compaction.c 33.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * linux/mm/compaction.c
 *
 * Memory compaction for the reduction of external fragmentation. Note that
 * this heavily depends upon page migration to do all the real heavy
 * lifting
 *
 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
 */
#include <linux/swap.h>
#include <linux/migrate.h>
#include <linux/compaction.h>
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
15
#include <linux/sysctl.h>
16
#include <linux/sysfs.h>
17
#include <linux/balloon_compaction.h>
18 19
#include "internal.h"

20 21
#if defined CONFIG_COMPACTION || defined CONFIG_CMA

22 23 24
#define CREATE_TRACE_POINTS
#include <trace/events/compaction.h>

25 26 27 28 29 30 31 32 33 34 35 36 37 38
static unsigned long release_freepages(struct list_head *freelist)
{
	struct page *page, *next;
	unsigned long count = 0;

	list_for_each_entry_safe(page, next, freelist, lru) {
		list_del(&page->lru);
		__free_page(page);
		count++;
	}

	return count;
}

39 40 41 42 43 44 45 46 47 48
static void map_pages(struct list_head *list)
{
	struct page *page;

	list_for_each_entry(page, list, lru) {
		arch_alloc_page(page, 0);
		kernel_map_pages(page, 1, 1);
	}
}

49 50 51 52 53
static inline bool migrate_async_suitable(int migratetype)
{
	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
}

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
#ifdef CONFIG_COMPACTION
/* Returns true if the pageblock should be scanned for pages to isolate. */
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	if (cc->ignore_skip_hint)
		return true;

	return !get_pageblock_skip(page);
}

/*
 * This function is called to clear all cached information on pageblocks that
 * should be skipped for page isolation when the migrate and free page scanner
 * meet.
 */
70
static void __reset_isolation_suitable(struct zone *zone)
71 72 73 74 75
{
	unsigned long start_pfn = zone->zone_start_pfn;
	unsigned long end_pfn = zone->zone_start_pfn + zone->spanned_pages;
	unsigned long pfn;

76 77
	zone->compact_cached_migrate_pfn = start_pfn;
	zone->compact_cached_free_pfn = end_pfn;
78
	zone->compact_blockskip_flush = false;
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

	/* Walk the zone and mark every pageblock as suitable for isolation */
	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
		struct page *page;

		cond_resched();

		if (!pfn_valid(pfn))
			continue;

		page = pfn_to_page(pfn);
		if (zone != page_zone(page))
			continue;

		clear_pageblock_skip(page);
	}
}

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
void reset_isolation_suitable(pg_data_t *pgdat)
{
	int zoneid;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
		struct zone *zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		/* Only flush if a full compaction finished recently */
		if (zone->compact_blockskip_flush)
			__reset_isolation_suitable(zone);
	}
}

112 113
/*
 * If no pages were isolated then mark this pageblock to be skipped in the
114
 * future. The information is later cleared by __reset_isolation_suitable().
115
 */
116 117 118
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
			bool migrate_scanner)
119
{
120
	struct zone *zone = cc->zone;
121 122 123
	if (!page)
		return;

124 125
	if (!nr_isolated) {
		unsigned long pfn = page_to_pfn(page);
126
		set_pageblock_skip(page);
127 128 129 130 131 132 133 134 135 136 137 138

		/* Update where compaction should restart */
		if (migrate_scanner) {
			if (!cc->finished_update_migrate &&
			    pfn > zone->compact_cached_migrate_pfn)
				zone->compact_cached_migrate_pfn = pfn;
		} else {
			if (!cc->finished_update_free &&
			    pfn < zone->compact_cached_free_pfn)
				zone->compact_cached_free_pfn = pfn;
		}
	}
139 140 141 142 143 144 145 146
}
#else
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	return true;
}

147 148 149
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
			bool migrate_scanner)
150 151 152 153
{
}
#endif /* CONFIG_COMPACTION */

154 155 156 157 158
static inline bool should_release_lock(spinlock_t *lock)
{
	return need_resched() || spin_is_contended(lock);
}

159 160 161 162 163 164 165 166 167 168 169 170
/*
 * Compaction requires the taking of some coarse locks that are potentially
 * very heavily contended. Check if the process needs to be scheduled or
 * if the lock is contended. For async compaction, back out in the event
 * if contention is severe. For sync compaction, schedule.
 *
 * Returns true if the lock is held.
 * Returns false if the lock is released and compaction should abort
 */
static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags,
				      bool locked, struct compact_control *cc)
{
171
	if (should_release_lock(lock)) {
172 173 174 175 176 177 178
		if (locked) {
			spin_unlock_irqrestore(lock, *flags);
			locked = false;
		}

		/* async aborts if taking too long or contended */
		if (!cc->sync) {
179
			cc->contended = true;
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
			return false;
		}

		cond_resched();
	}

	if (!locked)
		spin_lock_irqsave(lock, *flags);
	return true;
}

static inline bool compact_trylock_irqsave(spinlock_t *lock,
			unsigned long *flags, struct compact_control *cc)
{
	return compact_checklock_irqsave(lock, flags, false, cc);
}

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
/* Returns true if the page is within a block suitable for migration to */
static bool suitable_migration_target(struct page *page)
{
	int migratetype = get_pageblock_migratetype(page);

	/* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
	if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
		return false;

	/* If the page is a large free page, then allow migration */
	if (PageBuddy(page) && page_order(page) >= pageblock_order)
		return true;

	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
	if (migrate_async_suitable(migratetype))
		return true;

	/* Otherwise skip the block */
	return false;
}

218 219 220 221 222 223
/*
 * Isolate free pages onto a private freelist. Caller must hold zone->lock.
 * If @strict is true, will abort returning 0 on any invalid PFNs or non-free
 * pages inside of the pageblock (even though it may still end up isolating
 * some pages).
 */
224 225
static unsigned long isolate_freepages_block(struct compact_control *cc,
				unsigned long blockpfn,
226 227 228
				unsigned long end_pfn,
				struct list_head *freelist,
				bool strict)
229
{
230
	int nr_scanned = 0, total_isolated = 0;
231
	struct page *cursor, *valid_page = NULL;
232 233 234
	unsigned long nr_strict_required = end_pfn - blockpfn;
	unsigned long flags;
	bool locked = false;
235 236 237

	cursor = pfn_to_page(blockpfn);

238
	/* Isolate free pages. */
239 240 241 242
	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
		int isolated, i;
		struct page *page = cursor;

243
		nr_scanned++;
244 245
		if (!pfn_valid_within(blockpfn))
			continue;
246 247
		if (!valid_page)
			valid_page = page;
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
		if (!PageBuddy(page))
			continue;

		/*
		 * The zone lock must be held to isolate freepages.
		 * Unfortunately this is a very coarse lock and can be
		 * heavily contended if there are parallel allocations
		 * or parallel compactions. For async compaction do not
		 * spin on the lock and we acquire the lock as late as
		 * possible.
		 */
		locked = compact_checklock_irqsave(&cc->zone->lock, &flags,
								locked, cc);
		if (!locked)
			break;

		/* Recheck this is a suitable migration target under lock */
		if (!strict && !suitable_migration_target(page))
			break;
267

268 269
		/* Recheck this is a buddy page under lock */
		if (!PageBuddy(page))
270 271 272 273
			continue;

		/* Found a free page, break it into order-0 pages */
		isolated = split_free_page(page);
274
		if (!isolated && strict)
275
			break;
276 277 278 279 280 281 282 283 284 285 286 287 288
		total_isolated += isolated;
		for (i = 0; i < isolated; i++) {
			list_add(&page->lru, freelist);
			page++;
		}

		/* If a page was split, advance to the end of it */
		if (isolated) {
			blockpfn += isolated - 1;
			cursor += isolated - 1;
		}
	}

289
	trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
290 291 292 293 294 295

	/*
	 * If strict isolation is requested by CMA then check that all the
	 * pages requested were isolated. If there were any failures, 0 is
	 * returned and CMA will fail.
	 */
296
	if (strict && nr_strict_required > total_isolated)
297 298 299 300 301
		total_isolated = 0;

	if (locked)
		spin_unlock_irqrestore(&cc->zone->lock, flags);

302 303
	/* Update the pageblock-skip if the whole pageblock was scanned */
	if (blockpfn == end_pfn)
304
		update_pageblock_skip(cc, valid_page, total_isolated, false);
305

306 307 308
	return total_isolated;
}

309 310 311 312 313 314 315 316 317 318 319 320 321
/**
 * isolate_freepages_range() - isolate free pages.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Non-free pages, invalid PFNs, or zone boundaries within the
 * [start_pfn, end_pfn) range are considered errors, cause function to
 * undo its actions and return zero.
 *
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater then end_pfn if end fell in a middle of
 * a free page).
 */
322
unsigned long
323 324
isolate_freepages_range(struct compact_control *cc,
			unsigned long start_pfn, unsigned long end_pfn)
325
{
326
	unsigned long isolated, pfn, block_end_pfn;
327 328 329
	LIST_HEAD(freelist);

	for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
330
		if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn)))
331 332 333 334 335 336 337 338 339
			break;

		/*
		 * On subsequent iterations ALIGN() is actually not needed,
		 * but we keep it that we not to complicate the code.
		 */
		block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
		block_end_pfn = min(block_end_pfn, end_pfn);

340
		isolated = isolate_freepages_block(cc, pfn, block_end_pfn,
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
						   &freelist, true);

		/*
		 * In strict mode, isolate_freepages_block() returns 0 if
		 * there are any holes in the block (ie. invalid PFNs or
		 * non-free pages).
		 */
		if (!isolated)
			break;

		/*
		 * If we managed to isolate pages, it is always (1 << n) *
		 * pageblock_nr_pages for some non-negative n.  (Max order
		 * page may span two pageblocks).
		 */
	}

	/* split_free_page does not map the pages */
	map_pages(&freelist);

	if (pfn < end_pfn) {
		/* Loop terminated early, cleanup. */
		release_freepages(&freelist);
		return 0;
	}

	/* We don't use freelists for anything. */
	return pfn;
}

371
/* Update the number of anon and file isolated pages in the zone */
372
static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc)
373 374
{
	struct page *page;
375
	unsigned int count[2] = { 0, };
376

377 378
	list_for_each_entry(page, &cc->migratepages, lru)
		count[!!page_is_file_cache(page)]++;
379

380 381 382 383 384 385 386 387
	/* If locked we can use the interrupt unsafe versions */
	if (locked) {
		__mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
		__mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
	} else {
		mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
		mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
	}
388 389 390 391 392
}

/* Similar to reclaim, but different enough that they don't share logic */
static bool too_many_isolated(struct zone *zone)
{
393
	unsigned long active, inactive, isolated;
394 395 396

	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
					zone_page_state(zone, NR_INACTIVE_ANON);
397 398
	active = zone_page_state(zone, NR_ACTIVE_FILE) +
					zone_page_state(zone, NR_ACTIVE_ANON);
399 400 401
	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
					zone_page_state(zone, NR_ISOLATED_ANON);

402
	return isolated > (inactive + active) / 2;
403 404
}

405 406 407 408 409 410
/**
 * isolate_migratepages_range() - isolate all migrate-able pages in range.
 * @zone:	Zone pages are in.
 * @cc:		Compaction control structure.
 * @low_pfn:	The first PFN of the range.
 * @end_pfn:	The one-past-the-last PFN of the range.
M
Minchan Kim 已提交
411
 * @unevictable: true if it allows to isolate unevictable pages
412 413 414 415 416 417 418 419 420 421 422 423
 *
 * Isolate all pages that can be migrated from the range specified by
 * [low_pfn, end_pfn).  Returns zero if there is a fatal signal
 * pending), otherwise PFN of the first page that was not scanned
 * (which may be both less, equal to or more then end_pfn).
 *
 * Assumes that cc->migratepages is empty and cc->nr_migratepages is
 * zero.
 *
 * Apart from cc->migratepages and cc->nr_migratetypes this function
 * does not modify any cc's fields, in particular it does not modify
 * (or read for that matter) cc->migrate_pfn.
424
 */
425
unsigned long
426
isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
M
Minchan Kim 已提交
427
		unsigned long low_pfn, unsigned long end_pfn, bool unevictable)
428
{
429
	unsigned long last_pageblock_nr = 0, pageblock_nr;
430
	unsigned long nr_scanned = 0, nr_isolated = 0;
431
	struct list_head *migratelist = &cc->migratepages;
432
	isolate_mode_t mode = 0;
433
	struct lruvec *lruvec;
434
	unsigned long flags;
435
	bool locked = false;
436
	struct page *page = NULL, *valid_page = NULL;
437 438 439 440 441 442 443

	/*
	 * Ensure that there are not too many pages isolated from the LRU
	 * list by either parallel reclaimers or compaction. If there are,
	 * delay for some time until fewer pages are isolated
	 */
	while (unlikely(too_many_isolated(zone))) {
444
		/* async migration should just abort */
445
		if (!cc->sync)
446
			return 0;
447

448 449 450
		congestion_wait(BLK_RW_ASYNC, HZ/10);

		if (fatal_signal_pending(current))
451
			return 0;
452 453 454
	}

	/* Time to isolate some pages for migration */
455
	cond_resched();
456
	for (; low_pfn < end_pfn; low_pfn++) {
457
		/* give a chance to irqs before checking need_resched() */
458 459 460 461 462
		if (locked && !((low_pfn+1) % SWAP_CLUSTER_MAX)) {
			if (should_release_lock(&zone->lru_lock)) {
				spin_unlock_irqrestore(&zone->lru_lock, flags);
				locked = false;
			}
463
		}
464

465 466 467 468 469 470 471 472 473 474 475 476 477
		/*
		 * migrate_pfn does not necessarily start aligned to a
		 * pageblock. Ensure that pfn_valid is called when moving
		 * into a new MAX_ORDER_NR_PAGES range in case of large
		 * memory holes within the zone
		 */
		if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
			if (!pfn_valid(low_pfn)) {
				low_pfn += MAX_ORDER_NR_PAGES - 1;
				continue;
			}
		}

478 479
		if (!pfn_valid_within(low_pfn))
			continue;
480
		nr_scanned++;
481

482 483 484 485 486 487
		/*
		 * Get the page and ensure the page is within the same zone.
		 * See the comment in isolate_freepages about overlapping
		 * nodes. It is deliberate that the new zone lock is not taken
		 * as memory compaction should not move pages between nodes.
		 */
488
		page = pfn_to_page(low_pfn);
489 490 491
		if (page_zone(page) != zone)
			continue;

492 493 494 495 496 497 498 499
		if (!valid_page)
			valid_page = page;

		/* If isolation recently failed, do not retry */
		pageblock_nr = low_pfn >> pageblock_order;
		if (!isolation_suitable(cc, page))
			goto next_pageblock;

500
		/* Skip if free */
501 502 503
		if (PageBuddy(page))
			continue;

504 505 506 507 508
		/*
		 * For async migration, also only scan in MOVABLE blocks. Async
		 * migration is optimistic to see if the minimum amount of work
		 * satisfies the allocation
		 */
509
		if (!cc->sync && last_pageblock_nr != pageblock_nr &&
510
		    !migrate_async_suitable(get_pageblock_migratetype(page))) {
511
			cc->finished_update_migrate = true;
512
			goto next_pageblock;
513 514
		}

515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
		/*
		 * Check may be lockless but that's ok as we recheck later.
		 * It's possible to migrate LRU pages and balloon pages
		 * Skip any other type of page
		 */
		if (!PageLRU(page)) {
			if (unlikely(balloon_page_movable(page))) {
				if (locked && balloon_page_isolate(page)) {
					/* Successfully isolated */
					cc->finished_update_migrate = true;
					list_add(&page->lru, migratelist);
					cc->nr_migratepages++;
					nr_isolated++;
					goto check_compact_cluster;
				}
			}
531
			continue;
532
		}
533 534

		/*
535 536 537 538 539 540 541 542
		 * PageLRU is set. lru_lock normally excludes isolation
		 * splitting and collapsing (collapsing has already happened
		 * if PageLRU is set) but the lock is not necessarily taken
		 * here and it is wasteful to take it just to check transhuge.
		 * Check TransHuge without lock and skip the whole pageblock if
		 * it's either a transhuge or hugetlbfs page, as calling
		 * compound_order() without preventing THP from splitting the
		 * page underneath us may return surprising results.
543
		 */
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
		if (PageTransHuge(page)) {
			if (!locked)
				goto next_pageblock;
			low_pfn += (1 << compound_order(page)) - 1;
			continue;
		}

		/* Check if it is ok to still hold the lock */
		locked = compact_checklock_irqsave(&zone->lru_lock, &flags,
								locked, cc);
		if (!locked || fatal_signal_pending(current))
			break;

		/* Recheck PageLRU and PageTransHuge under lock */
		if (!PageLRU(page))
			continue;
560 561 562 563 564
		if (PageTransHuge(page)) {
			low_pfn += (1 << compound_order(page)) - 1;
			continue;
		}

565
		if (!cc->sync)
566 567
			mode |= ISOLATE_ASYNC_MIGRATE;

M
Minchan Kim 已提交
568 569 570
		if (unevictable)
			mode |= ISOLATE_UNEVICTABLE;

571 572
		lruvec = mem_cgroup_page_lruvec(page, zone);

573
		/* Try isolate the page */
574
		if (__isolate_lru_page(page, mode) != 0)
575 576
			continue;

577 578
		VM_BUG_ON(PageTransCompound(page));

579
		/* Successfully isolated */
580
		cc->finished_update_migrate = true;
581
		del_page_from_lru_list(page, lruvec, page_lru(page));
582 583
		list_add(&page->lru, migratelist);
		cc->nr_migratepages++;
584
		nr_isolated++;
585

586
check_compact_cluster:
587
		/* Avoid isolating too much */
588 589
		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
			++low_pfn;
590
			break;
591
		}
592 593 594 595 596 597 598

		continue;

next_pageblock:
		low_pfn += pageblock_nr_pages;
		low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
		last_pageblock_nr = pageblock_nr;
599 600
	}

601
	acct_isolated(zone, locked, cc);
602

603 604
	if (locked)
		spin_unlock_irqrestore(&zone->lru_lock, flags);
605

606 607
	/* Update the pageblock-skip if the whole pageblock was scanned */
	if (low_pfn == end_pfn)
608
		update_pageblock_skip(cc, valid_page, nr_isolated, true);
609

610 611
	trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);

612 613 614
	return low_pfn;
}

615 616
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
#ifdef CONFIG_COMPACTION
617
/*
618 619
 * Based on information in the current compact_control, find blocks
 * suitable for isolating free pages from and then isolate them.
620
 */
621 622
static void isolate_freepages(struct zone *zone,
				struct compact_control *cc)
623
{
624 625 626 627
	struct page *page;
	unsigned long high_pfn, low_pfn, pfn, zone_end_pfn, end_pfn;
	int nr_freepages = cc->nr_freepages;
	struct list_head *freelist = &cc->freepages;
628

629 630 631 632 633 634 635
	/*
	 * Initialise the free scanner. The starting point is where we last
	 * scanned from (or the end of the zone if starting). The low point
	 * is the end of the pageblock the migration scanner is using.
	 */
	pfn = cc->free_pfn;
	low_pfn = cc->migrate_pfn + pageblock_nr_pages;
636

637 638 639 640 641 642
	/*
	 * Take care that if the migration scanner is at the end of the zone
	 * that the free scanner does not accidentally move to the next zone
	 * in the next isolation cycle.
	 */
	high_pfn = min(low_pfn, pfn);
643

644
	zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
645

646 647 648 649 650 651 652 653
	/*
	 * Isolate free pages until enough are available to migrate the
	 * pages on cc->migratepages. We stop searching if the migrate
	 * and free page scanners meet or enough free pages are isolated.
	 */
	for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
					pfn -= pageblock_nr_pages) {
		unsigned long isolated;
654

655 656
		if (!pfn_valid(pfn))
			continue;
657

658 659 660 661 662 663 664 665 666 667 668 669
		/*
		 * Check for overlapping nodes/zones. It's possible on some
		 * configurations to have a setup like
		 * node0 node1 node0
		 * i.e. it's possible that all pages within a zones range of
		 * pages do not belong to a single zone.
		 */
		page = pfn_to_page(pfn);
		if (page_zone(page) != zone)
			continue;

		/* Check the block is suitable for migration */
670
		if (!suitable_migration_target(page))
671
			continue;
672

673 674 675 676
		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

677
		/* Found a block suitable for isolating free pages from */
678
		isolated = 0;
679 680 681 682 683 684 685 686 687

		/*
		 * As pfn may not start aligned, pfn+pageblock_nr_page
		 * may cross a MAX_ORDER_NR_PAGES boundary and miss
		 * a pfn_valid check. Ensure isolate_freepages_block()
		 * only scans within a pageblock
		 */
		end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
		end_pfn = min(end_pfn, zone_end_pfn);
688 689 690
		isolated = isolate_freepages_block(cc, pfn, end_pfn,
						   freelist, false);
		nr_freepages += isolated;
691 692 693 694 695 696

		/*
		 * Record the highest PFN we isolated pages from. When next
		 * looking for free pages, the search will restart here as
		 * page migration may have returned some pages to the allocator
		 */
697 698
		if (isolated) {
			cc->finished_update_free = true;
699
			high_pfn = max(high_pfn, pfn);
700
		}
701 702 703 704 705 706 707
	}

	/* split_free_page does not map the pages */
	map_pages(freelist);

	cc->free_pfn = high_pfn;
	cc->nr_freepages = nr_freepages;
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
}

/*
 * This is a migrate-callback that "allocates" freepages by taking pages
 * from the isolated freelists in the block we are migrating to.
 */
static struct page *compaction_alloc(struct page *migratepage,
					unsigned long data,
					int **result)
{
	struct compact_control *cc = (struct compact_control *)data;
	struct page *freepage;

	/* Isolate free pages if necessary */
	if (list_empty(&cc->freepages)) {
		isolate_freepages(cc->zone, cc);

		if (list_empty(&cc->freepages))
			return NULL;
	}

	freepage = list_entry(cc->freepages.next, struct page, lru);
	list_del(&freepage->lru);
	cc->nr_freepages--;

	return freepage;
}

/*
 * We cannot control nr_migratepages and nr_freepages fully when migration is
 * running as migrate_pages() has no knowledge of compact_control. When
 * migration is complete, we count the number of pages on the lists by hand.
 */
static void update_nr_listpages(struct compact_control *cc)
{
	int nr_migratepages = 0;
	int nr_freepages = 0;
	struct page *page;

	list_for_each_entry(page, &cc->migratepages, lru)
		nr_migratepages++;
	list_for_each_entry(page, &cc->freepages, lru)
		nr_freepages++;

	cc->nr_migratepages = nr_migratepages;
	cc->nr_freepages = nr_freepages;
}

756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
/* possible outcome of isolate_migratepages */
typedef enum {
	ISOLATE_ABORT,		/* Abort compaction now */
	ISOLATE_NONE,		/* No pages isolated, continue scanning */
	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
} isolate_migrate_t;

/*
 * Isolate all pages that can be migrated from the block pointed to by
 * the migrate scanner within compact_control.
 */
static isolate_migrate_t isolate_migratepages(struct zone *zone,
					struct compact_control *cc)
{
	unsigned long low_pfn, end_pfn;

	/* Do not scan outside zone boundaries */
	low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);

	/* Only scan within a pageblock boundary */
	end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);

	/* Do not cross the free scanner or scan within a memory hole */
	if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
		cc->migrate_pfn = end_pfn;
		return ISOLATE_NONE;
	}

	/* Perform the isolation */
M
Minchan Kim 已提交
785
	low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false);
786
	if (!low_pfn || cc->contended)
787 788 789 790 791 792 793
		return ISOLATE_ABORT;

	cc->migrate_pfn = low_pfn;

	return ISOLATE_SUCCESS;
}

794
static int compact_finished(struct zone *zone,
795
			    struct compact_control *cc)
796
{
797
	unsigned long watermark;
798

799 800 801
	if (fatal_signal_pending(current))
		return COMPACT_PARTIAL;

802
	/* Compaction run completes if the migrate and free scanner meet */
803
	if (cc->free_pfn <= cc->migrate_pfn) {
804 805 806 807 808 809 810 811 812
		/*
		 * Mark that the PG_migrate_skip information should be cleared
		 * by kswapd when it goes to sleep. kswapd does not set the
		 * flag itself as the decision to be clear should be directly
		 * based on an allocation request.
		 */
		if (!current_is_kswapd())
			zone->compact_blockskip_flush = true;

813
		return COMPACT_COMPLETE;
814
	}
815

816 817 818 819
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
820 821 822
	if (cc->order == -1)
		return COMPACT_CONTINUE;

823 824 825 826 827 828 829
	/* Compaction run is not finished if the watermark is not met */
	watermark = low_wmark_pages(zone);
	watermark += (1 << cc->order);

	if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
		return COMPACT_CONTINUE;

830
	/* Direct compactor: Is a suitable page free? */
831 832 833
	if (cc->page) {
		/* Was a suitable page captured? */
		if (*cc->page)
834
			return COMPACT_PARTIAL;
835 836 837 838 839 840 841 842 843 844 845 846
	} else {
		unsigned int order;
		for (order = cc->order; order < MAX_ORDER; order++) {
			struct free_area *area = &zone->free_area[cc->order];
			/* Job done if page is free of the right migratetype */
			if (!list_empty(&area->free_list[cc->migratetype]))
				return COMPACT_PARTIAL;

			/* Job done if allocation would set block type */
			if (cc->order >= pageblock_order && area->nr_free)
				return COMPACT_PARTIAL;
		}
847 848
	}

849 850 851
	return COMPACT_CONTINUE;
}

852 853 854 855 856 857 858 859 860 861 862 863
/*
 * compaction_suitable: Is this suitable to run compaction on this zone now?
 * Returns
 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
 *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
 *   COMPACT_CONTINUE - If compaction should run now
 */
unsigned long compaction_suitable(struct zone *zone, int order)
{
	int fragindex;
	unsigned long watermark;

864 865 866 867 868 869 870
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
	if (order == -1)
		return COMPACT_CONTINUE;

871 872 873 874 875 876 877 878 879 880 881 882 883
	/*
	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
	 * This is because during migration, copies of pages need to be
	 * allocated and for a short time, the footprint is higher
	 */
	watermark = low_wmark_pages(zone) + (2UL << order);
	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
		return COMPACT_SKIPPED;

	/*
	 * fragmentation index determines if allocation failures are due to
	 * low memory or external fragmentation
	 *
884 885
	 * index of -1000 implies allocations might succeed depending on
	 * watermarks
886 887 888 889 890 891 892 893 894
	 * index towards 0 implies failure is due to lack of memory
	 * index towards 1000 implies failure is due to fragmentation
	 *
	 * Only compact if a failure would be due to fragmentation.
	 */
	fragindex = fragmentation_index(zone, order);
	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
		return COMPACT_SKIPPED;

895 896
	if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
	    0, 0))
897 898 899 900 901
		return COMPACT_PARTIAL;

	return COMPACT_CONTINUE;
}

902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
static void compact_capture_page(struct compact_control *cc)
{
	unsigned long flags;
	int mtype, mtype_low, mtype_high;

	if (!cc->page || *cc->page)
		return;

	/*
	 * For MIGRATE_MOVABLE allocations we capture a suitable page ASAP
	 * regardless of the migratetype of the freelist is is captured from.
	 * This is fine because the order for a high-order MIGRATE_MOVABLE
	 * allocation is typically at least a pageblock size and overall
	 * fragmentation is not impaired. Other allocation types must
	 * capture pages from their own migratelist because otherwise they
	 * could pollute other pageblocks like MIGRATE_MOVABLE with
	 * difficult to move pages and making fragmentation worse overall.
	 */
	if (cc->migratetype == MIGRATE_MOVABLE) {
		mtype_low = 0;
		mtype_high = MIGRATE_PCPTYPES;
	} else {
		mtype_low = cc->migratetype;
		mtype_high = cc->migratetype + 1;
	}

	/* Speculatively examine the free lists without zone lock */
	for (mtype = mtype_low; mtype < mtype_high; mtype++) {
		int order;
		for (order = cc->order; order < MAX_ORDER; order++) {
			struct page *page;
			struct free_area *area;
			area = &(cc->zone->free_area[order]);
			if (list_empty(&area->free_list[mtype]))
				continue;

			/* Take the lock and attempt capture of the page */
			if (!compact_trylock_irqsave(&cc->zone->lock, &flags, cc))
				return;
			if (!list_empty(&area->free_list[mtype])) {
				page = list_entry(area->free_list[mtype].next,
							struct page, lru);
				if (capture_free_page(page, cc->order, mtype)) {
					spin_unlock_irqrestore(&cc->zone->lock,
									flags);
					*cc->page = page;
					return;
				}
			}
			spin_unlock_irqrestore(&cc->zone->lock, flags);
		}
	}
}

956 957 958
static int compact_zone(struct zone *zone, struct compact_control *cc)
{
	int ret;
959 960
	unsigned long start_pfn = zone->zone_start_pfn;
	unsigned long end_pfn = zone->zone_start_pfn + zone->spanned_pages;
961

962 963 964 965 966 967 968 969 970 971 972
	ret = compaction_suitable(zone, cc->order);
	switch (ret) {
	case COMPACT_PARTIAL:
	case COMPACT_SKIPPED:
		/* Compaction is likely to fail */
		return ret;
	case COMPACT_CONTINUE:
		/* Fall through to compaction */
		;
	}

973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
	/*
	 * Setup to move all movable pages to the end of the zone. Used cached
	 * information on where the scanners should start but check that it
	 * is initialised by ensuring the values are within zone boundaries.
	 */
	cc->migrate_pfn = zone->compact_cached_migrate_pfn;
	cc->free_pfn = zone->compact_cached_free_pfn;
	if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
		cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
		zone->compact_cached_free_pfn = cc->free_pfn;
	}
	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
		cc->migrate_pfn = start_pfn;
		zone->compact_cached_migrate_pfn = cc->migrate_pfn;
	}
988

989 990 991 992 993 994 995
	/*
	 * Clear pageblock skip if there were failures recently and compaction
	 * is about to be retried after being deferred. kswapd does not do
	 * this reset as it'll reset the cached information when going to sleep.
	 */
	if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
		__reset_isolation_suitable(zone);
996

997 998 999 1000
	migrate_prep_local();

	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
		unsigned long nr_migrate, nr_remaining;
1001
		int err;
1002

1003 1004 1005
		switch (isolate_migratepages(zone, cc)) {
		case ISOLATE_ABORT:
			ret = COMPACT_PARTIAL;
1006
			putback_movable_pages(&cc->migratepages);
1007
			cc->nr_migratepages = 0;
1008 1009
			goto out;
		case ISOLATE_NONE:
1010
			continue;
1011 1012 1013
		case ISOLATE_SUCCESS:
			;
		}
1014 1015

		nr_migrate = cc->nr_migratepages;
1016
		err = migrate_pages(&cc->migratepages, compaction_alloc,
1017 1018
				(unsigned long)cc, false,
				cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC);
1019 1020 1021 1022 1023 1024 1025
		update_nr_listpages(cc);
		nr_remaining = cc->nr_migratepages;

		count_vm_event(COMPACTBLOCKS);
		count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining);
		if (nr_remaining)
			count_vm_events(COMPACTPAGEFAILED, nr_remaining);
1026 1027
		trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
						nr_remaining);
1028

1029
		/* Release isolated pages not migrated */
1030
		if (err) {
1031
			putback_movable_pages(&cc->migratepages);
1032
			cc->nr_migratepages = 0;
1033 1034 1035 1036
			if (err == -ENOMEM) {
				ret = COMPACT_PARTIAL;
				goto out;
			}
1037
		}
1038 1039 1040

		/* Capture a page now if it is a suitable size */
		compact_capture_page(cc);
1041 1042
	}

1043
out:
1044 1045 1046 1047 1048 1049
	/* Release free pages and check accounting */
	cc->nr_freepages -= release_freepages(&cc->freepages);
	VM_BUG_ON(cc->nr_freepages != 0);

	return ret;
}
1050

1051
static unsigned long compact_zone_order(struct zone *zone,
1052
				 int order, gfp_t gfp_mask,
1053 1054
				 bool sync, bool *contended,
				 struct page **page)
1055
{
1056
	unsigned long ret;
1057 1058 1059 1060 1061 1062
	struct compact_control cc = {
		.nr_freepages = 0,
		.nr_migratepages = 0,
		.order = order,
		.migratetype = allocflags_to_migratetype(gfp_mask),
		.zone = zone,
1063
		.sync = sync,
1064
		.page = page,
1065 1066 1067 1068
	};
	INIT_LIST_HEAD(&cc.freepages);
	INIT_LIST_HEAD(&cc.migratepages);

1069 1070 1071 1072 1073 1074 1075
	ret = compact_zone(zone, &cc);

	VM_BUG_ON(!list_empty(&cc.freepages));
	VM_BUG_ON(!list_empty(&cc.migratepages));

	*contended = cc.contended;
	return ret;
1076 1077
}

1078 1079
int sysctl_extfrag_threshold = 500;

1080 1081 1082 1083 1084 1085
/**
 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
 * @zonelist: The zonelist used for the current allocation
 * @order: The order of the current allocation
 * @gfp_mask: The GFP mask of the current allocation
 * @nodemask: The allowed nodes to allocate from
1086
 * @sync: Whether migration is synchronous or not
1087 1088
 * @contended: Return value that is true if compaction was aborted due to lock contention
 * @page: Optionally capture a free page of the requested order during compaction
1089 1090 1091 1092
 *
 * This is the main entry point for direct page compaction.
 */
unsigned long try_to_compact_pages(struct zonelist *zonelist,
1093
			int order, gfp_t gfp_mask, nodemask_t *nodemask,
1094
			bool sync, bool *contended, struct page **page)
1095 1096 1097 1098 1099 1100 1101
{
	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
	int may_enter_fs = gfp_mask & __GFP_FS;
	int may_perform_io = gfp_mask & __GFP_IO;
	struct zoneref *z;
	struct zone *zone;
	int rc = COMPACT_SKIPPED;
1102
	int alloc_flags = 0;
1103

1104
	/* Check if the GFP flags allow compaction */
1105
	if (!order || !may_enter_fs || !may_perform_io)
1106 1107 1108 1109
		return rc;

	count_vm_event(COMPACTSTALL);

1110 1111 1112 1113
#ifdef CONFIG_CMA
	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
		alloc_flags |= ALLOC_CMA;
#endif
1114 1115 1116 1117 1118
	/* Compact each zone in the list */
	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
								nodemask) {
		int status;

1119
		status = compact_zone_order(zone, order, gfp_mask, sync,
1120
						contended, page);
1121 1122
		rc = max(status, rc);

1123
		/* If a normal allocation would succeed, stop compacting */
1124 1125
		if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
				      alloc_flags))
1126 1127 1128 1129 1130 1131 1132
			break;
	}

	return rc;
}


1133
/* Compact all zones within a node */
1134
static int __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
{
	int zoneid;
	struct zone *zone;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

1145 1146 1147 1148 1149
		cc->nr_freepages = 0;
		cc->nr_migratepages = 0;
		cc->zone = zone;
		INIT_LIST_HEAD(&cc->freepages);
		INIT_LIST_HEAD(&cc->migratepages);
1150

1151
		if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1152
			compact_zone(zone, cc);
1153

1154 1155 1156
		if (cc->order > 0) {
			int ok = zone_watermark_ok(zone, cc->order,
						low_wmark_pages(zone), 0, 0);
1157
			if (ok && cc->order >= zone->compact_order_failed)
1158 1159
				zone->compact_order_failed = cc->order + 1;
			/* Currently async compaction is never deferred. */
1160
			else if (!ok && cc->sync)
1161 1162 1163
				defer_compaction(zone, cc->order);
		}

1164 1165
		VM_BUG_ON(!list_empty(&cc->freepages));
		VM_BUG_ON(!list_empty(&cc->migratepages));
1166 1167 1168 1169 1170
	}

	return 0;
}

1171 1172 1173 1174
int compact_pgdat(pg_data_t *pgdat, int order)
{
	struct compact_control cc = {
		.order = order,
1175
		.sync = false,
1176
		.page = NULL,
1177 1178 1179 1180 1181 1182 1183 1184 1185
	};

	return __compact_pgdat(pgdat, &cc);
}

static int compact_node(int nid)
{
	struct compact_control cc = {
		.order = -1,
1186
		.sync = true,
1187
		.page = NULL,
1188 1189
	};

1190
	return __compact_pgdat(NODE_DATA(nid), &cc);
1191 1192
}

1193 1194 1195 1196 1197
/* Compact all nodes in the system */
static int compact_nodes(void)
{
	int nid;

1198 1199 1200
	/* Flush pending updates to the LRU lists */
	lru_add_drain_all();

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
	for_each_online_node(nid)
		compact_node(nid);

	return COMPACT_COMPLETE;
}

/* The written value is actually unused, all memory is compacted */
int sysctl_compact_memory;

/* This is the entry point for compacting all nodes via /proc/sys/vm */
int sysctl_compaction_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	if (write)
		return compact_nodes();

	return 0;
}
1219

1220 1221 1222 1223 1224 1225 1226 1227
int sysctl_extfrag_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	proc_dointvec_minmax(table, write, buffer, length, ppos);

	return 0;
}

1228
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1229 1230
ssize_t sysfs_compact_node(struct device *dev,
			struct device_attribute *attr,
1231 1232
			const char *buf, size_t count)
{
1233 1234 1235 1236 1237 1238 1239 1240
	int nid = dev->id;

	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
		/* Flush pending updates to the LRU lists */
		lru_add_drain_all();

		compact_node(nid);
	}
1241 1242 1243

	return count;
}
1244
static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1245 1246 1247

int compaction_register_node(struct node *node)
{
1248
	return device_create_file(&node->dev, &dev_attr_compact);
1249 1250 1251 1252
}

void compaction_unregister_node(struct node *node)
{
1253
	return device_remove_file(&node->dev, &dev_attr_compact);
1254 1255
}
#endif /* CONFIG_SYSFS && CONFIG_NUMA */
1256 1257

#endif /* CONFIG_COMPACTION */