 1184
		if (bytes > len)
			bytes = len;

1185
		if (map_data) {
1186
			if (i == map_data->nr_entries * nr_pages) {
1187 1188 1189
				ret = -ENOMEM;
				break;
			}
1190 1191 1192 1193 1194 1195

			page = map_data->pages[i / nr_pages];
			page += (i % nr_pages);

			i++;
		} else {
1196
			page = alloc_page(q->bounce_gfp | gfp_mask);
1197 1198 1199 1200
			if (!page) {
				ret = -ENOMEM;
				break;
			}
L
Linus Torvalds 已提交
1201 1202
		}

1203
		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
L
Linus Torvalds 已提交
1204 1205 1206
			break;

		len -= bytes;
1207
		offset = 0;
L
Linus Torvalds 已提交
1208 1209 1210 1211 1212 1213 1214 1215
	}

	if (ret)
		goto cleanup;

	/*
	 * success
	 */
1216
	if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1217
	    (map_data && map_data->from_user)) {
1218
		ret = bio_copy_from_iter(bio, *iter);
1219 1220
		if (ret)
			goto cleanup;
L
Linus Torvalds 已提交
1221 1222
	}

1223
	bio->bi_private = bmd;
L
Linus Torvalds 已提交
1224 1225
	return bio;
cleanup:
1226
	if (!map_data)
1227
		bio_free_pages(bio);
L
Linus Torvalds 已提交
1228 1229
	bio_put(bio);
out_bmd:
1230
	kfree(bmd);
L
Linus Torvalds 已提交
1231 1232 1233
	return ERR_PTR(ret);
}

1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
/**
 *	bio_map_user_iov - map user iovec into bio
 *	@q:		the struct request_queue for the bio
 *	@iter:		iovec iterator
 *	@gfp_mask:	memory allocation flags
 *
 *	Map the user space address into a bio suitable for io to a block
 *	device. Returns an error pointer in case of error.
 */
struct bio *bio_map_user_iov(struct request_queue *q,
			     const struct iov_iter *iter,
			     gfp_t gfp_mask)
L
Linus Torvalds 已提交
1246
{
1247
	int j;
1248
	int nr_pages = 0;
L
Linus Torvalds 已提交
1249 1250
	struct page **pages;
	struct bio *bio;
1251 1252
	int cur_page = 0;
	int ret, offset;
1253 1254
	struct iov_iter i;
	struct iovec iov;
L
Linus Torvalds 已提交
1255

1256 1257 1258
	iov_for_each(iov, i, *iter) {
		unsigned long uaddr = (unsigned long) iov.iov_base;
		unsigned long len = iov.iov_len;
1259 1260 1261
		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
		unsigned long start = uaddr >> PAGE_SHIFT;

1262 1263 1264 1265 1266 1267
		/*
		 * Overflow, abort
		 */
		if (end < start)
			return ERR_PTR(-EINVAL);

1268 1269
		nr_pages += end - start;
		/*
1270
		 * buffer must be aligned to at least hardsector size for now
1271
		 */
1272
		if (uaddr & queue_dma_alignment(q))
1273 1274 1275 1276
			return ERR_PTR(-EINVAL);
	}

	if (!nr_pages)
L
Linus Torvalds 已提交
1277 1278
		return ERR_PTR(-EINVAL);

1279
	bio = bio_kmalloc(gfp_mask, nr_pages);
L
Linus Torvalds 已提交
1280 1281 1282 1283
	if (!bio)
		return ERR_PTR(-ENOMEM);

	ret = -ENOMEM;
1284
	pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
L
Linus Torvalds 已提交
1285 1286 1287
	if (!pages)
		goto out;

1288 1289 1290
	iov_for_each(iov, i, *iter) {
		unsigned long uaddr = (unsigned long) iov.iov_base;
		unsigned long len = iov.iov_len;
1291 1292 1293 1294
		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
		unsigned long start = uaddr >> PAGE_SHIFT;
		const int local_nr_pages = end - start;
		const int page_limit = cur_page + local_nr_pages;
1295

1296
		ret = get_user_pages_fast(uaddr, local_nr_pages,
1297 1298
				(iter->type & WRITE) != WRITE,
				&pages[cur_page]);
1299 1300
		if (ret < local_nr_pages) {
			ret = -EFAULT;
1301
			goto out_unmap;
1302
		}
1303

1304
		offset = offset_in_page(uaddr);
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
		for (j = cur_page; j < page_limit; j++) {
			unsigned int bytes = PAGE_SIZE - offset;

			if (len <= 0)
				break;
			
			if (bytes > len)
				bytes = len;

			/*
			 * sorry...
			 */
1317 1318
			if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
					    bytes)
1319 1320 1321 1322 1323
				break;

			len -= bytes;
			offset = 0;
		}
L
Linus Torvalds 已提交
1324

1325
		cur_page = j;
L
Linus Torvalds 已提交
1326
		/*
1327
		 * release the pages we didn't map into the bio, if any
L
Linus Torvalds 已提交
1328
		 */
1329
		while (j < page_limit)
1330
			put_page(pages[j++]);
L
Linus Torvalds 已提交
1331 1332 1333 1334 1335 1336 1337
	}

	kfree(pages);

	/*
	 * set data direction, and check if mapped pages need bouncing
	 */
1338
	if (iter->type & WRITE)
1339
		bio->bi_rw |= REQ_WRITE;
L
Linus Torvalds 已提交
1340

1341
	bio_set_flag(bio, BIO_USER_MAPPED);
1342 1343 1344 1345 1346 1347 1348 1349

	/*
	 * subtle -- if __bio_map_user() ended up bouncing a bio,
	 * it would normally disappear when its bi_end_io is run.
	 * however, we need it for the unmap, so grab an extra
	 * reference to it
	 */
	bio_get(bio);
L
Linus Torvalds 已提交
1350
	return bio;
1351 1352

 out_unmap:
1353 1354
	for (j = 0; j < nr_pages; j++) {
		if (!pages[j])
1355
			break;
1356
		put_page(pages[j]);
1357 1358
	}
 out:
L
Linus Torvalds 已提交
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
	kfree(pages);
	bio_put(bio);
	return ERR_PTR(ret);
}

static void __bio_unmap_user(struct bio *bio)
{
	struct bio_vec *bvec;
	int i;

	/*
	 * make sure we dirty pages we wrote to
	 */
1372
	bio_for_each_segment_all(bvec, bio, i) {
L
Linus Torvalds 已提交
1373 1374 1375
		if (bio_data_dir(bio) == READ)
			set_page_dirty_lock(bvec->bv_page);

1376
		put_page(bvec->bv_page);
L
Linus Torvalds 已提交
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
	}

	bio_put(bio);
}

/**
 *	bio_unmap_user	-	unmap a bio
 *	@bio:		the bio being unmapped
 *
 *	Unmap a bio previously mapped by bio_map_user(). Must be called with
 *	a process context.
 *
 *	bio_unmap_user() may sleep.
 */
void bio_unmap_user(struct bio *bio)
{
	__bio_unmap_user(bio);
	bio_put(bio);
}
1396
EXPORT_SYMBOL(bio_unmap_user);
L
Linus Torvalds 已提交
1397

1398
static void bio_map_kern_endio(struct bio *bio)
1399 1400 1401 1402
{
	bio_put(bio);
}

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
/**
 *	bio_map_kern	-	map kernel address into bio
 *	@q: the struct request_queue for the bio
 *	@data: pointer to buffer to map
 *	@len: length in bytes
 *	@gfp_mask: allocation flags for bio allocation
 *
 *	Map the kernel address into a bio suitable for io to a block
 *	device. Returns an error pointer in case of error.
 */
struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
			 gfp_t gfp_mask)
1415 1416 1417 1418 1419 1420 1421 1422
{
	unsigned long kaddr = (unsigned long)data;
	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
	unsigned long start = kaddr >> PAGE_SHIFT;
	const int nr_pages = end - start;
	int offset, i;
	struct bio *bio;

1423
	bio = bio_kmalloc(gfp_mask, nr_pages);
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
	if (!bio)
		return ERR_PTR(-ENOMEM);

	offset = offset_in_page(kaddr);
	for (i = 0; i < nr_pages; i++) {
		unsigned int bytes = PAGE_SIZE - offset;

		if (len <= 0)
			break;

		if (bytes > len)
			bytes = len;

1437
		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1438 1439 1440 1441 1442
				    offset) < bytes) {
			/* we don't support partial mappings */
			bio_put(bio);
			return ERR_PTR(-EINVAL);
		}
1443 1444 1445 1446 1447 1448

		data += bytes;
		len -= bytes;
		offset = 0;
	}

1449
	bio->bi_end_io = bio_map_kern_endio;
1450 1451
	return bio;
}
1452
EXPORT_SYMBOL(bio_map_kern);
1453

1454
static void bio_copy_kern_endio(struct bio *bio)
1455
{
1456 1457 1458 1459
	bio_free_pages(bio);
	bio_put(bio);
}

1460
static void bio_copy_kern_endio_read(struct bio *bio)
1461
{
1462
	char *p = bio->bi_private;
1463
	struct bio_vec *bvec;
1464 1465
	int i;

1466
	bio_for_each_segment_all(bvec, bio, i) {
1467
		memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1468
		p += bvec->bv_len;
1469 1470
	}

1471
	bio_copy_kern_endio(bio);
1472 1473 1474 1475 1476 1477 1478 1479
}

/**
 *	bio_copy_kern	-	copy kernel address into bio
 *	@q: the struct request_queue for the bio
 *	@data: pointer to buffer to copy
 *	@len: length in bytes
 *	@gfp_mask: allocation flags for bio and page allocation
1480
 *	@reading: data direction is READ
1481 1482 1483 1484 1485 1486 1487
 *
 *	copy the kernel address into a bio suitable for io to a block
 *	device. Returns an error pointer in case of error.
 */
struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
			  gfp_t gfp_mask, int reading)
{
1488 1489 1490 1491 1492
	unsigned long kaddr = (unsigned long)data;
	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
	unsigned long start = kaddr >> PAGE_SHIFT;
	struct bio *bio;
	void *p = data;
1493
	int nr_pages = 0;
1494

1495 1496 1497 1498 1499
	/*
	 * Overflow, abort
	 */
	if (end < start)
		return ERR_PTR(-EINVAL);
1500

1501 1502 1503 1504
	nr_pages = end - start;
	bio = bio_kmalloc(gfp_mask, nr_pages);
	if (!bio)
		return ERR_PTR(-ENOMEM);
1505

1506 1507 1508
	while (len) {
		struct page *page;
		unsigned int bytes = PAGE_SIZE;
1509

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
		if (bytes > len)
			bytes = len;

		page = alloc_page(q->bounce_gfp | gfp_mask);
		if (!page)
			goto cleanup;

		if (!reading)
			memcpy(page_address(page), p, bytes);

		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
			break;

		len -= bytes;
		p += bytes;
1525 1526
	}

1527 1528 1529 1530 1531
	if (reading) {
		bio->bi_end_io = bio_copy_kern_endio_read;
		bio->bi_private = data;
	} else {
		bio->bi_end_io = bio_copy_kern_endio;
1532
		bio->bi_rw |= REQ_WRITE;
1533
	}
1534

1535
	return bio;
1536 1537

cleanup:
1538
	bio_free_pages(bio);
1539 1540
	bio_put(bio);
	return ERR_PTR(-ENOMEM);
1541
}
1542
EXPORT_SYMBOL(bio_copy_kern);
1543

L
Linus Torvalds 已提交
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
/*
 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
 * for performing direct-IO in BIOs.
 *
 * The problem is that we cannot run set_page_dirty() from interrupt context
 * because the required locks are not interrupt-safe.  So what we can do is to
 * mark the pages dirty _before_ performing IO.  And in interrupt context,
 * check that the pages are still dirty.   If so, fine.  If not, redirty them
 * in process context.
 *
 * We special-case compound pages here: normally this means reads into hugetlb
 * pages.  The logic in here doesn't really work right for compound pages
 * because the VM does not uniformly chase down the head page in all cases.
 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
 * handle them at all.  So we skip compound pages here at an early stage.
 *
 * Note that this code is very hard to test under normal circumstances because
 * direct-io pins the pages with get_user_pages().  This makes
 * is_page_cache_freeable return false, and the VM will not clean the pages.
1563
 * But other code (eg, flusher threads) could clean the pages if they are mapped
L
Linus Torvalds 已提交
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
 * pagecache.
 *
 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
 * deferred bio dirtying paths.
 */

/*
 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
 */
void bio_set_pages_dirty(struct bio *bio)
{
1575
	struct bio_vec *bvec;
L
Linus Torvalds 已提交
1576 1577
	int i;

1578 1579
	bio_for_each_segment_all(bvec, bio, i) {
		struct page *page = bvec->bv_page;
L
Linus Torvalds 已提交
1580 1581 1582 1583 1584 1585

		if (page && !PageCompound(page))
			set_page_dirty_lock(page);
	}
}

1586
static void bio_release_pages(struct bio *bio)
L
Linus Torvalds 已提交
1587
{
1588
	struct bio_vec *bvec;
L
Linus Torvalds 已提交
1589 1590
	int i;

1591 1592
	bio_for_each_segment_all(bvec, bio, i) {
		struct page *page = bvec->bv_page;
L
Linus Torvalds 已提交
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605

		if (page)
			put_page(page);
	}
}

/*
 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
 * If they are, then fine.  If, however, some pages are clean then they must
 * have been written out during the direct-IO read.  So we take another ref on
 * the BIO and the offending pages and re-dirty the pages in process context.
 *
 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1606 1607
 * here on.  It will run one put_page() against each page and will run one
 * bio_put() against the BIO.
L
Linus Torvalds 已提交
1608 1609
 */

1610
static void bio_dirty_fn(struct work_struct *work);
L
Linus Torvalds 已提交
1611

1612
static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
L
Linus Torvalds 已提交
1613 1614 1615 1616 1617 1618
static DEFINE_SPINLOCK(bio_dirty_lock);
static struct bio *bio_dirty_list;

/*
 * This runs in process context
 */
1619
static void bio_dirty_fn(struct work_struct *work)
L
Linus Torvalds 已提交
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
{
	unsigned long flags;
	struct bio *bio;

	spin_lock_irqsave(&bio_dirty_lock, flags);
	bio = bio_dirty_list;
	bio_dirty_list = NULL;
	spin_unlock_irqrestore(&bio_dirty_lock, flags);

	while (bio) {
		struct bio *next = bio->bi_private;

		bio_set_pages_dirty(bio);
		bio_release_pages(bio);
		bio_put(bio);
		bio = next;
	}
}

void bio_check_pages_dirty(struct bio *bio)
{
1641
	struct bio_vec *bvec;
L
Linus Torvalds 已提交
1642 1643 1644
	int nr_clean_pages = 0;
	int i;

1645 1646
	bio_for_each_segment_all(bvec, bio, i) {
		struct page *page = bvec->bv_page;
L
Linus Torvalds 已提交
1647 1648

		if (PageDirty(page) || PageCompound(page)) {
1649
			put_page(page);
1650
			bvec->bv_page = NULL;
L
Linus Torvalds 已提交
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
		} else {
			nr_clean_pages++;
		}
	}

	if (nr_clean_pages) {
		unsigned long flags;

		spin_lock_irqsave(&bio_dirty_lock, flags);
		bio->bi_private = bio_dirty_list;
		bio_dirty_list = bio;
		spin_unlock_irqrestore(&bio_dirty_lock, flags);
		schedule_work(&bio_dirty_work);
	} else {
		bio_put(bio);
	}
}

1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
void generic_start_io_acct(int rw, unsigned long sectors,
			   struct hd_struct *part)
{
	int cpu = part_stat_lock();

	part_round_stats(cpu, part);
	part_stat_inc(cpu, part, ios[rw]);
	part_stat_add(cpu, part, sectors[rw], sectors);
	part_inc_in_flight(part, rw);

	part_stat_unlock();
}
EXPORT_SYMBOL(generic_start_io_acct);

void generic_end_io_acct(int rw, struct hd_struct *part,
			 unsigned long start_time)
{
	unsigned long duration = jiffies - start_time;
	int cpu = part_stat_lock();

	part_stat_add(cpu, part, ticks[rw], duration);
	part_round_stats(cpu, part);
	part_dec_in_flight(part, rw);

	part_stat_unlock();
}
EXPORT_SYMBOL(generic_end_io_acct);

1697 1698 1699
#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
void bio_flush_dcache_pages(struct bio *bi)
{
1700 1701
	struct bio_vec bvec;
	struct bvec_iter iter;
1702

1703 1704
	bio_for_each_segment(bvec, bi, iter)
		flush_dcache_page(bvec.bv_page);
1705 1706 1707 1708
}
EXPORT_SYMBOL(bio_flush_dcache_pages);
#endif

1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
static inline bool bio_remaining_done(struct bio *bio)
{
	/*
	 * If we're not chaining, then ->__bi_remaining is always 1 and
	 * we always end io on the first invocation.
	 */
	if (!bio_flagged(bio, BIO_CHAIN))
		return true;

	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);

1720
	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1721
		bio_clear_flag(bio, BIO_CHAIN);
1722
		return true;
1723
	}
1724 1725 1726 1727

	return false;
}

L
Linus Torvalds 已提交
1728 1729 1730 1731 1732
/**
 * bio_endio - end I/O on a bio
 * @bio:	bio
 *
 * Description:
1733 1734 1735
 *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
 *   way to end I/O on a bio. No one should call bi_end_io() directly on a
 *   bio unless they own it and thus know that it has an end_io function.
L
Linus Torvalds 已提交
1736
 **/
1737
void bio_endio(struct bio *bio)
L
Linus Torvalds 已提交
1738
{
1739
again:
1740
	if (!bio_remaining_done(bio))
1741
		return;
L
Linus Torvalds 已提交
1742

1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
	/*
	 * Need to have a real endio function for chained bios, otherwise
	 * various corner cases will break (like stacking block devices that
	 * save/restore bi_end_io) - however, we want to avoid unbounded
	 * recursion and blowing the stack. Tail call optimization would
	 * handle this, but compiling with frame pointers also disables
	 * gcc's sibling call optimization.
	 */
	if (bio->bi_end_io == bio_chain_endio) {
		bio = __bio_chain_endio(bio);
		goto again;
1754
	}
1755 1756 1757

	if (bio->bi_end_io)
		bio->bi_end_io(bio);
L
Linus Torvalds 已提交
1758
}
1759
EXPORT_SYMBOL(bio_endio);
L
Linus Torvalds 已提交
1760

1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
/**
 * bio_split - split a bio
 * @bio:	bio to split
 * @sectors:	number of sectors to split from the front of @bio
 * @gfp:	gfp mask
 * @bs:		bio set to allocate from
 *
 * Allocates and returns a new bio which represents @sectors from the start of
 * @bio, and updates @bio to represent the remaining sectors.
 *
1771 1772 1773
 * Unless this is a discard request the newly allocated bio will point
 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
 * @bio is not freed before the split.
1774 1775 1776 1777 1778 1779 1780 1781 1782
 */
struct bio *bio_split(struct bio *bio, int sectors,
		      gfp_t gfp, struct bio_set *bs)
{
	struct bio *split = NULL;

	BUG_ON(sectors <= 0);
	BUG_ON(sectors >= bio_sectors(bio));

1783 1784 1785 1786 1787 1788 1789 1790 1791
	/*
	 * Discards need a mutable bio_vec to accommodate the payload
	 * required by the DSM TRIM and UNMAP commands.
	 */
	if (bio->bi_rw & REQ_DISCARD)
		split = bio_clone_bioset(bio, gfp, bs);
	else
		split = bio_clone_fast(bio, gfp, bs);

1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
	if (!split)
		return NULL;

	split->bi_iter.bi_size = sectors << 9;

	if (bio_integrity(split))
		bio_integrity_trim(split, 0, sectors);

	bio_advance(bio, split->bi_iter.bi_size);

	return split;
}
EXPORT_SYMBOL(bio_split);

1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
/**
 * bio_trim - trim a bio
 * @bio:	bio to trim
 * @offset:	number of sectors to trim from the front of @bio
 * @size:	size we want to trim @bio to, in sectors
 */
void bio_trim(struct bio *bio, int offset, int size)
{
	/* 'bio' is a cloned bio which we need to trim to match
	 * the given offset and size.
	 */

	size <<= 9;
1819
	if (offset == 0 && size == bio->bi_iter.bi_size)
1820 1821
		return;

1822
	bio_clear_flag(bio, BIO_SEG_VALID);
1823 1824 1825

	bio_advance(bio, offset << 9);

1826
	bio->bi_iter.bi_size = size;
1827 1828 1829
}
EXPORT_SYMBOL_GPL(bio_trim);

L
Linus Torvalds 已提交
1830 1831 1832 1833
/*
 * create memory pools for biovec's in a bio_set.
 * use the global biovec slabs created for general use.
 */
1834
mempool_t *biovec_create_pool(int pool_entries)
L
Linus Torvalds 已提交
1835
{
1836
	struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
L
Linus Torvalds 已提交
1837

1838
	return mempool_create_slab_pool(pool_entries, bp->slab);
L
Linus Torvalds 已提交
1839 1840 1841 1842
}

void bioset_free(struct bio_set *bs)
{
1843 1844 1845
	if (bs->rescue_workqueue)
		destroy_workqueue(bs->rescue_workqueue);

L
Linus Torvalds 已提交
1846 1847 1848
	if (bs->bio_pool)
		mempool_destroy(bs->bio_pool);

1849 1850 1851
	if (bs->bvec_pool)
		mempool_destroy(bs->bvec_pool);

1852
	bioset_integrity_free(bs);
1853
	bio_put_slab(bs);
L
Linus Torvalds 已提交
1854 1855 1856

	kfree(bs);
}
1857
EXPORT_SYMBOL(bioset_free);
L
Linus Torvalds 已提交
1858

1859 1860 1861
static struct bio_set *__bioset_create(unsigned int pool_size,
				       unsigned int front_pad,
				       bool create_bvec_pool)
L
Linus Torvalds 已提交
1862
{
1863
	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1864
	struct bio_set *bs;
L
Linus Torvalds 已提交
1865

1866
	bs = kzalloc(sizeof(*bs), GFP_KERNEL);
L
Linus Torvalds 已提交
1867 1868 1869
	if (!bs)
		return NULL;

1870
	bs->front_pad = front_pad;
1871

1872 1873 1874 1875
	spin_lock_init(&bs->rescue_lock);
	bio_list_init(&bs->rescue_list);
	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);

1876
	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1877 1878 1879 1880 1881 1882
	if (!bs->bio_slab) {
		kfree(bs);
		return NULL;
	}

	bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
L
Linus Torvalds 已提交
1883 1884 1885
	if (!bs->bio_pool)
		goto bad;

1886 1887 1888 1889 1890
	if (create_bvec_pool) {
		bs->bvec_pool = biovec_create_pool(pool_size);
		if (!bs->bvec_pool)
			goto bad;
	}
1891 1892 1893 1894

	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
	if (!bs->rescue_workqueue)
		goto bad;
L
Linus Torvalds 已提交
1895

1896
	return bs;
L
Linus Torvalds 已提交
1897 1898 1899 1900
bad:
	bioset_free(bs);
	return NULL;
}
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918

/**
 * bioset_create  - Create a bio_set
 * @pool_size:	Number of bio and bio_vecs to cache in the mempool
 * @front_pad:	Number of bytes to allocate in front of the returned bio
 *
 * Description:
 *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
 *    to ask for a number of bytes to be allocated in front of the bio.
 *    Front pad allocation is useful for embedding the bio inside
 *    another structure, to avoid allocating extra data to go with the bio.
 *    Note that the bio must be embedded at the END of that structure always,
 *    or things will break badly.
 */
struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
{
	return __bioset_create(pool_size, front_pad, true);
}
1919
EXPORT_SYMBOL(bioset_create);
L
Linus Torvalds 已提交
1920

1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
/**
 * bioset_create_nobvec  - Create a bio_set without bio_vec mempool
 * @pool_size:	Number of bio to cache in the mempool
 * @front_pad:	Number of bytes to allocate in front of the returned bio
 *
 * Description:
 *    Same functionality as bioset_create() except that mempool is not
 *    created for bio_vecs. Saving some memory for bio_clone_fast() users.
 */
struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
{
	return __bioset_create(pool_size, front_pad, false);
}
EXPORT_SYMBOL(bioset_create_nobvec);

1936
#ifdef CONFIG_BLK_CGROUP
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957

/**
 * bio_associate_blkcg - associate a bio with the specified blkcg
 * @bio: target bio
 * @blkcg_css: css of the blkcg to associate
 *
 * Associate @bio with the blkcg specified by @blkcg_css.  Block layer will
 * treat @bio as if it were issued by a task which belongs to the blkcg.
 *
 * This function takes an extra reference of @blkcg_css which will be put
 * when @bio is released.  The caller must own @bio and is responsible for
 * synchronizing calls to this function.
 */
int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
{
	if (unlikely(bio->bi_css))
		return -EBUSY;
	css_get(blkcg_css);
	bio->bi_css = blkcg_css;
	return 0;
}
1958
EXPORT_SYMBOL_GPL(bio_associate_blkcg);
1959

1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
/**
 * bio_associate_current - associate a bio with %current
 * @bio: target bio
 *
 * Associate @bio with %current if it hasn't been associated yet.  Block
 * layer will treat @bio as if it were issued by %current no matter which
 * task actually issues it.
 *
 * This function takes an extra reference of @task's io_context and blkcg
 * which will be put when @bio is released.  The caller must own @bio,
 * ensure %current->io_context exists, and is responsible for synchronizing
 * calls to this function.
 */
int bio_associate_current(struct bio *bio)
{
	struct io_context *ioc;

1977
	if (bio->bi_css)
1978 1979 1980 1981 1982 1983 1984 1985
		return -EBUSY;

	ioc = current->io_context;
	if (!ioc)
		return -ENOENT;

	get_io_context_active(ioc);
	bio->bi_ioc = ioc;
1986
	bio->bi_css = task_get_css(current, io_cgrp_id);
1987 1988
	return 0;
}
1989
EXPORT_SYMBOL_GPL(bio_associate_current);
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

/**
 * bio_disassociate_task - undo bio_associate_current()
 * @bio: target bio
 */
void bio_disassociate_task(struct bio *bio)
{
	if (bio->bi_ioc) {
		put_io_context(bio->bi_ioc);
		bio->bi_ioc = NULL;
	}
	if (bio->bi_css) {
		css_put(bio->bi_css);
		bio->bi_css = NULL;
	}
}

#endif /* CONFIG_BLK_CGROUP */

L
Linus Torvalds 已提交
2009 2010 2011 2012 2013 2014 2015 2016
static void __init biovec_init_slabs(void)
{
	int i;

	for (i = 0; i < BIOVEC_NR_POOLS; i++) {
		int size;
		struct biovec_slab *bvs = bvec_slabs + i;

2017 2018 2019 2020 2021
		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
			bvs->slab = NULL;
			continue;
		}

L
Linus Torvalds 已提交
2022 2023
		size = bvs->nr_vecs * sizeof(struct bio_vec);
		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2024
                                SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
L
Linus Torvalds 已提交
2025 2026 2027 2028 2029
	}
}

static int __init init_bio(void)
{
2030 2031 2032 2033 2034
	bio_slab_max = 2;
	bio_slab_nr = 0;
	bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
	if (!bio_slabs)
		panic("bio: can't allocate bios\n");
L
Linus Torvalds 已提交
2035

2036
	bio_integrity_init();
L
Linus Torvalds 已提交
2037 2038
	biovec_init_slabs();

2039
	fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
L
Linus Torvalds 已提交
2040 2041 2042
	if (!fs_bio_set)
		panic("bio: can't allocate bios\n");

2043 2044 2045
	if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
		panic("bio: can't create integrity pool\n");

L
Linus Torvalds 已提交
2046 2047 2048
	return 0;
}
subsys_initcall(init_bio);
新手
引导
客服 返回
顶部