intel_pm.c 213.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29 30
#include "i915_drv.h"
#include "intel_drv.h"
31 32
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
33
#include <linux/vgaarb.h>
34
#include <drm/i915_powerwell.h>
35
#include <linux/pm_runtime.h>
36

B
Ben Widawsky 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
/**
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

58 59 60
/* FBC, or Frame Buffer Compression, is a technique employed to compress the
 * framebuffer contents in-memory, aiming at reducing the required bandwidth
 * during in-memory transfers and, therefore, reduce the power packet.
61
 *
62 63
 * The benefits of FBC are mostly visible with solid backgrounds and
 * variation-less patterns.
64
 *
65 66
 * FBC-related functionality can be enabled by the means of the
 * i915.i915_enable_fbc parameter
67 68
 */

69 70
static void gen9_init_clock_gating(struct drm_device *dev)
{
71 72 73 74 75 76 77 78
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * WaDisableSDEUnitClockGating:skl
	 * This seems to be a pre-production w/a.
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
79

80 81 82 83 84 85 86 87
	/*
	 * WaDisableDgMirrorFixInHalfSliceChicken5:skl
	 * This is a pre-production w/a.
	 */
	I915_WRITE(GEN9_HALF_SLICE_CHICKEN5,
		   I915_READ(GEN9_HALF_SLICE_CHICKEN5) &
		   ~GEN9_DG_MIRROR_FIX_ENABLE);

88 89 90
	/* Wa4x4STCOptimizationDisable:skl */
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
91 92
}

93
static void i8xx_disable_fbc(struct drm_device *dev)
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 fbc_ctl;

	/* Disable compression */
	fbc_ctl = I915_READ(FBC_CONTROL);
	if ((fbc_ctl & FBC_CTL_EN) == 0)
		return;

	fbc_ctl &= ~FBC_CTL_EN;
	I915_WRITE(FBC_CONTROL, fbc_ctl);

	/* Wait for compressing bit to clear */
	if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
		DRM_DEBUG_KMS("FBC idle timed out\n");
		return;
	}

	DRM_DEBUG_KMS("disabled FBC\n");
}

115
static void i8xx_enable_fbc(struct drm_crtc *crtc)
116 117 118
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
119
	struct drm_framebuffer *fb = crtc->primary->fb;
120
	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
121 122
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int cfb_pitch;
123
	int i;
124
	u32 fbc_ctl;
125

126
	cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
127 128 129
	if (fb->pitches[0] < cfb_pitch)
		cfb_pitch = fb->pitches[0];

130 131 132 133 134
	/* FBC_CTL wants 32B or 64B units */
	if (IS_GEN2(dev))
		cfb_pitch = (cfb_pitch / 32) - 1;
	else
		cfb_pitch = (cfb_pitch / 64) - 1;
135 136 137 138 139

	/* Clear old tags */
	for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
		I915_WRITE(FBC_TAG + (i * 4), 0);

140 141 142 143 144
	if (IS_GEN4(dev)) {
		u32 fbc_ctl2;

		/* Set it up... */
		fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
145
		fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
146 147 148
		I915_WRITE(FBC_CONTROL2, fbc_ctl2);
		I915_WRITE(FBC_FENCE_OFF, crtc->y);
	}
149 150

	/* enable it... */
151 152 153
	fbc_ctl = I915_READ(FBC_CONTROL);
	fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
	fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
154 155 156 157 158 159
	if (IS_I945GM(dev))
		fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
	fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
	fbc_ctl |= obj->fence_reg;
	I915_WRITE(FBC_CONTROL, fbc_ctl);

160
	DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
161
		      cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
162 163
}

164
static bool i8xx_fbc_enabled(struct drm_device *dev)
165 166 167 168 169 170
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
}

171
static void g4x_enable_fbc(struct drm_crtc *crtc)
172 173 174
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
175
	struct drm_framebuffer *fb = crtc->primary->fb;
176
	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
177 178 179
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	u32 dpfc_ctl;

180 181 182 183 184
	dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
	if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
		dpfc_ctl |= DPFC_CTL_LIMIT_2X;
	else
		dpfc_ctl |= DPFC_CTL_LIMIT_1X;
185 186 187 188 189
	dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;

	I915_WRITE(DPFC_FENCE_YOFF, crtc->y);

	/* enable it... */
190
	I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
191

192
	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
193 194
}

195
static void g4x_disable_fbc(struct drm_device *dev)
196 197 198 199 200 201 202 203 204 205 206 207 208 209
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dpfc_ctl;

	/* Disable compression */
	dpfc_ctl = I915_READ(DPFC_CONTROL);
	if (dpfc_ctl & DPFC_CTL_EN) {
		dpfc_ctl &= ~DPFC_CTL_EN;
		I915_WRITE(DPFC_CONTROL, dpfc_ctl);

		DRM_DEBUG_KMS("disabled FBC\n");
	}
}

210
static bool g4x_fbc_enabled(struct drm_device *dev)
211 212 213 214 215 216 217 218 219 220 221 222
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
}

static void sandybridge_blit_fbc_update(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 blt_ecoskpd;

	/* Make sure blitter notifies FBC of writes */
223 224 225 226

	/* Blitter is part of Media powerwell on VLV. No impact of
	 * his param in other platforms for now */
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
227

228 229 230 231 232 233 234 235 236 237
	blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
		GEN6_BLITTER_LOCK_SHIFT;
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
	blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
			 GEN6_BLITTER_LOCK_SHIFT);
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
	POSTING_READ(GEN6_BLITTER_ECOSKPD);
238

239
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
240 241
}

242
static void ironlake_enable_fbc(struct drm_crtc *crtc)
243 244 245
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
246
	struct drm_framebuffer *fb = crtc->primary->fb;
247
	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
248 249 250
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	u32 dpfc_ctl;

251
	dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
252
	if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
B
Ben Widawsky 已提交
253 254 255 256 257 258 259 260
		dev_priv->fbc.threshold++;

	switch (dev_priv->fbc.threshold) {
	case 4:
	case 3:
		dpfc_ctl |= DPFC_CTL_LIMIT_4X;
		break;
	case 2:
261
		dpfc_ctl |= DPFC_CTL_LIMIT_2X;
B
Ben Widawsky 已提交
262 263
		break;
	case 1:
264
		dpfc_ctl |= DPFC_CTL_LIMIT_1X;
B
Ben Widawsky 已提交
265 266
		break;
	}
267 268 269
	dpfc_ctl |= DPFC_CTL_FENCE_EN;
	if (IS_GEN5(dev))
		dpfc_ctl |= obj->fence_reg;
270 271

	I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
272
	I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
273 274 275 276 277 278 279 280 281 282
	/* enable it... */
	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);

	if (IS_GEN6(dev)) {
		I915_WRITE(SNB_DPFC_CTL_SA,
			   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
		I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
		sandybridge_blit_fbc_update(dev);
	}

283
	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
284 285
}

286
static void ironlake_disable_fbc(struct drm_device *dev)
287 288 289 290 291 292 293 294 295 296 297 298 299 300
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dpfc_ctl;

	/* Disable compression */
	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
	if (dpfc_ctl & DPFC_CTL_EN) {
		dpfc_ctl &= ~DPFC_CTL_EN;
		I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);

		DRM_DEBUG_KMS("disabled FBC\n");
	}
}

301
static bool ironlake_fbc_enabled(struct drm_device *dev)
302 303 304 305 306 307
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
}

308
static void gen7_enable_fbc(struct drm_crtc *crtc)
309 310 311
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
312
	struct drm_framebuffer *fb = crtc->primary->fb;
313
	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
314
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
315
	u32 dpfc_ctl;
316

317 318
	dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
	if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
B
Ben Widawsky 已提交
319 320 321 322 323 324 325 326
		dev_priv->fbc.threshold++;

	switch (dev_priv->fbc.threshold) {
	case 4:
	case 3:
		dpfc_ctl |= DPFC_CTL_LIMIT_4X;
		break;
	case 2:
327
		dpfc_ctl |= DPFC_CTL_LIMIT_2X;
B
Ben Widawsky 已提交
328 329
		break;
	case 1:
330
		dpfc_ctl |= DPFC_CTL_LIMIT_1X;
B
Ben Widawsky 已提交
331 332 333
		break;
	}

334 335
	dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;

336 337 338
	if (dev_priv->fbc.false_color)
		dpfc_ctl |= FBC_CTL_FALSE_COLOR;

339
	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
340

R
Rodrigo Vivi 已提交
341
	if (IS_IVYBRIDGE(dev)) {
342
		/* WaFbcAsynchFlipDisableFbcQueue:ivb */
343 344 345
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
346
	} else {
347
		/* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
348 349 350
		I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
			   I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
			   HSW_FBCQ_DIS);
R
Rodrigo Vivi 已提交
351
	}
352

353 354 355 356 357 358
	I915_WRITE(SNB_DPFC_CTL_SA,
		   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
	I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);

	sandybridge_blit_fbc_update(dev);

359
	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
360 361
}

362 363 364 365 366 367 368 369 370 371
bool intel_fbc_enabled(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (!dev_priv->display.fbc_enabled)
		return false;

	return dev_priv->display.fbc_enabled(dev);
}

R
Rodrigo Vivi 已提交
372 373 374 375 376 377 378 379 380 381
void gen8_fbc_sw_flush(struct drm_device *dev, u32 value)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (!IS_GEN8(dev))
		return;

	I915_WRITE(MSG_FBC_REND_STATE, value);
}

382 383 384 385 386 387 388 389 390
static void intel_fbc_work_fn(struct work_struct *__work)
{
	struct intel_fbc_work *work =
		container_of(to_delayed_work(__work),
			     struct intel_fbc_work, work);
	struct drm_device *dev = work->crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	mutex_lock(&dev->struct_mutex);
391
	if (work == dev_priv->fbc.fbc_work) {
392 393 394
		/* Double check that we haven't switched fb without cancelling
		 * the prior work.
		 */
395
		if (work->crtc->primary->fb == work->fb) {
396
			dev_priv->display.enable_fbc(work->crtc);
397

398
			dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
399
			dev_priv->fbc.fb_id = work->crtc->primary->fb->base.id;
400
			dev_priv->fbc.y = work->crtc->y;
401 402
		}

403
		dev_priv->fbc.fbc_work = NULL;
404 405 406 407 408 409 410 411
	}
	mutex_unlock(&dev->struct_mutex);

	kfree(work);
}

static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
{
412
	if (dev_priv->fbc.fbc_work == NULL)
413 414 415 416 417
		return;

	DRM_DEBUG_KMS("cancelling pending FBC enable\n");

	/* Synchronisation is provided by struct_mutex and checking of
418
	 * dev_priv->fbc.fbc_work, so we can perform the cancellation
419 420
	 * entirely asynchronously.
	 */
421
	if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
422
		/* tasklet was killed before being run, clean up */
423
		kfree(dev_priv->fbc.fbc_work);
424 425 426 427 428 429

	/* Mark the work as no longer wanted so that if it does
	 * wake-up (because the work was already running and waiting
	 * for our mutex), it will discover that is no longer
	 * necessary to run.
	 */
430
	dev_priv->fbc.fbc_work = NULL;
431 432
}

433
static void intel_enable_fbc(struct drm_crtc *crtc)
434 435 436 437 438 439 440 441 442 443
{
	struct intel_fbc_work *work;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (!dev_priv->display.enable_fbc)
		return;

	intel_cancel_fbc_work(dev_priv);

444
	work = kzalloc(sizeof(*work), GFP_KERNEL);
445
	if (work == NULL) {
446
		DRM_ERROR("Failed to allocate FBC work structure\n");
447
		dev_priv->display.enable_fbc(crtc);
448 449 450 451
		return;
	}

	work->crtc = crtc;
452
	work->fb = crtc->primary->fb;
453 454
	INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);

455
	dev_priv->fbc.fbc_work = work;
456 457 458 459 460 461 462 463 464 465 466

	/* Delay the actual enabling to let pageflipping cease and the
	 * display to settle before starting the compression. Note that
	 * this delay also serves a second purpose: it allows for a
	 * vblank to pass after disabling the FBC before we attempt
	 * to modify the control registers.
	 *
	 * A more complicated solution would involve tracking vblanks
	 * following the termination of the page-flipping sequence
	 * and indeed performing the enable as a co-routine and not
	 * waiting synchronously upon the vblank.
467 468
	 *
	 * WaFbcWaitForVBlankBeforeEnable:ilk,snb
469 470 471 472 473 474 475 476 477 478 479 480 481 482
	 */
	schedule_delayed_work(&work->work, msecs_to_jiffies(50));
}

void intel_disable_fbc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_cancel_fbc_work(dev_priv);

	if (!dev_priv->display.disable_fbc)
		return;

	dev_priv->display.disable_fbc(dev);
483
	dev_priv->fbc.plane = -1;
484 485
}

486 487 488 489 490 491 492 493 494 495
static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
			      enum no_fbc_reason reason)
{
	if (dev_priv->fbc.no_fbc_reason == reason)
		return false;

	dev_priv->fbc.no_fbc_reason = reason;
	return true;
}

496 497 498 499 500 501 502 503 504 505
/**
 * intel_update_fbc - enable/disable FBC as needed
 * @dev: the drm_device
 *
 * Set up the framebuffer compression hardware at mode set time.  We
 * enable it if possible:
 *   - plane A only (on pre-965)
 *   - no pixel mulitply/line duplication
 *   - no alpha buffer discard
 *   - no dual wide
506
 *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
 *
 * We can't assume that any compression will take place (worst case),
 * so the compressed buffer has to be the same size as the uncompressed
 * one.  It also must reside (along with the line length buffer) in
 * stolen memory.
 *
 * We need to enable/disable FBC on a global basis.
 */
void intel_update_fbc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc = NULL, *tmp_crtc;
	struct intel_crtc *intel_crtc;
	struct drm_framebuffer *fb;
	struct drm_i915_gem_object *obj;
522
	const struct drm_display_mode *adjusted_mode;
523
	unsigned int max_width, max_height;
524

525
	if (!HAS_FBC(dev)) {
526
		set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
527
		return;
528
	}
529

530
	if (!i915.powersave) {
531 532
		if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
			DRM_DEBUG_KMS("fbc disabled per module param\n");
533
		return;
534
	}
535 536 537 538 539 540 541 542 543 544

	/*
	 * If FBC is already on, we just have to verify that we can
	 * keep it that way...
	 * Need to disable if:
	 *   - more than one pipe is active
	 *   - changing FBC params (stride, fence, mode)
	 *   - new fb is too large to fit in compressed buffer
	 *   - going to an unsupported config (interlace, pixel multiply, etc.)
	 */
545
	for_each_crtc(dev, tmp_crtc) {
546
		if (intel_crtc_active(tmp_crtc) &&
547
		    to_intel_crtc(tmp_crtc)->primary_enabled) {
548
			if (crtc) {
549 550
				if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
					DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
551 552 553 554 555 556
				goto out_disable;
			}
			crtc = tmp_crtc;
		}
	}

557
	if (!crtc || crtc->primary->fb == NULL) {
558 559
		if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
			DRM_DEBUG_KMS("no output, disabling\n");
560 561 562 563
		goto out_disable;
	}

	intel_crtc = to_intel_crtc(crtc);
564
	fb = crtc->primary->fb;
565
	obj = intel_fb_obj(fb);
566
	adjusted_mode = &intel_crtc->config.adjusted_mode;
567

568
	if (i915.enable_fbc < 0) {
569 570
		if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
			DRM_DEBUG_KMS("disabled per chip default\n");
571
		goto out_disable;
572
	}
573
	if (!i915.enable_fbc) {
574 575
		if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
			DRM_DEBUG_KMS("fbc disabled per module param\n");
576 577
		goto out_disable;
	}
578 579
	if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
	    (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
580 581 582
		if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
			DRM_DEBUG_KMS("mode incompatible with compression, "
				      "disabling\n");
583 584
		goto out_disable;
	}
585

586 587 588 589
	if (INTEL_INFO(dev)->gen >= 8 || IS_HASWELL(dev)) {
		max_width = 4096;
		max_height = 4096;
	} else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
590 591
		max_width = 4096;
		max_height = 2048;
592
	} else {
593 594
		max_width = 2048;
		max_height = 1536;
595
	}
596 597
	if (intel_crtc->config.pipe_src_w > max_width ||
	    intel_crtc->config.pipe_src_h > max_height) {
598 599
		if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
			DRM_DEBUG_KMS("mode too large for compression, disabling\n");
600 601
		goto out_disable;
	}
B
Ben Widawsky 已提交
602
	if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
603
	    intel_crtc->plane != PLANE_A) {
604
		if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
605
			DRM_DEBUG_KMS("plane not A, disabling compression\n");
606 607 608 609 610 611 612 613
		goto out_disable;
	}

	/* The use of a CPU fence is mandatory in order to detect writes
	 * by the CPU to the scanout and trigger updates to the FBC.
	 */
	if (obj->tiling_mode != I915_TILING_X ||
	    obj->fence_reg == I915_FENCE_REG_NONE) {
614 615
		if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
			DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
616 617
		goto out_disable;
	}
618 619 620 621 622 623
	if (INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
	    to_intel_plane(crtc->primary)->rotation != BIT(DRM_ROTATE_0)) {
		if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
			DRM_DEBUG_KMS("Rotation unsupported, disabling\n");
		goto out_disable;
	}
624 625 626 627 628

	/* If the kernel debugger is active, always disable compression */
	if (in_dbg_master())
		goto out_disable;

629
	if (i915_gem_stolen_setup_compression(dev, obj->base.size,
B
Ben Widawsky 已提交
630
					      drm_format_plane_cpp(fb->pixel_format, 0))) {
631 632
		if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
			DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
633 634 635
		goto out_disable;
	}

636 637 638 639 640
	/* If the scanout has not changed, don't modify the FBC settings.
	 * Note that we make the fundamental assumption that the fb->obj
	 * cannot be unpinned (and have its GTT offset and fence revoked)
	 * without first being decoupled from the scanout and FBC disabled.
	 */
641 642 643
	if (dev_priv->fbc.plane == intel_crtc->plane &&
	    dev_priv->fbc.fb_id == fb->base.id &&
	    dev_priv->fbc.y == crtc->y)
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
		return;

	if (intel_fbc_enabled(dev)) {
		/* We update FBC along two paths, after changing fb/crtc
		 * configuration (modeswitching) and after page-flipping
		 * finishes. For the latter, we know that not only did
		 * we disable the FBC at the start of the page-flip
		 * sequence, but also more than one vblank has passed.
		 *
		 * For the former case of modeswitching, it is possible
		 * to switch between two FBC valid configurations
		 * instantaneously so we do need to disable the FBC
		 * before we can modify its control registers. We also
		 * have to wait for the next vblank for that to take
		 * effect. However, since we delay enabling FBC we can
		 * assume that a vblank has passed since disabling and
		 * that we can safely alter the registers in the deferred
		 * callback.
		 *
		 * In the scenario that we go from a valid to invalid
		 * and then back to valid FBC configuration we have
		 * no strict enforcement that a vblank occurred since
		 * disabling the FBC. However, along all current pipe
		 * disabling paths we do need to wait for a vblank at
		 * some point. And we wait before enabling FBC anyway.
		 */
		DRM_DEBUG_KMS("disabling active FBC for update\n");
		intel_disable_fbc(dev);
	}

674
	intel_enable_fbc(crtc);
675
	dev_priv->fbc.no_fbc_reason = FBC_OK;
676 677 678 679 680 681 682 683
	return;

out_disable:
	/* Multiple disables should be harmless */
	if (intel_fbc_enabled(dev)) {
		DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
		intel_disable_fbc(dev);
	}
684
	i915_gem_stolen_cleanup_compression(dev);
685 686
}

687 688
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
689
	struct drm_i915_private *dev_priv = dev->dev_private;
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
728
	struct drm_i915_private *dev_priv = dev->dev_private;
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

754
	dev_priv->ips.r_t = dev_priv->mem_freq;
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
786
		dev_priv->ips.c_m = 0;
787
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
788
		dev_priv->ips.c_m = 1;
789
	} else {
790
		dev_priv->ips.c_m = 2;
791 792 793
	}
}

794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

832
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
							 int is_ddr3,
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

856
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
857
{
858 859
	struct drm_device *dev = dev_priv->dev;
	u32 val;
860

861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
	if (IS_VALLEYVIEW(dev)) {
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
	} else if (IS_PINEVIEW(dev)) {
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
	} else if (IS_I915GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
	} else {
		return;
	}
880

881 882
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
}

/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
899
static const int pessimal_latency_ns = 5000;
900

901
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

917
static int i830_get_fifo_size(struct drm_device *dev, int plane)
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

934
static int i845_get_fifo_size(struct drm_device *dev, int plane)
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
952 953 954 955 956
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
957 958
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
959 960 961 962 963
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
964 965
};
static const struct intel_watermark_params pineview_cursor_wm = {
966 967 968 969 970
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
971 972
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
973 974 975 976 977
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
978 979
};
static const struct intel_watermark_params g4x_wm_info = {
980 981 982 983 984
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
985 986
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
987 988 989 990 991
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
992 993
};
static const struct intel_watermark_params valleyview_wm_info = {
994 995 996 997 998
	.fifo_size = VALLEYVIEW_FIFO_SIZE,
	.max_wm = VALLEYVIEW_MAX_WM,
	.default_wm = VALLEYVIEW_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
999 1000
};
static const struct intel_watermark_params valleyview_cursor_wm_info = {
1001 1002 1003 1004 1005
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
1006 1007
};
static const struct intel_watermark_params i965_cursor_wm_info = {
1008 1009 1010 1011 1012
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
1013 1014
};
static const struct intel_watermark_params i945_wm_info = {
1015 1016 1017 1018 1019
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
1020 1021
};
static const struct intel_watermark_params i915_wm_info = {
1022 1023 1024 1025 1026
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
1027
};
1028
static const struct intel_watermark_params i830_a_wm_info = {
1029 1030 1031 1032 1033
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
1034
};
1035 1036 1037 1038 1039 1040 1041
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
1042
static const struct intel_watermark_params i845_wm_info = {
1043 1044 1045 1046 1047
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
 * @pixel_size: display pixel size
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
					int fifo_size,
					int pixel_size,
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

1104
	for_each_crtc(dev, crtc) {
1105
		if (intel_crtc_active(crtc)) {
1106 1107 1108 1109 1110 1111 1112 1113 1114
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

1115
static void pineview_update_wm(struct drm_crtc *unused_crtc)
1116
{
1117
	struct drm_device *dev = unused_crtc->dev;
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
					 dev_priv->fsb_freq, dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1128
		intel_set_memory_cxsr(dev_priv, false);
1129 1130 1131 1132 1133
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
1134
		const struct drm_display_mode *adjusted_mode;
1135
		int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1136 1137 1138 1139
		int clock;

		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
		clock = adjusted_mode->crtc_clock;
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->display_sr);
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
		reg |= wm << DSPFW_SR_SHIFT;
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->cursor_sr);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
		reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->display_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
		reg |= wm & DSPFW_HPLL_SR_MASK;
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->cursor_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
		reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

1179
		intel_set_memory_cxsr(dev_priv, true);
1180
	} else {
1181
		intel_set_memory_cxsr(dev_priv, false);
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
1195
	const struct drm_display_mode *adjusted_mode;
1196 1197 1198 1199 1200
	int htotal, hdisplay, clock, pixel_size;
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
1201
	if (!intel_crtc_active(crtc)) {
1202 1203 1204 1205 1206
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

1207
	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1208
	clock = adjusted_mode->crtc_clock;
1209
	htotal = adjusted_mode->crtc_htotal;
1210
	hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1211
	pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223

	/* Use the small buffer method to calculate plane watermark */
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
1224
	line_time_us = max(htotal * 1000 / clock, 1);
1225
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1226
	entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
1281
	const struct drm_display_mode *adjusted_mode;
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
	int hdisplay, htotal, pixel_size, clock;
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
1294
	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1295
	clock = adjusted_mode->crtc_clock;
1296
	htotal = adjusted_mode->crtc_htotal;
1297
	hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1298
	pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1299

1300
	line_time_us = max(htotal * 1000 / clock, 1);
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
	line_count = (latency_ns / line_time_us + 1000) / 1000;
	line_size = hdisplay * pixel_size;

	/* Use the minimum of the small and large buffer method for primary */
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
1312
	entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
1313 1314 1315 1316 1317 1318 1319 1320
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

1321 1322 1323 1324
static bool vlv_compute_drain_latency(struct drm_crtc *crtc,
				      int pixel_size,
				      int *prec_mult,
				      int *drain_latency)
1325 1326
{
	int entries;
1327
	int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1328

1329
	if (WARN(clock == 0, "Pixel clock is zero!\n"))
1330 1331
		return false;

1332 1333
	if (WARN(pixel_size == 0, "Pixel size is zero!\n"))
		return false;
1334

1335
	entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
1336 1337 1338
	*prec_mult = (entries > 128) ? DRAIN_LATENCY_PRECISION_64 :
				       DRAIN_LATENCY_PRECISION_32;
	*drain_latency = (64 * (*prec_mult) * 4) / entries;
1339

1340 1341
	if (*drain_latency > DRAIN_LATENCY_MASK)
		*drain_latency = DRAIN_LATENCY_MASK;
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353

	return true;
}

/*
 * Update drain latency registers of memory arbiter
 *
 * Valleyview SoC has a new memory arbiter and needs drain latency registers
 * to be programmed. Each plane has a drain latency multiplier and a drain
 * latency value.
 */

1354
static void vlv_update_drain_latency(struct drm_crtc *crtc)
1355
{
1356 1357 1358 1359 1360 1361
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int pixel_size;
	int drain_latency;
	enum pipe pipe = intel_crtc->pipe;
	int plane_prec, prec_mult, plane_dl;
1362

1363 1364 1365 1366 1367 1368 1369 1370
	plane_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_PLANE_PRECISION_64 |
		   DRAIN_LATENCY_MASK | DDL_CURSOR_PRECISION_64 |
		   (DRAIN_LATENCY_MASK << DDL_CURSOR_SHIFT));

	if (!intel_crtc_active(crtc)) {
		I915_WRITE(VLV_DDL(pipe), plane_dl);
		return;
	}
1371

1372 1373 1374 1375 1376 1377 1378
	/* Primary plane Drain Latency */
	pixel_size = crtc->primary->fb->bits_per_pixel / 8;	/* BPP */
	if (vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
		plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
					   DDL_PLANE_PRECISION_64 :
					   DDL_PLANE_PRECISION_32;
		plane_dl |= plane_prec | drain_latency;
1379 1380
	}

1381 1382 1383 1384
	/* Cursor Drain Latency
	 * BPP is always 4 for cursor
	 */
	pixel_size = 4;
1385

1386 1387 1388 1389 1390 1391 1392
	/* Program cursor DL only if it is enabled */
	if (intel_crtc->cursor_base &&
	    vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
		plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
					   DDL_CURSOR_PRECISION_64 :
					   DDL_CURSOR_PRECISION_32;
		plane_dl |= plane_prec | (drain_latency << DDL_CURSOR_SHIFT);
1393
	}
1394 1395

	I915_WRITE(VLV_DDL(pipe), plane_dl);
1396 1397 1398 1399
}

#define single_plane_enabled(mask) is_power_of_2(mask)

1400
static void valleyview_update_wm(struct drm_crtc *crtc)
1401
{
1402
	struct drm_device *dev = crtc->dev;
1403 1404 1405 1406
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
1407
	int ignore_plane_sr, ignore_cursor_sr;
1408
	unsigned int enabled = 0;
1409
	bool cxsr_enabled;
1410

1411
	vlv_update_drain_latency(crtc);
1412

1413
	if (g4x_compute_wm0(dev, PIPE_A,
1414 1415
			    &valleyview_wm_info, pessimal_latency_ns,
			    &valleyview_cursor_wm_info, pessimal_latency_ns,
1416
			    &planea_wm, &cursora_wm))
1417
		enabled |= 1 << PIPE_A;
1418

1419
	if (g4x_compute_wm0(dev, PIPE_B,
1420 1421
			    &valleyview_wm_info, pessimal_latency_ns,
			    &valleyview_cursor_wm_info, pessimal_latency_ns,
1422
			    &planeb_wm, &cursorb_wm))
1423
		enabled |= 1 << PIPE_B;
1424 1425 1426 1427 1428 1429

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
1430 1431 1432 1433 1434
			     &plane_sr, &ignore_cursor_sr) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     2*sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
1435
			     &ignore_plane_sr, &cursor_sr)) {
1436
		cxsr_enabled = true;
1437
	} else {
1438
		cxsr_enabled = false;
1439
		intel_set_memory_cxsr(dev_priv, false);
1440 1441
		plane_sr = cursor_sr = 0;
	}
1442

1443 1444
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1445 1446 1447 1448 1449 1450 1451 1452
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
		   (plane_sr << DSPFW_SR_SHIFT) |
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1453
		   (planea_wm << DSPFW_PLANEA_SHIFT));
1454
	I915_WRITE(DSPFW2,
1455
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1456 1457
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
	I915_WRITE(DSPFW3,
1458 1459
		   (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1460 1461 1462

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1463 1464
}

1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
static void cherryview_update_wm(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, planec_wm;
	int cursora_wm, cursorb_wm, cursorc_wm;
	int plane_sr, cursor_sr;
	int ignore_plane_sr, ignore_cursor_sr;
	unsigned int enabled = 0;
	bool cxsr_enabled;

	vlv_update_drain_latency(crtc);

	if (g4x_compute_wm0(dev, PIPE_A,
1480 1481
			    &valleyview_wm_info, pessimal_latency_ns,
			    &valleyview_cursor_wm_info, pessimal_latency_ns,
1482 1483 1484 1485
			    &planea_wm, &cursora_wm))
		enabled |= 1 << PIPE_A;

	if (g4x_compute_wm0(dev, PIPE_B,
1486 1487
			    &valleyview_wm_info, pessimal_latency_ns,
			    &valleyview_cursor_wm_info, pessimal_latency_ns,
1488 1489 1490 1491
			    &planeb_wm, &cursorb_wm))
		enabled |= 1 << PIPE_B;

	if (g4x_compute_wm0(dev, PIPE_C,
1492 1493
			    &valleyview_wm_info, pessimal_latency_ns,
			    &valleyview_cursor_wm_info, pessimal_latency_ns,
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
			    &planec_wm, &cursorc_wm))
		enabled |= 1 << PIPE_C;

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
			     &plane_sr, &ignore_cursor_sr) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     2*sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
			     &ignore_plane_sr, &cursor_sr)) {
		cxsr_enabled = true;
	} else {
		cxsr_enabled = false;
		intel_set_memory_cxsr(dev_priv, false);
		plane_sr = cursor_sr = 0;
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, C: plane=%d, cursor=%d, "
		      "SR: plane=%d, cursor=%d\n",
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      planec_wm, cursorc_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
		   (plane_sr << DSPFW_SR_SHIFT) |
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
		   (planea_wm << DSPFW_PLANEA_SHIFT));
	I915_WRITE(DSPFW2,
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
	I915_WRITE(DSPFW3,
		   (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
	I915_WRITE(DSPFW9_CHV,
		   (I915_READ(DSPFW9_CHV) & ~(DSPFW_PLANEC_MASK |
					      DSPFW_CURSORC_MASK)) |
		   (planec_wm << DSPFW_PLANEC_SHIFT) |
		   (cursorc_wm << DSPFW_CURSORC_SHIFT));

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
}

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
static void valleyview_update_sprite_wm(struct drm_plane *plane,
					struct drm_crtc *crtc,
					uint32_t sprite_width,
					uint32_t sprite_height,
					int pixel_size,
					bool enabled, bool scaled)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe = to_intel_plane(plane)->pipe;
	int sprite = to_intel_plane(plane)->plane;
	int drain_latency;
	int plane_prec;
	int sprite_dl;
	int prec_mult;

	sprite_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_SPRITE_PRECISION_64(sprite) |
		    (DRAIN_LATENCY_MASK << DDL_SPRITE_SHIFT(sprite)));

	if (enabled && vlv_compute_drain_latency(crtc, pixel_size, &prec_mult,
						 &drain_latency)) {
		plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
					   DDL_SPRITE_PRECISION_64(sprite) :
					   DDL_SPRITE_PRECISION_32(sprite);
		sprite_dl |= plane_prec |
			     (drain_latency << DDL_SPRITE_SHIFT(sprite));
	}

	I915_WRITE(VLV_DDL(pipe), sprite_dl);
}

1575
static void g4x_update_wm(struct drm_crtc *crtc)
1576
{
1577
	struct drm_device *dev = crtc->dev;
1578 1579 1580 1581 1582
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1583
	bool cxsr_enabled;
1584

1585
	if (g4x_compute_wm0(dev, PIPE_A,
1586 1587
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1588
			    &planea_wm, &cursora_wm))
1589
		enabled |= 1 << PIPE_A;
1590

1591
	if (g4x_compute_wm0(dev, PIPE_B,
1592 1593
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1594
			    &planeb_wm, &cursorb_wm))
1595
		enabled |= 1 << PIPE_B;
1596 1597 1598 1599 1600 1601

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1602
			     &plane_sr, &cursor_sr)) {
1603
		cxsr_enabled = true;
1604
	} else {
1605
		cxsr_enabled = false;
1606
		intel_set_memory_cxsr(dev_priv, false);
1607 1608
		plane_sr = cursor_sr = 0;
	}
1609

1610 1611
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1612 1613 1614 1615 1616 1617 1618 1619
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
		   (plane_sr << DSPFW_SR_SHIFT) |
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1620
		   (planea_wm << DSPFW_PLANEA_SHIFT));
1621
	I915_WRITE(DSPFW2,
1622
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1623 1624 1625
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1626
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1627
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1628 1629 1630

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1631 1632
}

1633
static void i965_update_wm(struct drm_crtc *unused_crtc)
1634
{
1635
	struct drm_device *dev = unused_crtc->dev;
1636 1637 1638 1639
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;
1640
	bool cxsr_enabled;
1641 1642 1643 1644 1645 1646

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1647 1648
		const struct drm_display_mode *adjusted_mode =
			&to_intel_crtc(crtc)->config.adjusted_mode;
1649
		int clock = adjusted_mode->crtc_clock;
1650
		int htotal = adjusted_mode->crtc_htotal;
1651
		int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1652
		int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1653 1654 1655
		unsigned long line_time_us;
		int entries;

1656
		line_time_us = max(htotal * 1000 / clock, 1);
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1670
			pixel_size * to_intel_crtc(crtc)->cursor_width;
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1682
		cxsr_enabled = true;
1683
	} else {
1684
		cxsr_enabled = false;
1685
		/* Turn off self refresh if both pipes are enabled */
1686
		intel_set_memory_cxsr(dev_priv, false);
1687 1688 1689 1690 1691 1692 1693
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
	I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1694 1695 1696 1697 1698
		   (8 << DSPFW_CURSORB_SHIFT) |
		   (8 << DSPFW_PLANEB_SHIFT) |
		   (8 << DSPFW_PLANEA_SHIFT));
	I915_WRITE(DSPFW2, (8 << DSPFW_CURSORA_SHIFT) |
		   (8 << DSPFW_PLANEC_SHIFT_OLD));
1699 1700
	/* update cursor SR watermark */
	I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1701 1702 1703

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1704 1705
}

1706
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1707
{
1708
	struct drm_device *dev = unused_crtc->dev;
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
	else if (!IS_GEN2(dev))
		wm_info = &i915_wm_info;
	else
1723
		wm_info = &i830_a_wm_info;
1724 1725 1726

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1727
	if (intel_crtc_active(crtc)) {
1728
		const struct drm_display_mode *adjusted_mode;
1729
		int cpp = crtc->primary->fb->bits_per_pixel / 8;
1730 1731 1732
		if (IS_GEN2(dev))
			cpp = 4;

1733 1734
		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1735
					       wm_info, fifo_size, cpp,
1736
					       pessimal_latency_ns);
1737
		enabled = crtc;
1738
	} else {
1739
		planea_wm = fifo_size - wm_info->guard_size;
1740 1741 1742 1743 1744 1745
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

	if (IS_GEN2(dev))
		wm_info = &i830_bc_wm_info;
1746 1747 1748

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1749
	if (intel_crtc_active(crtc)) {
1750
		const struct drm_display_mode *adjusted_mode;
1751
		int cpp = crtc->primary->fb->bits_per_pixel / 8;
1752 1753 1754
		if (IS_GEN2(dev))
			cpp = 4;

1755 1756
		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1757
					       wm_info, fifo_size, cpp,
1758
					       pessimal_latency_ns);
1759 1760 1761 1762
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1763
	} else {
1764
		planeb_wm = fifo_size - wm_info->guard_size;
1765 1766 1767
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1768 1769 1770

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1771
	if (IS_I915GM(dev) && enabled) {
1772
		struct drm_i915_gem_object *obj;
1773

1774
		obj = intel_fb_obj(enabled->primary->fb);
1775 1776

		/* self-refresh seems busted with untiled */
1777
		if (obj->tiling_mode == I915_TILING_NONE)
1778 1779 1780
			enabled = NULL;
	}

1781 1782 1783 1784 1785 1786
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1787
	intel_set_memory_cxsr(dev_priv, false);
1788 1789 1790 1791 1792

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1793 1794
		const struct drm_display_mode *adjusted_mode =
			&to_intel_crtc(enabled)->config.adjusted_mode;
1795
		int clock = adjusted_mode->crtc_clock;
1796
		int htotal = adjusted_mode->crtc_htotal;
1797
		int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
1798
		int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
1799 1800 1801
		unsigned long line_time_us;
		int entries;

1802
		line_time_us = max(htotal * 1000 / clock, 1);
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

		if (IS_I945G(dev) || IS_I945GM(dev))
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
		else if (IS_I915GM(dev))
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1833 1834
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1835 1836
}

1837
static void i845_update_wm(struct drm_crtc *unused_crtc)
1838
{
1839
	struct drm_device *dev = unused_crtc->dev;
1840 1841
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
1842
	const struct drm_display_mode *adjusted_mode;
1843 1844 1845 1846 1847 1848 1849
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1850 1851
	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1852
				       &i845_wm_info,
1853
				       dev_priv->display.get_fifo_size(dev, 0),
1854
				       4, pessimal_latency_ns);
1855 1856 1857 1858 1859 1860 1861 1862
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1863 1864
static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
				    struct drm_crtc *crtc)
1865 1866
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1867
	uint32_t pixel_rate;
1868

1869
	pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
1870 1871 1872 1873

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1874
	if (intel_crtc->config.pch_pfit.enabled) {
1875
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1876
		uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
1877

1878 1879
		pipe_w = intel_crtc->config.pipe_src_w;
		pipe_h = intel_crtc->config.pipe_src_h;
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1894
/* latency must be in 0.1us units. */
1895
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1896 1897 1898 1899
			       uint32_t latency)
{
	uint64_t ret;

1900 1901 1902
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1903 1904 1905 1906 1907 1908
	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1909
/* latency must be in 0.1us units. */
1910
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1911 1912 1913 1914 1915
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t ret;

1916 1917 1918
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1919 1920 1921 1922 1923 1924
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1925
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1926 1927 1928 1929 1930
			   uint8_t bytes_per_pixel)
{
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
}

1931
struct ilk_pipe_wm_parameters {
1932 1933 1934
	bool active;
	uint32_t pipe_htotal;
	uint32_t pixel_rate;
1935 1936 1937
	struct intel_plane_wm_parameters pri;
	struct intel_plane_wm_parameters spr;
	struct intel_plane_wm_parameters cur;
1938 1939
};

1940
struct ilk_wm_maximums {
1941 1942 1943 1944 1945 1946
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1947 1948 1949 1950 1951 1952 1953
/* used in computing the new watermarks state */
struct intel_wm_config {
	unsigned int num_pipes_active;
	bool sprites_enabled;
	bool sprites_scaled;
};

1954 1955 1956 1957
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1958
static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1959 1960
				   uint32_t mem_value,
				   bool is_lp)
1961
{
1962 1963
	uint32_t method1, method2;

1964
	if (!params->active || !params->pri.enabled)
1965 1966
		return 0;

1967
	method1 = ilk_wm_method1(params->pixel_rate,
1968
				 params->pri.bytes_per_pixel,
1969 1970 1971 1972 1973
				 mem_value);

	if (!is_lp)
		return method1;

1974
	method2 = ilk_wm_method2(params->pixel_rate,
1975
				 params->pipe_htotal,
1976 1977
				 params->pri.horiz_pixels,
				 params->pri.bytes_per_pixel,
1978 1979 1980
				 mem_value);

	return min(method1, method2);
1981 1982
}

1983 1984 1985 1986
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1987
static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1988 1989 1990 1991
				   uint32_t mem_value)
{
	uint32_t method1, method2;

1992
	if (!params->active || !params->spr.enabled)
1993 1994
		return 0;

1995
	method1 = ilk_wm_method1(params->pixel_rate,
1996
				 params->spr.bytes_per_pixel,
1997
				 mem_value);
1998
	method2 = ilk_wm_method2(params->pixel_rate,
1999
				 params->pipe_htotal,
2000 2001
				 params->spr.horiz_pixels,
				 params->spr.bytes_per_pixel,
2002 2003 2004 2005
				 mem_value);
	return min(method1, method2);
}

2006 2007 2008 2009
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2010
static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
2011 2012
				   uint32_t mem_value)
{
2013
	if (!params->active || !params->cur.enabled)
2014 2015
		return 0;

2016
	return ilk_wm_method2(params->pixel_rate,
2017
			      params->pipe_htotal,
2018 2019
			      params->cur.horiz_pixels,
			      params->cur.bytes_per_pixel,
2020 2021 2022
			      mem_value);
}

2023
/* Only for WM_LP. */
2024
static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
2025
				   uint32_t pri_val)
2026
{
2027
	if (!params->active || !params->pri.enabled)
2028 2029
		return 0;

2030
	return ilk_wm_fbc(pri_val,
2031 2032
			  params->pri.horiz_pixels,
			  params->pri.bytes_per_pixel);
2033 2034
}

2035 2036
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
2037 2038 2039
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
2040 2041 2042 2043 2044
		return 768;
	else
		return 512;
}

2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

2079 2080 2081
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
2082
				     const struct intel_wm_config *config,
2083 2084 2085 2086 2087 2088
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
2089
	if (is_sprite && !config->sprites_enabled)
2090 2091 2092
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2093
	if (level == 0 || config->num_pipes_active > 1) {
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

2105
	if (config->sprites_enabled) {
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2117
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
2118 2119 2120 2121
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2122 2123
				      int level,
				      const struct intel_wm_config *config)
2124 2125
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2126
	if (level > 0 && config->num_pipes_active > 1)
2127 2128 2129
		return 64;

	/* otherwise just report max that registers can hold */
2130
	return ilk_cursor_wm_reg_max(dev, level);
2131 2132
}

2133
static void ilk_compute_wm_maximums(const struct drm_device *dev,
2134 2135 2136
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2137
				    struct ilk_wm_maximums *max)
2138
{
2139 2140 2141
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
2142
	max->fbc = ilk_fbc_wm_reg_max(dev);
2143 2144
}

2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

2155
static bool ilk_validate_wm_level(int level,
2156
				  const struct ilk_wm_maximums *max,
2157
				  struct intel_wm_level *result)
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2196
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2197
				 int level,
2198
				 const struct ilk_pipe_wm_parameters *p,
2199
				 struct intel_wm_level *result)
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

	result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
	result->spr_val = ilk_compute_spr_wm(p, spr_latency);
	result->cur_val = ilk_compute_cur_wm(p, cur_latency);
	result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
	result->enable = true;
}

2219 2220
static uint32_t
hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2221 2222
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2223 2224
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2225
	u32 linetime, ips_linetime;
2226

2227 2228
	if (!intel_crtc_active(crtc))
		return 0;
2229

2230 2231 2232
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2233 2234 2235
	linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
				     mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2236
					 intel_ddi_get_cdclk_freq(dev_priv));
2237

2238 2239
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2240 2241
}

2242 2243 2244 2245
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2246
	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2247 2248 2249 2250 2251
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2252 2253 2254 2255
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2256 2257 2258 2259 2260 2261 2262
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2263 2264 2265 2266 2267 2268 2269
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2270 2271 2272
	}
}

2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK sprite LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;
}

static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK cursor LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
	if (IS_IVYBRIDGE(dev))
		wm[3] *= 2;
}

2291
int ilk_wm_max_level(const struct drm_device *dev)
2292 2293
{
	/* how many WM levels are we expecting */
2294
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2295
		return 4;
2296
	else if (INTEL_INFO(dev)->gen >= 6)
2297
		return 3;
2298
	else
2299 2300 2301 2302 2303 2304 2305
		return 2;
}
static void intel_print_wm_latency(struct drm_device *dev,
				   const char *name,
				   const uint16_t wm[5])
{
	int level, max_level = ilk_wm_max_level(dev);
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

		/* WM1+ latency values in 0.5us units */
		if (level > 0)
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
	int level, max_level = ilk_wm_max_level(dev_priv->dev);

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
}

2363
static void ilk_setup_wm_latency(struct drm_device *dev)
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2376 2377 2378 2379

	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2380 2381 2382

	if (IS_GEN6(dev))
		snb_wm_latency_quirk(dev);
2383 2384
}

2385
static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2386
				      struct ilk_pipe_wm_parameters *p)
2387
{
2388 2389 2390 2391
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct drm_plane *plane;
2392

2393 2394
	if (!intel_crtc_active(crtc))
		return;
2395

2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
	p->active = true;
	p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
	p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
	p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
	p->cur.bytes_per_pixel = 4;
	p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
	p->cur.horiz_pixels = intel_crtc->cursor_width;
	/* TODO: for now, assume primary and cursor planes are always enabled. */
	p->pri.enabled = true;
	p->cur.enabled = true;
2406

2407
	drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
2408 2409
		struct intel_plane *intel_plane = to_intel_plane(plane);

2410
		if (intel_plane->pipe == pipe) {
2411
			p->spr = intel_plane->wm;
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
			break;
		}
	}
}

static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *intel_crtc;

	/* Compute the currently _active_ config */
2423
	for_each_intel_crtc(dev, intel_crtc) {
2424
		const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2425

2426 2427
		if (!wm->pipe_enabled)
			continue;
2428

2429 2430 2431
		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
2432
	}
2433 2434
}

2435 2436
/* Compute new watermarks for the pipe */
static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2437
				  const struct ilk_pipe_wm_parameters *params,
2438 2439 2440
				  struct intel_pipe_wm *pipe_wm)
{
	struct drm_device *dev = crtc->dev;
2441
	const struct drm_i915_private *dev_priv = dev->dev_private;
2442 2443 2444 2445 2446 2447 2448
	int level, max_level = ilk_wm_max_level(dev);
	/* LP0 watermark maximums depend on this pipe alone */
	struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = params->spr.enabled,
		.sprites_scaled = params->spr.scaled,
	};
2449
	struct ilk_wm_maximums max;
2450

2451 2452 2453 2454
	pipe_wm->pipe_enabled = params->active;
	pipe_wm->sprites_enabled = params->spr.enabled;
	pipe_wm->sprites_scaled = params->spr.scaled;

2455 2456 2457 2458 2459 2460 2461 2462
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
	if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
		max_level = 1;

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
	if (params->spr.scaled)
		max_level = 0;

2463
	ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
2464

2465
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2466
		pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2467

2468 2469 2470
	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

2471
	/* At least LP0 must be valid */
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
		return false;

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level wm = {};

		ilk_compute_wm_level(dev_priv, level, params, &wm);

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
		if (!ilk_validate_wm_level(level, &max, &wm))
			break;

		pipe_wm->wm[level] = wm;
	}

	return true;
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
}

/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2505 2506
	ret_wm->enable = true;

2507
	for_each_intel_crtc(dev, intel_crtc) {
2508 2509 2510 2511 2512
		const struct intel_pipe_wm *active = &intel_crtc->wm.active;
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2513

2514 2515 2516 2517 2518
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2519
		if (!wm->enable)
2520
			ret_wm->enable = false;
2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2533
			 const struct intel_wm_config *config,
2534
			 const struct ilk_wm_maximums *max,
2535 2536 2537
			 struct intel_pipe_wm *merged)
{
	int level, max_level = ilk_wm_max_level(dev);
2538
	int last_enabled_level = max_level;
2539

2540 2541 2542 2543 2544
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
	    config->num_pipes_active > 1)
		return;

2545 2546
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2547 2548 2549 2550 2551 2552 2553

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2554 2555 2556 2557 2558
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2559 2560 2561 2562 2563 2564

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2565 2566
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2567 2568 2569
			wm->fbc_val = 0;
		}
	}
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
	if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2584 2585
}

2586 2587 2588 2589 2590 2591
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2592 2593 2594 2595 2596
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2597
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2598 2599 2600 2601 2602
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2603
static void ilk_compute_wm_results(struct drm_device *dev,
2604
				   const struct intel_pipe_wm *merged,
2605
				   enum intel_ddb_partitioning partitioning,
2606
				   struct ilk_wm_values *results)
2607
{
2608 2609
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2610

2611
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2612
	results->partitioning = partitioning;
2613

2614
	/* LP1+ register values */
2615
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2616
		const struct intel_wm_level *r;
2617

2618
		level = ilk_wm_lp_to_level(wm_lp, merged);
2619

2620
		r = &merged->wm[level];
2621

2622 2623 2624 2625 2626
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2627
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2628 2629 2630
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2631 2632 2633
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2634 2635 2636 2637 2638 2639 2640
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2641 2642 2643 2644
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2645 2646 2647 2648 2649
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2650
	}
2651

2652
	/* LP0 register values */
2653
	for_each_intel_crtc(dev, intel_crtc) {
2654 2655 2656 2657 2658 2659 2660 2661
		enum pipe pipe = intel_crtc->pipe;
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.wm[0];

		if (WARN_ON(!r->enable))
			continue;

		results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2662

2663 2664 2665 2666
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2667 2668 2669
	}
}

2670 2671
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2672
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2673 2674
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2675
{
2676 2677
	int level, max_level = ilk_wm_max_level(dev);
	int level1 = 0, level2 = 0;
2678

2679 2680 2681 2682 2683
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2684 2685
	}

2686 2687
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2688 2689 2690
			return r2;
		else
			return r1;
2691
	} else if (level1 > level2) {
2692 2693 2694 2695 2696 2697
		return r1;
	} else {
		return r2;
	}
}

2698 2699 2700 2701 2702 2703 2704 2705
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2706
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2707 2708
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2709 2710 2711 2712 2713
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2714
	for_each_pipe(dev_priv, pipe) {
2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2758 2759
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2760
{
2761
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2762
	bool changed = false;
2763

2764 2765 2766
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2767
		changed = true;
2768 2769 2770 2771
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2772
		changed = true;
2773 2774 2775 2776
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2777
		changed = true;
2778
	}
2779

2780 2781 2782 2783
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2784

2785 2786 2787 2788 2789 2790 2791
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2792 2793
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2794 2795
{
	struct drm_device *dev = dev_priv->dev;
2796
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2797 2798 2799
	unsigned int dirty;
	uint32_t val;

2800
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2801 2802 2803 2804 2805
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2806
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2807
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2808
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2809
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2810
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2811 2812
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2813
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2814
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2815
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2816
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2817
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2818 2819
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2820
	if (dirty & WM_DIRTY_DDB) {
2821
		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2836 2837
	}

2838
	if (dirty & WM_DIRTY_FBC) {
2839 2840 2841 2842 2843 2844 2845 2846
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2847 2848 2849 2850 2851
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2852 2853 2854 2855 2856
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2857

2858
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2859
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2860
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2861
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2862
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2863
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2864 2865

	dev_priv->wm.hw = *results;
2866 2867
}

2868 2869 2870 2871 2872 2873 2874
static bool ilk_disable_lp_wm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2875
static void ilk_update_wm(struct drm_crtc *crtc)
2876
{
2877
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2878
	struct drm_device *dev = crtc->dev;
2879
	struct drm_i915_private *dev_priv = dev->dev_private;
2880 2881 2882
	struct ilk_wm_maximums max;
	struct ilk_pipe_wm_parameters params = {};
	struct ilk_wm_values results = {};
2883
	enum intel_ddb_partitioning partitioning;
2884
	struct intel_pipe_wm pipe_wm = {};
2885
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
2886
	struct intel_wm_config config = {};
2887

2888
	ilk_compute_wm_parameters(crtc, &params);
2889 2890 2891 2892 2893

	intel_compute_pipe_wm(crtc, &params, &pipe_wm);

	if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
		return;
2894

2895
	intel_crtc->wm.active = pipe_wm;
2896

2897 2898
	ilk_compute_wm_config(dev, &config);

2899
	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
2900
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
2901 2902

	/* 5/6 split only in single pipe config on IVB+ */
2903 2904
	if (INTEL_INFO(dev)->gen >= 7 &&
	    config.num_pipes_active == 1 && config.sprites_enabled) {
2905
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
2906
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
2907

2908
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
2909
	} else {
2910
		best_lp_wm = &lp_wm_1_2;
2911 2912
	}

2913
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
2914
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2915

2916
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
2917

2918
	ilk_write_wm_values(dev_priv, &results);
2919 2920
}

2921 2922 2923 2924 2925
static void
ilk_update_sprite_wm(struct drm_plane *plane,
		     struct drm_crtc *crtc,
		     uint32_t sprite_width, uint32_t sprite_height,
		     int pixel_size, bool enabled, bool scaled)
2926
{
2927
	struct drm_device *dev = plane->dev;
2928
	struct intel_plane *intel_plane = to_intel_plane(plane);
2929

2930 2931 2932
	intel_plane->wm.enabled = enabled;
	intel_plane->wm.scaled = scaled;
	intel_plane->wm.horiz_pixels = sprite_width;
2933
	intel_plane->wm.vert_pixels = sprite_width;
2934
	intel_plane->wm.bytes_per_pixel = pixel_size;
2935

2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
	/*
	 * IVB workaround: must disable low power watermarks for at least
	 * one frame before enabling scaling.  LP watermarks can be re-enabled
	 * when scaling is disabled.
	 *
	 * WaCxSRDisabledForSpriteScaling:ivb
	 */
	if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
		intel_wait_for_vblank(dev, intel_plane->pipe);

2946
	ilk_update_wm(crtc);
2947 2948
}

2949 2950 2951 2952
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
2953
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_pipe_wm *active = &intel_crtc->wm.active;
	enum pipe pipe = intel_crtc->pipe;
	static const unsigned int wm0_pipe_reg[] = {
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
2964
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2965
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
2966

2967 2968 2969
	active->pipe_enabled = intel_crtc_active(crtc);

	if (active->pipe_enabled) {
2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
		int level, max_level = ilk_wm_max_level(dev);

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
}

void ilk_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2999
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3000 3001
	struct drm_crtc *crtc;

3002
	for_each_crtc(dev, crtc)
3003 3004 3005 3006 3007 3008 3009
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
3010 3011 3012 3013
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
3014

3015
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3016 3017 3018 3019 3020
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
	else if (IS_IVYBRIDGE(dev))
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3021 3022 3023 3024 3025

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
3058
void intel_update_watermarks(struct drm_crtc *crtc)
3059
{
3060
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3061 3062

	if (dev_priv->display.update_wm)
3063
		dev_priv->display.update_wm(crtc);
3064 3065
}

3066 3067
void intel_update_sprite_watermarks(struct drm_plane *plane,
				    struct drm_crtc *crtc,
3068 3069 3070
				    uint32_t sprite_width,
				    uint32_t sprite_height,
				    int pixel_size,
3071
				    bool enabled, bool scaled)
3072
{
3073
	struct drm_i915_private *dev_priv = plane->dev->dev_private;
3074 3075

	if (dev_priv->display.update_sprite_wm)
3076 3077
		dev_priv->display.update_sprite_wm(plane, crtc,
						   sprite_width, sprite_height,
3078
						   pixel_size, enabled, scaled);
3079 3080
}

3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
static struct drm_i915_gem_object *
intel_alloc_context_page(struct drm_device *dev)
{
	struct drm_i915_gem_object *ctx;
	int ret;

	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

	ctx = i915_gem_alloc_object(dev, 4096);
	if (!ctx) {
		DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
		return NULL;
	}

3095
	ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
	if (ret) {
		DRM_ERROR("failed to pin power context: %d\n", ret);
		goto err_unref;
	}

	ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
	if (ret) {
		DRM_ERROR("failed to set-domain on power context: %d\n", ret);
		goto err_unpin;
	}

	return ctx;

err_unpin:
B
Ben Widawsky 已提交
3110
	i915_gem_object_ggtt_unpin(ctx);
3111 3112 3113 3114 3115
err_unref:
	drm_gem_object_unreference(&ctx->base);
	return NULL;
}

3116 3117 3118 3119 3120 3121 3122 3123 3124
/**
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

3125 3126 3127 3128 3129
bool ironlake_set_drps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u16 rgvswctl;

3130 3131
	assert_spin_locked(&mchdev_lock);

3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

3149
static void ironlake_enable_drps(struct drm_device *dev)
3150 3151 3152 3153 3154
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 rgvmodectl = I915_READ(MEMMODECTL);
	u8 fmax, fmin, fstart, vstart;

3155 3156
	spin_lock_irq(&mchdev_lock);

3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
		PXVFREQ_PX_SHIFT;

3180 3181
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
3182

3183 3184 3185
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

3202
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3203
		DRM_ERROR("stuck trying to change perf mode\n");
3204
	mdelay(1);
3205 3206 3207

	ironlake_set_drps(dev, fstart);

3208
	dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3209
		I915_READ(0x112e0);
3210 3211
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
	dev_priv->ips.last_count2 = I915_READ(0x112f4);
3212
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
3213 3214

	spin_unlock_irq(&mchdev_lock);
3215 3216
}

3217
static void ironlake_disable_drps(struct drm_device *dev)
3218 3219
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3220 3221 3222 3223 3224
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
3225 3226 3227 3228 3229 3230 3231 3232 3233

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
3234
	ironlake_set_drps(dev, dev_priv->ips.fstart);
3235
	mdelay(1);
3236 3237
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
3238
	mdelay(1);
3239

3240
	spin_unlock_irq(&mchdev_lock);
3241 3242
}

3243 3244 3245 3246 3247
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
3248
static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3249
{
3250
	u32 limits;
3251

3252 3253 3254 3255 3256 3257
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
3258 3259 3260
	limits = dev_priv->rps.max_freq_softlimit << 24;
	if (val <= dev_priv->rps.min_freq_softlimit)
		limits |= dev_priv->rps.min_freq_softlimit << 16;
3261 3262 3263 3264

	return limits;
}

3265 3266 3267 3268
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;

D
Daisy Sun 已提交
3269 3270 3271
	if (dev_priv->rps.is_bdw_sw_turbo)
		return;

3272 3273 3274
	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
3275
		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
3276 3277 3278 3279
			new_power = BETWEEN;
		break;

	case BETWEEN:
3280
		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
3281
			new_power = LOW_POWER;
3282
		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
3283 3284 3285 3286
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
3287
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
3288 3289 3290 3291
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
3292
	if (val == dev_priv->rps.min_freq_softlimit)
3293
		new_power = LOW_POWER;
3294
	if (val == dev_priv->rps.max_freq_softlimit)
3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
		I915_WRITE(GEN6_RP_UP_EI, 12500);
		I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);

		/* Downclock if less than 85% busy over 32ms */
		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);

		I915_WRITE(GEN6_RP_CONTROL,
			   GEN6_RP_MEDIA_TURBO |
			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
			   GEN6_RP_MEDIA_IS_GFX |
			   GEN6_RP_ENABLE |
			   GEN6_RP_UP_BUSY_AVG |
			   GEN6_RP_DOWN_IDLE_AVG);
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
		I915_WRITE(GEN6_RP_UP_EI, 10250);
		I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);

		/* Downclock if less than 75% busy over 32ms */
		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);

		I915_WRITE(GEN6_RP_CONTROL,
			   GEN6_RP_MEDIA_TURBO |
			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
			   GEN6_RP_MEDIA_IS_GFX |
			   GEN6_RP_ENABLE |
			   GEN6_RP_UP_BUSY_AVG |
			   GEN6_RP_DOWN_IDLE_AVG);
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
		I915_WRITE(GEN6_RP_UP_EI, 8000);
		I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);

		/* Downclock if less than 60% busy over 32ms */
		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);

		I915_WRITE(GEN6_RP_CONTROL,
			   GEN6_RP_MEDIA_TURBO |
			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
			   GEN6_RP_MEDIA_IS_GFX |
			   GEN6_RP_ENABLE |
			   GEN6_RP_UP_BUSY_AVG |
			   GEN6_RP_DOWN_IDLE_AVG);
		break;
	}

	dev_priv->rps.power = new_power;
	dev_priv->rps.last_adj = 0;
}

3360 3361 3362 3363 3364 3365 3366 3367 3368
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
		mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
	if (val < dev_priv->rps.max_freq_softlimit)
		mask |= GEN6_PM_RP_UP_THRESHOLD;

3369 3370 3371
	mask |= dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED);
	mask &= dev_priv->pm_rps_events;

3372 3373 3374 3375 3376 3377
	/* IVB and SNB hard hangs on looping batchbuffer
	 * if GEN6_PM_UP_EI_EXPIRED is masked.
	 */
	if (INTEL_INFO(dev_priv->dev)->gen <= 7 && !IS_HASWELL(dev_priv->dev))
		mask |= GEN6_PM_RP_UP_EI_EXPIRED;

3378 3379 3380
	if (IS_GEN8(dev_priv->dev))
		mask |= GEN8_PMINTR_REDIRECT_TO_NON_DISP;

3381 3382 3383
	return ~mask;
}

3384 3385 3386
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3387 3388 3389
void gen6_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3390

3391
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3392 3393
	WARN_ON(val > dev_priv->rps.max_freq_softlimit);
	WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3394

C
Chris Wilson 已提交
3395 3396 3397 3398 3399
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
3400

3401
		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
C
Chris Wilson 已提交
3402 3403 3404 3405 3406 3407 3408
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
3409
	}
3410 3411 3412 3413

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
C
Chris Wilson 已提交
3414
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
3415
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3416

3417 3418
	POSTING_READ(GEN6_RPNSWREQ);

3419
	dev_priv->rps.cur_freq = val;
3420
	trace_intel_gpu_freq_change(val * 50);
3421 3422
}

3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
/* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
 *
 * * If Gfx is Idle, then
 * 1. Mask Turbo interrupts
 * 2. Bring up Gfx clock
 * 3. Change the freq to Rpn and wait till P-Unit updates freq
 * 4. Clear the Force GFX CLK ON bit so that Gfx can down
 * 5. Unmask Turbo interrupts
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
3434 3435 3436 3437 3438 3439 3440 3441
	struct drm_device *dev = dev_priv->dev;

	/* Latest VLV doesn't need to force the gfx clock */
	if (dev->pdev->revision >= 0xd) {
		valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
		return;
	}

3442 3443 3444 3445
	/*
	 * When we are idle.  Drop to min voltage state.
	 */

3446
	if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
3447 3448 3449 3450 3451
		return;

	/* Mask turbo interrupt so that they will not come in between */
	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);

3452
	vlv_force_gfx_clock(dev_priv, true);
3453

3454
	dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
3455 3456

	vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
3457
					dev_priv->rps.min_freq_softlimit);
3458 3459 3460 3461 3462

	if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
				& GENFREQSTATUS) == 0, 5))
		DRM_ERROR("timed out waiting for Punit\n");

3463
	vlv_force_gfx_clock(dev_priv, false);
3464

3465 3466
	I915_WRITE(GEN6_PMINTRMSK,
		   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
3467 3468
}

3469 3470
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
3471 3472
	struct drm_device *dev = dev_priv->dev;

3473
	mutex_lock(&dev_priv->rps.hw_lock);
3474
	if (dev_priv->rps.enabled) {
3475 3476 3477
		if (IS_CHERRYVIEW(dev))
			valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
		else if (IS_VALLEYVIEW(dev))
3478
			vlv_set_rps_idle(dev_priv);
D
Daisy Sun 已提交
3479 3480
		else if (!dev_priv->rps.is_bdw_sw_turbo
					|| atomic_read(&dev_priv->rps.sw_turbo.flip_received)){
3481
			gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
D
Daisy Sun 已提交
3482 3483
		}

3484 3485
		dev_priv->rps.last_adj = 0;
	}
3486 3487 3488 3489 3490
	mutex_unlock(&dev_priv->rps.hw_lock);
}

void gen6_rps_boost(struct drm_i915_private *dev_priv)
{
3491 3492
	struct drm_device *dev = dev_priv->dev;

3493
	mutex_lock(&dev_priv->rps.hw_lock);
3494
	if (dev_priv->rps.enabled) {
3495
		if (IS_VALLEYVIEW(dev))
3496
			valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
D
Daisy Sun 已提交
3497 3498
		else if (!dev_priv->rps.is_bdw_sw_turbo
					|| atomic_read(&dev_priv->rps.sw_turbo.flip_received)){
3499
			gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
D
Daisy Sun 已提交
3500 3501
		}

3502 3503
		dev_priv->rps.last_adj = 0;
	}
3504 3505 3506
	mutex_unlock(&dev_priv->rps.hw_lock);
}

3507 3508 3509
void valleyview_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3510

3511
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3512 3513
	WARN_ON(val > dev_priv->rps.max_freq_softlimit);
	WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3514

3515
	DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3516 3517
			 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
			 dev_priv->rps.cur_freq,
3518
			 vlv_gpu_freq(dev_priv, val), val);
3519

3520 3521 3522 3523
	if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
		      "Odd GPU freq value\n"))
		val &= ~1;

3524 3525
	if (val != dev_priv->rps.cur_freq)
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3526

3527
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3528

3529
	dev_priv->rps.cur_freq = val;
3530
	trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
3531 3532
}

3533 3534 3535
static void gen8_disable_rps_interrupts(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
D
Daisy Sun 已提交
3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555
	if (IS_BROADWELL(dev) && dev_priv->rps.is_bdw_sw_turbo){
		if (atomic_read(&dev_priv->rps.sw_turbo.flip_received))
			del_timer(&dev_priv->rps.sw_turbo.flip_timer);
		dev_priv-> rps.is_bdw_sw_turbo = false;
	} else {
		I915_WRITE(GEN6_PMINTRMSK, ~GEN8_PMINTR_REDIRECT_TO_NON_DISP);
		I915_WRITE(GEN8_GT_IER(2), I915_READ(GEN8_GT_IER(2)) &
					   ~dev_priv->pm_rps_events);
		/* Complete PM interrupt masking here doesn't race with the rps work
		 * item again unmasking PM interrupts because that is using a different
		 * register (GEN8_GT_IMR(2)) to mask PM interrupts. The only risk is in
		 * leaving stale bits in GEN8_GT_IIR(2) and GEN8_GT_IMR(2) which
		 * gen8_enable_rps will clean up. */

		spin_lock_irq(&dev_priv->irq_lock);
		dev_priv->rps.pm_iir = 0;
		spin_unlock_irq(&dev_priv->irq_lock);

		I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
	}
3556 3557
}

3558
static void gen6_disable_rps_interrupts(struct drm_device *dev)
3559 3560 3561 3562
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3563 3564
	I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) &
				~dev_priv->pm_rps_events);
3565 3566 3567 3568 3569
	/* Complete PM interrupt masking here doesn't race with the rps work
	 * item again unmasking PM interrupts because that is using a different
	 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
	 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */

3570
	spin_lock_irq(&dev_priv->irq_lock);
3571
	dev_priv->rps.pm_iir = 0;
3572
	spin_unlock_irq(&dev_priv->irq_lock);
3573

3574
	I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3575 3576
}

3577
static void gen6_disable_rps(struct drm_device *dev)
3578 3579 3580 3581
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
3582
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3583

3584 3585 3586 3587
	if (IS_BROADWELL(dev))
		gen8_disable_rps_interrupts(dev);
	else
		gen6_disable_rps_interrupts(dev);
3588 3589
}

3590 3591 3592 3593 3594
static void cherryview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
3595 3596

	gen8_disable_rps_interrupts(dev);
3597 3598
}

3599 3600 3601 3602
static void valleyview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

3603 3604 3605 3606
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);

3607
	I915_WRITE(GEN6_RC_CONTROL, 0);
3608

3609 3610
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);

3611
	gen6_disable_rps_interrupts(dev);
3612 3613
}

B
Ben Widawsky 已提交
3614 3615
static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
{
3616 3617 3618 3619 3620 3621
	if (IS_VALLEYVIEW(dev)) {
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
3622 3623 3624 3625
	DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
		      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
		      (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
		      (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
B
Ben Widawsky 已提交
3626 3627
}

I
Imre Deak 已提交
3628
static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
3629
{
3630 3631 3632 3633
	/* No RC6 before Ironlake */
	if (INTEL_INFO(dev)->gen < 5)
		return 0;

I
Imre Deak 已提交
3634 3635 3636 3637
	/* RC6 is only on Ironlake mobile not on desktop */
	if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
		return 0;

3638
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
3639 3640 3641 3642 3643 3644 3645 3646 3647 3648
	if (enable_rc6 >= 0) {
		int mask;

		if (INTEL_INFO(dev)->gen == 6 || IS_IVYBRIDGE(dev))
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
3649 3650
			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
				      enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
3651 3652 3653

		return enable_rc6 & mask;
	}
3654

3655 3656 3657
	/* Disable RC6 on Ironlake */
	if (INTEL_INFO(dev)->gen == 5)
		return 0;
3658

3659
	if (IS_IVYBRIDGE(dev))
B
Ben Widawsky 已提交
3660
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3661 3662

	return INTEL_RC6_ENABLE;
3663 3664
}

I
Imre Deak 已提交
3665 3666 3667 3668 3669
int intel_enable_rc6(const struct drm_device *dev)
{
	return i915.enable_rc6;
}

3670 3671 3672 3673 3674 3675
static void gen8_enable_rps_interrupts(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	spin_lock_irq(&dev_priv->irq_lock);
	WARN_ON(dev_priv->rps.pm_iir);
3676
	gen8_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3677 3678 3679 3680
	I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
	spin_unlock_irq(&dev_priv->irq_lock);
}

3681 3682 3683 3684 3685
static void gen6_enable_rps_interrupts(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	spin_lock_irq(&dev_priv->irq_lock);
3686
	WARN_ON(dev_priv->rps.pm_iir);
3687
	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3688
	I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3689 3690 3691
	spin_unlock_irq(&dev_priv->irq_lock);
}

3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712
static void parse_rp_state_cap(struct drm_i915_private *dev_priv, u32 rp_state_cap)
{
	/* All of these values are in units of 50MHz */
	dev_priv->rps.cur_freq		= 0;
	/* static values from HW: RP0 < RPe < RP1 < RPn (min_freq) */
	dev_priv->rps.rp1_freq		= (rp_state_cap >>  8) & 0xff;
	dev_priv->rps.rp0_freq		= (rp_state_cap >>  0) & 0xff;
	dev_priv->rps.min_freq		= (rp_state_cap >> 16) & 0xff;
	/* XXX: only BYT has a special efficient freq */
	dev_priv->rps.efficient_freq	= dev_priv->rps.rp1_freq;
	/* hw_max = RP0 until we check for overclocking */
	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;

	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
}

D
Daisy Sun 已提交
3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804
static void bdw_sw_calculate_freq(struct drm_device *dev,
		struct intel_rps_bdw_cal *c, u32 *cur_time, u32 *c0)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u64 busy = 0;
	u32 busyness_pct = 0;
	u32 elapsed_time = 0;
	u16 new_freq = 0;

	if (!c || !cur_time || !c0)
		return;

	if (0 == c->last_c0)
		goto out;

	/* Check Evaluation interval */
	elapsed_time = *cur_time - c->last_ts;
	if (elapsed_time < c->eval_interval)
		return;

	mutex_lock(&dev_priv->rps.hw_lock);

	/*
	 * c0 unit in 32*1.28 usec, elapsed_time unit in 1 usec.
	 * Whole busyness_pct calculation should be
	 *     busy = ((u64)(*c0 - c->last_c0) << 5 << 7) / 100;
	 *     busyness_pct = (u32)(busy * 100 / elapsed_time);
	 * The final formula is to simplify CPU calculation
	 */
	busy = (u64)(*c0 - c->last_c0) << 12;
	do_div(busy, elapsed_time);
	busyness_pct = (u32)busy;

	if (c->is_up && busyness_pct >= c->it_threshold_pct)
		new_freq = (u16)dev_priv->rps.cur_freq + 3;
	if (!c->is_up && busyness_pct <= c->it_threshold_pct)
		new_freq = (u16)dev_priv->rps.cur_freq - 1;

	/* Adjust to new frequency busyness and compare with threshold */
	if (0 != new_freq) {
		if (new_freq > dev_priv->rps.max_freq_softlimit)
			new_freq = dev_priv->rps.max_freq_softlimit;
		else if (new_freq < dev_priv->rps.min_freq_softlimit)
			new_freq = dev_priv->rps.min_freq_softlimit;

		gen6_set_rps(dev, new_freq);
	}

	mutex_unlock(&dev_priv->rps.hw_lock);

out:
	c->last_c0 = *c0;
	c->last_ts = *cur_time;
}

static void gen8_set_frequency_RP0(struct work_struct *work)
{
	struct intel_rps_bdw_turbo *p_bdw_turbo =
			container_of(work, struct intel_rps_bdw_turbo, work_max_freq);
	struct intel_gen6_power_mgmt *p_power_mgmt =
			container_of(p_bdw_turbo, struct intel_gen6_power_mgmt, sw_turbo);
	struct drm_i915_private *dev_priv =
			container_of(p_power_mgmt, struct drm_i915_private, rps);

	mutex_lock(&dev_priv->rps.hw_lock);
	gen6_set_rps(dev_priv->dev, dev_priv->rps.rp0_freq);
	mutex_unlock(&dev_priv->rps.hw_lock);
}

static void flip_active_timeout_handler(unsigned long var)
{
	struct drm_i915_private *dev_priv = (struct drm_i915_private *) var;

	del_timer(&dev_priv->rps.sw_turbo.flip_timer);
	atomic_set(&dev_priv->rps.sw_turbo.flip_received, false);

	queue_work(dev_priv->wq, &dev_priv->rps.sw_turbo.work_max_freq);
}

void bdw_software_turbo(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	u32 current_time = I915_READ(TIMESTAMP_CTR); /* unit in usec */
	u32 current_c0 = I915_READ(MCHBAR_PCU_C0); /* unit in 32*1.28 usec */

	bdw_sw_calculate_freq(dev, &dev_priv->rps.sw_turbo.up,
			&current_time, &current_c0);
	bdw_sw_calculate_freq(dev, &dev_priv->rps.sw_turbo.down,
			&current_time, &current_c0);
}

3805 3806 3807
static void gen8_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3808
	struct intel_engine_cs *ring;
3809
	uint32_t rc6_mask = 0, rp_state_cap;
D
Daisy Sun 已提交
3810 3811 3812
	uint32_t threshold_up_pct, threshold_down_pct;
	uint32_t ei_up, ei_down; /* up and down evaluation interval */
	u32 rp_ctl_flag;
3813 3814
	int unused;

D
Daisy Sun 已提交
3815 3816 3817
	/* Use software Turbo for BDW */
	dev_priv->rps.is_bdw_sw_turbo = IS_BROADWELL(dev);

3818 3819 3820 3821 3822
	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
3823
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3824 3825 3826 3827 3828

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3829
	parse_rp_state_cap(dev_priv, rp_state_cap);
3830 3831 3832 3833 3834 3835 3836 3837

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);
3838 3839 3840 3841
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
3842 3843 3844 3845

	/* 3: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
3846
	intel_print_rc6_info(dev, rc6_mask);
3847 3848 3849 3850 3851 3852 3853 3854
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
3855 3856

	/* 4 Program defaults and thresholds for RPS*/
3857 3858 3859 3860
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
D
Daisy Sun 已提交
3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911
	ei_up = 84480; /* 84.48ms */
	ei_down = 448000;
	threshold_up_pct = 90; /* x percent busy */
	threshold_down_pct = 70;

	if (dev_priv->rps.is_bdw_sw_turbo) {
		dev_priv->rps.sw_turbo.up.it_threshold_pct = threshold_up_pct;
		dev_priv->rps.sw_turbo.up.eval_interval = ei_up;
		dev_priv->rps.sw_turbo.up.is_up = true;
		dev_priv->rps.sw_turbo.up.last_ts = 0;
		dev_priv->rps.sw_turbo.up.last_c0 = 0;

		dev_priv->rps.sw_turbo.down.it_threshold_pct = threshold_down_pct;
		dev_priv->rps.sw_turbo.down.eval_interval = ei_down;
		dev_priv->rps.sw_turbo.down.is_up = false;
		dev_priv->rps.sw_turbo.down.last_ts = 0;
		dev_priv->rps.sw_turbo.down.last_c0 = 0;

		/* Start the timer to track if flip comes*/
		dev_priv->rps.sw_turbo.timeout = 200*1000; /* in us */

		init_timer(&dev_priv->rps.sw_turbo.flip_timer);
		dev_priv->rps.sw_turbo.flip_timer.function = flip_active_timeout_handler;
		dev_priv->rps.sw_turbo.flip_timer.data  = (unsigned long) dev_priv;
		dev_priv->rps.sw_turbo.flip_timer.expires =
			usecs_to_jiffies(dev_priv->rps.sw_turbo.timeout) + jiffies;
		add_timer(&dev_priv->rps.sw_turbo.flip_timer);
		INIT_WORK(&dev_priv->rps.sw_turbo.work_max_freq, gen8_set_frequency_RP0);

		atomic_set(&dev_priv->rps.sw_turbo.flip_received, true);
	} else {
		/* NB: Docs say 1s, and 1000000 - which aren't equivalent
		 * 1 second timeout*/
		I915_WRITE(GEN6_RP_DOWN_TIMEOUT, FREQ_1_28_US(1000000));

		/* Docs recommend 900MHz, and 300 MHz respectively */
		I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
			   dev_priv->rps.max_freq_softlimit << 24 |
			   dev_priv->rps.min_freq_softlimit << 16);

		I915_WRITE(GEN6_RP_UP_THRESHOLD,
			FREQ_1_28_US(ei_up * threshold_up_pct / 100));
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
			FREQ_1_28_US(ei_down * threshold_down_pct / 100));
		I915_WRITE(GEN6_RP_UP_EI,
			FREQ_1_28_US(ei_up));
		I915_WRITE(GEN6_RP_DOWN_EI,
			FREQ_1_28_US(ei_down));

		I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
	}
3912 3913

	/* 5: Enable RPS */
D
Daisy Sun 已提交
3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925
	rp_ctl_flag = GEN6_RP_MEDIA_TURBO |
					GEN6_RP_MEDIA_HW_NORMAL_MODE |
					GEN6_RP_MEDIA_IS_GFX |
					GEN6_RP_UP_BUSY_AVG |
					GEN6_RP_DOWN_IDLE_AVG;
	if (!dev_priv->rps.is_bdw_sw_turbo)
		rp_ctl_flag |= GEN6_RP_ENABLE;

	I915_WRITE(GEN6_RP_CONTROL, rp_ctl_flag);

	/* 6: Ring frequency + overclocking
	 * (our driver does this later */
3926
	gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
D
Daisy Sun 已提交
3927 3928
	if (!dev_priv->rps.is_bdw_sw_turbo)
		gen8_enable_rps_interrupts(dev);
3929

3930
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3931 3932
}

3933
static void gen6_enable_rps(struct drm_device *dev)
3934
{
3935
	struct drm_i915_private *dev_priv = dev->dev_private;
3936
	struct intel_engine_cs *ring;
3937
	u32 rp_state_cap;
3938
	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
3939 3940
	u32 gtfifodbg;
	int rc6_mode;
B
Ben Widawsky 已提交
3941
	int i, ret;
3942

3943
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3944

3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

3959
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3960

3961 3962
	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);

3963
	parse_rp_state_cap(dev_priv, rp_state_cap);
J
Jeff McGee 已提交
3964

3965 3966 3967 3968 3969 3970 3971 3972 3973
	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

3974 3975
	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3976 3977 3978

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3979
	if (IS_IVYBRIDGE(dev))
3980 3981 3982
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3983
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3984 3985
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

3986
	/* Check if we are enabling RC6 */
3987 3988 3989 3990
	rc6_mode = intel_enable_rc6(dev_priv->dev);
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

3991 3992 3993 3994
	/* We don't use those on Haswell */
	if (!IS_HASWELL(dev)) {
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3995

3996 3997 3998
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
3999

B
Ben Widawsky 已提交
4000
	intel_print_rc6_info(dev, rc6_mask);
4001 4002 4003 4004 4005 4006

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

4007 4008
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4009 4010
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

B
Ben Widawsky 已提交
4011
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4012
	if (ret)
B
Ben Widawsky 已提交
4013
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
4014 4015 4016 4017

	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
4018
				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
4019
				 (pcu_mbox & 0xff) * 50);
4020
		dev_priv->rps.max_freq = pcu_mbox & 0xff;
4021 4022
	}

4023
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4024
	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4025

4026
	gen6_enable_rps_interrupts(dev);
4027

4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
	if (IS_GEN6(dev) && ret) {
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

4042
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4043 4044
}

4045
static void __gen6_update_ring_freq(struct drm_device *dev)
4046
{
4047
	struct drm_i915_private *dev_priv = dev->dev_private;
4048
	int min_freq = 15;
4049 4050
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
4051
	int scaling_factor = 180;
4052
	struct cpufreq_policy *policy;
4053

4054
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4055

4056 4057 4058 4059 4060 4061 4062 4063 4064
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
4065
		max_ia_freq = tsc_khz;
4066
	}
4067 4068 4069 4070

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

4071
	min_ring_freq = I915_READ(DCLK) & 0xf;
4072 4073
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
4074

4075 4076 4077 4078 4079
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
4080
	for (gpu_freq = dev_priv->rps.max_freq_softlimit; gpu_freq >= dev_priv->rps.min_freq_softlimit;
4081
	     gpu_freq--) {
4082
		int diff = dev_priv->rps.max_freq_softlimit - gpu_freq;
4083 4084
		unsigned int ia_freq = 0, ring_freq = 0;

4085 4086 4087 4088
		if (INTEL_INFO(dev)->gen >= 8) {
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
		} else if (IS_HASWELL(dev)) {
4089
			ring_freq = mult_frac(gpu_freq, 5, 4);
4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
4106

B
Ben Widawsky 已提交
4107 4108
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
4109 4110 4111
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
4112 4113 4114
	}
}

4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126
void gen6_update_ring_freq(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
		return;

	mutex_lock(&dev_priv->rps.hw_lock);
	__gen6_update_ring_freq(dev);
	mutex_unlock(&dev_priv->rps.hw_lock);
}

4127
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146
{
	u32 val, rp0;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
	rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;

	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

4147 4148 4149 4150 4151 4152 4153 4154 4155 4156
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	rp1 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;

	return rp1;
}

4157
static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
4158 4159 4160 4161 4162 4163 4164 4165
{
	u32 val, rpn;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
	rpn = (val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) & PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK;
	return rpn;
}

4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

4177
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
4178 4179 4180
{
	u32 val, rp0;

4181
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

4194
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
4195
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
4196
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
4197 4198 4199 4200 4201
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

4202
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
4203
{
4204
	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
4205 4206
}

4207 4208 4209 4210 4211 4212 4213 4214 4215
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

static void cherryview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long pctx_paddr, paddr;
	struct i915_gtt *gtt = &dev_priv->gtt;
	u32 pcbr;
	int pctx_size = 32*1024;

	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
		paddr = (dev_priv->mm.stolen_base +
			 (gtt->stolen_size - pctx_size));

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
}

4245 4246 4247 4248 4249 4250 4251 4252
static void valleyview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

4253 4254
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

4255 4256 4257 4258 4259 4260 4261 4262
	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
								      pcbr_offset,
4263
								      I915_GTT_OFFSET_NONE,
4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288
								      pctx_size);
		goto out;
	}

	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
	pctx = i915_gem_object_create_stolen(dev, pctx_size);
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
		return;
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
	dev_priv->vlv_pctx = pctx;
}

4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299
static void valleyview_cleanup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

	drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
	dev_priv->vlv_pctx = NULL;
}

4300 4301 4302
static void valleyview_init_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4303
	u32 val;
4304 4305 4306 4307 4308

	valleyview_setup_pctx(dev);

	mutex_lock(&dev_priv->rps.hw_lock);

4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
	DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);

4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
			 dev_priv->rps.efficient_freq);

4335 4336 4337 4338 4339
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
			 dev_priv->rps.rp1_freq);

4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
			 dev_priv->rps.min_freq);

	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
}

4355 4356
static void cherryview_init_gt_powersave(struct drm_device *dev)
{
4357
	struct drm_i915_private *dev_priv = dev->dev_private;
4358
	u32 val;
4359

4360
	cherryview_setup_pctx(dev);
4361 4362 4363

	mutex_lock(&dev_priv->rps.hw_lock);

4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389
	val = vlv_punit_read(dev_priv, CCK_FUSE_REG);
	switch ((val >> 2) & 0x7) {
	case 0:
	case 1:
		dev_priv->rps.cz_freq = 200;
		dev_priv->mem_freq = 1600;
		break;
	case 2:
		dev_priv->rps.cz_freq = 267;
		dev_priv->mem_freq = 1600;
		break;
	case 3:
		dev_priv->rps.cz_freq = 333;
		dev_priv->mem_freq = 2000;
		break;
	case 4:
		dev_priv->rps.cz_freq = 320;
		dev_priv->mem_freq = 1600;
		break;
	case 5:
		dev_priv->rps.cz_freq = 400;
		dev_priv->mem_freq = 1600;
		break;
	}
	DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);

4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
			 dev_priv->rps.efficient_freq);

4401 4402 4403 4404 4405
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
			 dev_priv->rps.rp1_freq);

4406 4407 4408 4409 4410
	dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
			 dev_priv->rps.min_freq);

4411 4412 4413 4414 4415 4416
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");

4417 4418 4419 4420 4421 4422 4423 4424
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
4425 4426
}

4427 4428 4429 4430 4431
static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
{
	valleyview_cleanup_pctx(dev);
}

4432 4433 4434 4435
static void cherryview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
4436
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);

	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);

	I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	DRM_DEBUG_DRIVER("PCBR offset : 0x%x\n", pcbr);

	/* 3: Enable RC6 */
	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
						(pcbr >> VLV_PCBR_ADDR_SHIFT))
		rc6_mode = GEN6_RC_CTL_EI_MODE(1);

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

4483 4484 4485 4486 4487 4488 4489 4490
	/* 4 Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

4491 4492 4493 4494
	/* WaDisablePwrmtrEvent:chv (pre-production hw) */
	I915_WRITE(0xA80C, I915_READ(0xA80C) & 0x00ffffff);
	I915_WRITE(0xA810, I915_READ(0xA810) & 0xffffff00);

4495 4496 4497
	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
4498
		   GEN6_RP_MEDIA_IS_GFX | /* WaSetMaskForGfxBusyness:chv (pre-production hw ?) */
4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
			 dev_priv->rps.cur_freq);

	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
			 dev_priv->rps.efficient_freq);

	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);

4519 4520
	gen8_enable_rps_interrupts(dev);

4521 4522 4523
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
}

4524 4525 4526
static void valleyview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4527
	struct intel_engine_cs *ring;
4528
	u32 gtfifodbg, val, rc6_mode = 0;
4529 4530 4531 4532
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

4533 4534
	valleyview_check_pctx(dev_priv);

4535
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4536 4537
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
4538 4539 4540
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

4541 4542
	/* If VLV, Forcewake all wells, else re-direct to regular path */
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4543 4544 4545 4546 4547 4548 4549

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4550
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 0xf4240);
4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);

4567
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4568 4569

	/* allows RC6 residency counter to work */
4570
	I915_WRITE(VLV_COUNTER_CONTROL,
4571 4572
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
4573 4574
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
4575

4576
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4577
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
4578 4579 4580

	intel_print_rc6_info(dev, rc6_mode);

4581
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4582

4583
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4584 4585 4586 4587

	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

4588
	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4589
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4590 4591
			 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
			 dev_priv->rps.cur_freq);
4592

4593
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4594 4595
			 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
			 dev_priv->rps.efficient_freq);
4596

4597
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4598

4599
	gen6_enable_rps_interrupts(dev);
4600

4601
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4602 4603
}

4604
void ironlake_teardown_rc6(struct drm_device *dev)
4605 4606 4607
{
	struct drm_i915_private *dev_priv = dev->dev_private;

4608
	if (dev_priv->ips.renderctx) {
B
Ben Widawsky 已提交
4609
		i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
4610 4611
		drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
		dev_priv->ips.renderctx = NULL;
4612 4613
	}

4614
	if (dev_priv->ips.pwrctx) {
B
Ben Widawsky 已提交
4615
		i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
4616 4617
		drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
		dev_priv->ips.pwrctx = NULL;
4618 4619 4620
	}
}

4621
static void ironlake_disable_rc6(struct drm_device *dev)
4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (I915_READ(PWRCTXA)) {
		/* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
		wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
			 50);

		I915_WRITE(PWRCTXA, 0);
		POSTING_READ(PWRCTXA);

		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
		POSTING_READ(RSTDBYCTL);
	}
}

static int ironlake_setup_rc6(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

4643 4644 4645
	if (dev_priv->ips.renderctx == NULL)
		dev_priv->ips.renderctx = intel_alloc_context_page(dev);
	if (!dev_priv->ips.renderctx)
4646 4647
		return -ENOMEM;

4648 4649 4650
	if (dev_priv->ips.pwrctx == NULL)
		dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
	if (!dev_priv->ips.pwrctx) {
4651 4652 4653 4654 4655 4656 4657
		ironlake_teardown_rc6(dev);
		return -ENOMEM;
	}

	return 0;
}

4658
static void ironlake_enable_rc6(struct drm_device *dev)
4659 4660
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4661
	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
4662
	bool was_interruptible;
4663 4664 4665 4666 4667 4668 4669 4670
	int ret;

	/* rc6 disabled by default due to repeated reports of hanging during
	 * boot and resume.
	 */
	if (!intel_enable_rc6(dev))
		return;

4671 4672
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

4673
	ret = ironlake_setup_rc6(dev);
4674
	if (ret)
4675 4676
		return;

4677 4678 4679
	was_interruptible = dev_priv->mm.interruptible;
	dev_priv->mm.interruptible = false;

4680 4681 4682 4683
	/*
	 * GPU can automatically power down the render unit if given a page
	 * to save state.
	 */
4684
	ret = intel_ring_begin(ring, 6);
4685 4686
	if (ret) {
		ironlake_teardown_rc6(dev);
4687
		dev_priv->mm.interruptible = was_interruptible;
4688 4689 4690
		return;
	}

4691 4692
	intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
	intel_ring_emit(ring, MI_SET_CONTEXT);
4693
	intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
4694 4695 4696 4697 4698 4699 4700 4701
			MI_MM_SPACE_GTT |
			MI_SAVE_EXT_STATE_EN |
			MI_RESTORE_EXT_STATE_EN |
			MI_RESTORE_INHIBIT);
	intel_ring_emit(ring, MI_SUSPEND_FLUSH);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_emit(ring, MI_FLUSH);
	intel_ring_advance(ring);
4702 4703 4704 4705 4706 4707

	/*
	 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
	 * does an implicit flush, combined with MI_FLUSH above, it should be
	 * safe to assume that renderctx is valid
	 */
4708 4709
	ret = intel_ring_idle(ring);
	dev_priv->mm.interruptible = was_interruptible;
4710
	if (ret) {
4711
		DRM_ERROR("failed to enable ironlake power savings\n");
4712 4713 4714 4715
		ironlake_teardown_rc6(dev);
		return;
	}

4716
	I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
4717
	I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
B
Ben Widawsky 已提交
4718

4719
	intel_print_rc6_info(dev, GEN6_RC_CTL_RC6_ENABLE);
4720 4721
}

4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

4751
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
4752 4753 4754 4755 4756 4757
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

4758 4759
	assert_spin_locked(&mchdev_lock);

4760
	diff1 = now - dev_priv->ips.last_time1;
4761 4762 4763 4764 4765 4766 4767

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
4768
		return dev_priv->ips.chipset_power;
4769 4770 4771 4772 4773 4774 4775 4776

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
4777 4778
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
4779 4780
		diff += total_count;
	} else {
4781
		diff = total_count - dev_priv->ips.last_count1;
4782 4783 4784
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
4785 4786
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
4787 4788 4789 4790 4791 4792 4793 4794 4795 4796
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

4797 4798
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
4799

4800
	dev_priv->ips.chipset_power = ret;
4801 4802 4803 4804

	return ret;
}

4805 4806
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
4807
	struct drm_device *dev = dev_priv->dev;
4808 4809
	unsigned long val;

4810
	if (INTEL_INFO(dev)->gen != 5)
4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
{
4839
	struct drm_device *dev = dev_priv->dev;
4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972
	static const struct v_table {
		u16 vd; /* in .1 mil */
		u16 vm; /* in .1 mil */
	} v_table[] = {
		{ 0, 0, },
		{ 375, 0, },
		{ 500, 0, },
		{ 625, 0, },
		{ 750, 0, },
		{ 875, 0, },
		{ 1000, 0, },
		{ 1125, 0, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4250, 3125, },
		{ 4375, 3250, },
		{ 4500, 3375, },
		{ 4625, 3500, },
		{ 4750, 3625, },
		{ 4875, 3750, },
		{ 5000, 3875, },
		{ 5125, 4000, },
		{ 5250, 4125, },
		{ 5375, 4250, },
		{ 5500, 4375, },
		{ 5625, 4500, },
		{ 5750, 4625, },
		{ 5875, 4750, },
		{ 6000, 4875, },
		{ 6125, 5000, },
		{ 6250, 5125, },
		{ 6375, 5250, },
		{ 6500, 5375, },
		{ 6625, 5500, },
		{ 6750, 5625, },
		{ 6875, 5750, },
		{ 7000, 5875, },
		{ 7125, 6000, },
		{ 7250, 6125, },
		{ 7375, 6250, },
		{ 7500, 6375, },
		{ 7625, 6500, },
		{ 7750, 6625, },
		{ 7875, 6750, },
		{ 8000, 6875, },
		{ 8125, 7000, },
		{ 8250, 7125, },
		{ 8375, 7250, },
		{ 8500, 7375, },
		{ 8625, 7500, },
		{ 8750, 7625, },
		{ 8875, 7750, },
		{ 9000, 7875, },
		{ 9125, 8000, },
		{ 9250, 8125, },
		{ 9375, 8250, },
		{ 9500, 8375, },
		{ 9625, 8500, },
		{ 9750, 8625, },
		{ 9875, 8750, },
		{ 10000, 8875, },
		{ 10125, 9000, },
		{ 10250, 9125, },
		{ 10375, 9250, },
		{ 10500, 9375, },
		{ 10625, 9500, },
		{ 10750, 9625, },
		{ 10875, 9750, },
		{ 11000, 9875, },
		{ 11125, 10000, },
		{ 11250, 10125, },
		{ 11375, 10250, },
		{ 11500, 10375, },
		{ 11625, 10500, },
		{ 11750, 10625, },
		{ 11875, 10750, },
		{ 12000, 10875, },
		{ 12125, 11000, },
		{ 12250, 11125, },
		{ 12375, 11250, },
		{ 12500, 11375, },
		{ 12625, 11500, },
		{ 12750, 11625, },
		{ 12875, 11750, },
		{ 13000, 11875, },
		{ 13125, 12000, },
		{ 13250, 12125, },
		{ 13375, 12250, },
		{ 13500, 12375, },
		{ 13625, 12500, },
		{ 13750, 12625, },
		{ 13875, 12750, },
		{ 14000, 12875, },
		{ 14125, 13000, },
		{ 14250, 13125, },
		{ 14375, 13250, },
		{ 14500, 13375, },
		{ 14625, 13500, },
		{ 14750, 13625, },
		{ 14875, 13750, },
		{ 15000, 13875, },
		{ 15125, 14000, },
		{ 15250, 14125, },
		{ 15375, 14250, },
		{ 15500, 14375, },
		{ 15625, 14500, },
		{ 15750, 14625, },
		{ 15875, 14750, },
		{ 16000, 14875, },
		{ 16125, 15000, },
	};
4973
	if (INTEL_INFO(dev)->is_mobile)
4974 4975 4976 4977 4978
		return v_table[pxvid].vm;
	else
		return v_table[pxvid].vd;
}

4979
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4980
{
4981
	u64 now, diff, diffms;
4982 4983
	u32 count;

4984
	assert_spin_locked(&mchdev_lock);
4985

4986 4987 4988
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
4989 4990 4991 4992 4993 4994 4995

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

4996 4997
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
4998 4999
		diff += count;
	} else {
5000
		diff = count - dev_priv->ips.last_count2;
5001 5002
	}

5003 5004
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
5005 5006 5007 5008

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
5009
	dev_priv->ips.gfx_power = diff;
5010 5011
}

5012 5013
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
5014 5015 5016
	struct drm_device *dev = dev_priv->dev;

	if (INTEL_INFO(dev)->gen != 5)
5017 5018
		return;

5019
	spin_lock_irq(&mchdev_lock);
5020 5021 5022

	__i915_update_gfx_val(dev_priv);

5023
	spin_unlock_irq(&mchdev_lock);
5024 5025
}

5026
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5027 5028 5029 5030
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

5031 5032
	assert_spin_locked(&mchdev_lock);

5033
	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
5053
	corr2 = (corr * dev_priv->ips.corr);
5054 5055 5056 5057

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

5058
	__i915_update_gfx_val(dev_priv);
5059

5060
	return dev_priv->ips.gfx_power + state2;
5061 5062
}

5063 5064
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
5065
	struct drm_device *dev = dev_priv->dev;
5066 5067
	unsigned long val;

5068
	if (INTEL_INFO(dev)->gen != 5)
5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

5091
	spin_lock_irq(&mchdev_lock);
5092 5093 5094 5095
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

5096 5097
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
5098 5099 5100 5101

	ret = chipset_val + graphics_val;

out_unlock:
5102
	spin_unlock_irq(&mchdev_lock);
5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5118
	spin_lock_irq(&mchdev_lock);
5119 5120 5121 5122 5123 5124
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5125 5126
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
5127 5128

out_unlock:
5129
	spin_unlock_irq(&mchdev_lock);
5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5146
	spin_lock_irq(&mchdev_lock);
5147 5148 5149 5150 5151 5152
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5153 5154
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
5155 5156

out_unlock:
5157
	spin_unlock_irq(&mchdev_lock);
5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	struct drm_i915_private *dev_priv;
5171
	struct intel_engine_cs *ring;
5172
	bool ret = false;
5173
	int i;
5174

5175
	spin_lock_irq(&mchdev_lock);
5176 5177 5178 5179
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

5180 5181
	for_each_ring(ring, dev_priv, i)
		ret |= !list_empty(&ring->request_list);
5182 5183

out_unlock:
5184
	spin_unlock_irq(&mchdev_lock);
5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5201
	spin_lock_irq(&mchdev_lock);
5202 5203 5204 5205 5206 5207
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5208
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
5209

5210
	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5211 5212 5213
		ret = false;

out_unlock:
5214
	spin_unlock_irq(&mchdev_lock);
5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
5242 5243
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
5244
	spin_lock_irq(&mchdev_lock);
5245
	i915_mch_dev = dev_priv;
5246
	spin_unlock_irq(&mchdev_lock);
5247 5248 5249 5250 5251 5252

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
5253
	spin_lock_irq(&mchdev_lock);
5254
	i915_mch_dev = NULL;
5255
	spin_unlock_irq(&mchdev_lock);
5256
}
5257

5258
static void intel_init_emon(struct drm_device *dev)
5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
		I915_WRITE(PEW + (i * 4), 0);
	for (i = 0; i < 3; i++)
		I915_WRITE(DEW + (i * 4), 0);

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
		I915_WRITE(PXW + (i * 4), val);
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
		I915_WRITE(PXWL + (i * 4), 0);

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

5326
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
5327 5328
}

5329 5330
void intel_init_gt_powersave(struct drm_device *dev)
{
I
Imre Deak 已提交
5331 5332
	i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);

5333 5334 5335
	if (IS_CHERRYVIEW(dev))
		cherryview_init_gt_powersave(dev);
	else if (IS_VALLEYVIEW(dev))
5336
		valleyview_init_gt_powersave(dev);
5337 5338 5339 5340
}

void intel_cleanup_gt_powersave(struct drm_device *dev)
{
5341 5342 5343
	if (IS_CHERRYVIEW(dev))
		return;
	else if (IS_VALLEYVIEW(dev))
5344
		valleyview_cleanup_gt_powersave(dev);
5345 5346
}

5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev: drm device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* Interrupts should be disabled already to avoid re-arming. */
5360
	WARN_ON(intel_irqs_enabled(dev_priv));
5361 5362 5363 5364

	flush_delayed_work(&dev_priv->rps.delayed_resume_work);

	cancel_work_sync(&dev_priv->rps.work);
5365 5366 5367

	/* Force GPU to min freq during suspend */
	gen6_rps_idle(dev_priv);
5368 5369
}

5370 5371
void intel_disable_gt_powersave(struct drm_device *dev)
{
5372 5373
	struct drm_i915_private *dev_priv = dev->dev_private;

5374
	/* Interrupts should be disabled already to avoid re-arming. */
5375
	WARN_ON(intel_irqs_enabled(dev_priv));
5376

5377
	if (IS_IRONLAKE_M(dev)) {
5378
		ironlake_disable_drps(dev);
5379
		ironlake_disable_rc6(dev);
5380
	} else if (INTEL_INFO(dev)->gen >= 6) {
5381
		intel_suspend_gt_powersave(dev);
5382

5383
		mutex_lock(&dev_priv->rps.hw_lock);
5384 5385 5386
		if (IS_CHERRYVIEW(dev))
			cherryview_disable_rps(dev);
		else if (IS_VALLEYVIEW(dev))
5387 5388 5389
			valleyview_disable_rps(dev);
		else
			gen6_disable_rps(dev);
5390
		dev_priv->rps.enabled = false;
5391
		mutex_unlock(&dev_priv->rps.hw_lock);
5392
	}
5393 5394
}

5395 5396 5397 5398 5399 5400 5401
static void intel_gen6_powersave_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, struct drm_i915_private,
			     rps.delayed_resume_work.work);
	struct drm_device *dev = dev_priv->dev;

D
Daisy Sun 已提交
5402 5403
	dev_priv->rps.is_bdw_sw_turbo = false;

5404
	mutex_lock(&dev_priv->rps.hw_lock);
5405

5406 5407 5408
	if (IS_CHERRYVIEW(dev)) {
		cherryview_enable_rps(dev);
	} else if (IS_VALLEYVIEW(dev)) {
5409
		valleyview_enable_rps(dev);
5410 5411
	} else if (IS_BROADWELL(dev)) {
		gen8_enable_rps(dev);
5412
		__gen6_update_ring_freq(dev);
5413 5414
	} else {
		gen6_enable_rps(dev);
5415
		__gen6_update_ring_freq(dev);
5416
	}
5417
	dev_priv->rps.enabled = true;
5418
	mutex_unlock(&dev_priv->rps.hw_lock);
5419 5420

	intel_runtime_pm_put(dev_priv);
5421 5422
}

5423 5424
void intel_enable_gt_powersave(struct drm_device *dev)
{
5425 5426
	struct drm_i915_private *dev_priv = dev->dev_private;

5427
	if (IS_IRONLAKE_M(dev)) {
5428
		mutex_lock(&dev->struct_mutex);
5429 5430 5431
		ironlake_enable_drps(dev);
		ironlake_enable_rc6(dev);
		intel_init_emon(dev);
5432
		mutex_unlock(&dev->struct_mutex);
5433
	} else if (INTEL_INFO(dev)->gen >= 6) {
5434 5435 5436 5437
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
5438 5439 5440 5441 5442 5443 5444
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
5445
		 */
5446 5447 5448
		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
					   round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
5449 5450 5451
	}
}

5452 5453 5454 5455 5456 5457 5458 5459
void intel_reset_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	dev_priv->rps.enabled = false;
	intel_enable_gt_powersave(dev);
}

5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471
static void ibx_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

5472 5473 5474 5475 5476
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;

5477
	for_each_pipe(dev_priv, pipe) {
5478 5479 5480
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
5481
		intel_flush_primary_plane(dev_priv, pipe);
5482 5483 5484
	}
}

5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

5499
static void ironlake_init_clock_gating(struct drm_device *dev)
5500 5501
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5502
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5503

5504 5505 5506 5507
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
5508 5509 5510
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5528
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
5529 5530 5531
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
5532 5533

	ilk_init_lp_watermarks(dev);
5534 5535 5536 5537 5538 5539 5540 5541 5542

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
	if (IS_IRONLAKE_M(dev)) {
5543
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
5544 5545 5546 5547 5548 5549 5550 5551
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

5552 5553
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

5554 5555 5556 5557 5558 5559
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
5560

5561
	/* WaDisableRenderCachePipelinedFlush:ilk */
5562 5563
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5564

5565 5566 5567
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

5568
	g4x_disable_trickle_feed(dev);
5569

5570 5571 5572 5573 5574 5575 5576
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;
5577
	uint32_t val;
5578 5579 5580 5581 5582 5583

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
5584 5585 5586
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
5587 5588
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
5589 5590 5591
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
5592
	for_each_pipe(dev_priv, pipe) {
5593 5594 5595
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5596
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
5597
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5598 5599 5600
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
5601 5602
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
5603
	/* WADP0ClockGatingDisable */
5604
	for_each_pipe(dev_priv, pipe) {
5605 5606 5607
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
5608 5609
}

5610 5611 5612 5613 5614 5615
static void gen6_check_mch_setup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
5616 5617 5618
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
5619 5620
}

5621
static void gen6_init_clock_gating(struct drm_device *dev)
5622 5623
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5624
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5625

5626
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5627 5628 5629 5630 5631

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

5632
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
5633 5634 5635
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

5636
	/* WaSetupGtModeTdRowDispatch:snb */
5637 5638 5639 5640
	if (IS_SNB_GT1(dev))
		I915_WRITE(GEN6_GT_MODE,
			   _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));

5641 5642 5643
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

5644 5645 5646
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
5647 5648 5649 5650
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5651 5652 5653 5654
	 */
	I915_WRITE(GEN6_GT_MODE,
		   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);

5655
	ilk_init_lp_watermarks(dev);
5656 5657

	I915_WRITE(CACHE_MODE_0,
5658
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
5674
	 *
5675 5676
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
5677 5678 5679 5680 5681
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

5682
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
5683 5684
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
5685

5686 5687 5688 5689 5690 5691 5692 5693
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

5694 5695 5696 5697 5698 5699 5700 5701
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
5702 5703
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
5704 5705 5706 5707 5708 5709 5710
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
5711 5712 5713 5714
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
5715

5716
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
5717

5718
	cpt_init_clock_gating(dev);
5719 5720

	gen6_check_mch_setup(dev);
5721 5722 5723 5724 5725 5726
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

5727
	/*
5728
	 * WaVSThreadDispatchOverride:ivb,vlv
5729 5730 5731 5732
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
5733 5734 5735 5736 5737 5738 5739 5740
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752
static void lpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
5753 5754 5755 5756 5757

	/* WADPOClockGatingDisable:hsw */
	I915_WRITE(_TRANSA_CHICKEN1,
		   I915_READ(_TRANSA_CHICKEN1) |
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5758 5759
}

5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771
static void lpt_suspend_hw(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

5772
static void broadwell_init_clock_gating(struct drm_device *dev)
B
Ben Widawsky 已提交
5773 5774
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5775
	enum pipe pipe;
B
Ben Widawsky 已提交
5776 5777 5778 5779

	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);
5780 5781 5782 5783

	/* FIXME(BDW): Check all the w/a, some might only apply to
	 * pre-production hw. */

5784

5785 5786
	I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));

5787
	I915_WRITE(_3D_CHICKEN3,
5788
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2)));
5789

5790

5791
	/* WaSwitchSolVfFArbitrationPriority:bdw */
5792
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5793

5794
	/* WaPsrDPAMaskVBlankInSRD:bdw */
5795 5796 5797
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

5798
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
5799
	for_each_pipe(dev_priv, pipe) {
5800
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
5801
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
5802
			   BDW_DPRS_MASK_VBLANK_SRD);
5803
	}
5804

5805 5806 5807 5808 5809
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5810

5811 5812
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
5813 5814 5815 5816

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5817

5818
	lpt_init_clock_gating(dev);
B
Ben Widawsky 已提交
5819 5820
}

5821 5822 5823 5824
static void haswell_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

5825
	ilk_init_lp_watermarks(dev);
5826

5827 5828 5829 5830 5831
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

5832
	/* This is required by WaCatErrorRejectionIssue:hsw */
5833 5834 5835 5836
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

5837 5838 5839
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
5840

5841 5842 5843
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

5844 5845 5846 5847
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

5848
	/* WaDisable4x2SubspanOptimization:hsw */
5849 5850
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5851

5852 5853 5854
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
5855 5856 5857 5858
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5859 5860 5861 5862
	 */
	I915_WRITE(GEN7_GT_MODE,
		   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);

5863
	/* WaSwitchSolVfFArbitrationPriority:hsw */
5864 5865
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

5866 5867 5868
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
5869

5870
	lpt_init_clock_gating(dev);
5871 5872
}

5873
static void ivybridge_init_clock_gating(struct drm_device *dev)
5874 5875
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5876
	uint32_t snpcr;
5877

5878
	ilk_init_lp_watermarks(dev);
5879

5880
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
5881

5882
	/* WaDisableEarlyCull:ivb */
5883 5884 5885
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

5886
	/* WaDisableBackToBackFlipFix:ivb */
5887 5888 5889 5890
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

5891
	/* WaDisablePSDDualDispatchEnable:ivb */
5892 5893 5894 5895
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

5896 5897 5898
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

5899
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
5900 5901 5902
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

5903
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
5904 5905 5906
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5907 5908 5909 5910
		   GEN7_WA_L3_CHICKEN_MODE);
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5911 5912 5913 5914
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5915 5916
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5917
	}
5918

5919
	/* WaForceL3Serialization:ivb */
5920 5921 5922
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

5923
	/*
5924
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5925
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
5926 5927
	 */
	I915_WRITE(GEN6_UCGCTL2,
5928
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5929

5930
	/* This is required by WaCatErrorRejectionIssue:ivb */
5931 5932 5933 5934
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

5935
	g4x_disable_trickle_feed(dev);
5936 5937

	gen7_setup_fixed_func_scheduler(dev_priv);
5938

5939 5940 5941 5942 5943
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
5944

5945
	/* WaDisable4x2SubspanOptimization:ivb */
5946 5947
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5948

5949 5950 5951
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
5952 5953 5954 5955
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5956 5957 5958 5959
	 */
	I915_WRITE(GEN7_GT_MODE,
		   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);

5960 5961 5962 5963
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5964

5965 5966
	if (!HAS_PCH_NOP(dev))
		cpt_init_clock_gating(dev);
5967 5968

	gen6_check_mch_setup(dev);
5969 5970
}

5971
static void valleyview_init_clock_gating(struct drm_device *dev)
5972 5973 5974
{
	struct drm_i915_private *dev_priv = dev->dev_private;

5975
	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5976

5977
	/* WaDisableEarlyCull:vlv */
5978 5979 5980
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

5981
	/* WaDisableBackToBackFlipFix:vlv */
5982 5983 5984 5985
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

5986
	/* WaPsdDispatchEnable:vlv */
5987
	/* WaDisablePSDDualDispatchEnable:vlv */
5988
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5989 5990
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5991

5992 5993 5994
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

5995
	/* WaForceL3Serialization:vlv */
5996 5997 5998
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

5999
	/* WaDisableDopClockGating:vlv */
6000 6001 6002
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

6003
	/* This is required by WaCatErrorRejectionIssue:vlv */
6004 6005 6006 6007
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6008 6009
	gen7_setup_fixed_func_scheduler(dev_priv);

6010
	/*
6011
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6012
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6013 6014
	 */
	I915_WRITE(GEN6_UCGCTL2,
6015
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6016

6017 6018 6019 6020 6021
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6022

6023
	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6024

6025 6026 6027 6028
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
6029 6030
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6031

6032 6033 6034 6035 6036 6037
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

6038
	/*
6039
	 * WaDisableVLVClockGating_VBIIssue:vlv
6040 6041 6042
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
6043
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6044 6045
}

6046 6047 6048 6049 6050 6051 6052
static void cherryview_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);

	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6053

6054 6055 6056 6057 6058
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6059 6060 6061 6062

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6063 6064 6065 6066

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6067 6068 6069 6070

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6071

6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082
	/* WaDisableGunitClockGating:chv (pre-production hw) */
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, I915_READ(VLV_GUNIT_CLOCK_GATE) |
		   GINT_DIS);

	/* WaDisableFfDopClockGating:chv (pre-production hw) */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_FF_DOP_CLOCK_GATE_DISABLE));

	/* WaDisableDopClockGating:chv (pre-production hw) */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
6083 6084
}

6085
static void g4x_init_clock_gating(struct drm_device *dev)
6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
	if (IS_GM45(dev))
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6101 6102 6103 6104

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6105

6106 6107 6108
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6109
	g4x_disable_trickle_feed(dev);
6110 6111
}

6112
static void crestline_init_clock_gating(struct drm_device *dev)
6113 6114 6115 6116 6117 6118 6119 6120
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
6121 6122
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6123 6124 6125

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6126 6127
}

6128
static void broadwater_init_clock_gating(struct drm_device *dev)
6129 6130 6131 6132 6133 6134 6135 6136 6137
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
6138 6139
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6140 6141 6142

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6143 6144
}

6145
static void gen3_init_clock_gating(struct drm_device *dev)
6146 6147 6148 6149 6150 6151 6152
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
6153 6154 6155

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6156 6157 6158

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6159 6160

	/* interrupts should cause a wake up from C3 */
6161
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6162 6163 6164

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
6165 6166 6167

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6168 6169
}

6170
static void i85x_init_clock_gating(struct drm_device *dev)
6171 6172 6173 6174
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6175 6176 6177 6178

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
6179 6180 6181

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
6182 6183
}

6184
static void i830_init_clock_gating(struct drm_device *dev)
6185 6186 6187 6188
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
6189 6190 6191 6192

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
6193 6194 6195 6196 6197 6198 6199 6200 6201
}

void intel_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	dev_priv->display.init_clock_gating(dev);
}

6202 6203 6204 6205 6206 6207
void intel_suspend_hw(struct drm_device *dev)
{
	if (HAS_PCH_LPT(dev))
		lpt_suspend_hw(dev);
}

6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220
#define for_each_power_well(i, power_well, domain_mask, power_domains)	\
	for (i = 0;							\
	     i < (power_domains)->power_well_count &&			\
		 ((power_well) = &(power_domains)->power_wells[i]);	\
	     i++)							\
		if ((power_well)->domains & (domain_mask))

#define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
	for (i = (power_domains)->power_well_count - 1;			 \
	     i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
	     i--)							 \
		if ((power_well)->domains & (domain_mask))

6221 6222 6223 6224 6225
/**
 * We should only use the power well if we explicitly asked the hardware to
 * enable it, so check if it's enabled and also check if we've requested it to
 * be enabled.
 */
6226
static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
6227 6228 6229 6230 6231 6232
				   struct i915_power_well *power_well)
{
	return I915_READ(HSW_PWR_WELL_DRIVER) ==
		     (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
}

6233 6234
bool intel_display_power_enabled_unlocked(struct drm_i915_private *dev_priv,
					  enum intel_display_power_domain domain)
6235 6236
{
	struct i915_power_domains *power_domains;
6237 6238 6239 6240 6241 6242
	struct i915_power_well *power_well;
	bool is_enabled;
	int i;

	if (dev_priv->pm.suspended)
		return false;
6243 6244

	power_domains = &dev_priv->power_domains;
6245

6246
	is_enabled = true;
6247

6248 6249 6250
	for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
		if (power_well->always_on)
			continue;
6251

6252
		if (!power_well->hw_enabled) {
6253 6254 6255 6256
			is_enabled = false;
			break;
		}
	}
6257

6258
	return is_enabled;
6259 6260
}

6261
bool intel_display_power_enabled(struct drm_i915_private *dev_priv,
6262
				 enum intel_display_power_domain domain)
6263
{
6264
	struct i915_power_domains *power_domains;
6265
	bool ret;
6266

6267 6268 6269
	power_domains = &dev_priv->power_domains;

	mutex_lock(&power_domains->lock);
6270
	ret = intel_display_power_enabled_unlocked(dev_priv, domain);
6271 6272
	mutex_unlock(&power_domains->lock);

6273
	return ret;
6274 6275
}

6276 6277 6278 6279 6280 6281
/*
 * Starting with Haswell, we have a "Power Down Well" that can be turned off
 * when not needed anymore. We have 4 registers that can request the power well
 * to be enabled, and it will only be disabled if none of the registers is
 * requesting it to be enabled.
 */
6282 6283 6284 6285
static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;

6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299
	/*
	 * After we re-enable the power well, if we touch VGA register 0x3d5
	 * we'll get unclaimed register interrupts. This stops after we write
	 * anything to the VGA MSR register. The vgacon module uses this
	 * register all the time, so if we unbind our driver and, as a
	 * consequence, bind vgacon, we'll get stuck in an infinite loop at
	 * console_unlock(). So make here we touch the VGA MSR register, making
	 * sure vgacon can keep working normally without triggering interrupts
	 * and error messages.
	 */
	vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
	outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
	vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);

6300
	if (IS_BROADWELL(dev) || (INTEL_INFO(dev)->gen >= 9))
6301
		gen8_irq_power_well_post_enable(dev_priv);
6302 6303
}

6304
static void hsw_set_power_well(struct drm_i915_private *dev_priv,
6305
			       struct i915_power_well *power_well, bool enable)
6306
{
6307 6308
	bool is_enabled, enable_requested;
	uint32_t tmp;
6309

6310
	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
6311 6312
	is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
	enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
6313

6314 6315
	if (enable) {
		if (!enable_requested)
6316 6317
			I915_WRITE(HSW_PWR_WELL_DRIVER,
				   HSW_PWR_WELL_ENABLE_REQUEST);
6318

6319 6320 6321
		if (!is_enabled) {
			DRM_DEBUG_KMS("Enabling power well\n");
			if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
6322
				      HSW_PWR_WELL_STATE_ENABLED), 20))
6323 6324
				DRM_ERROR("Timeout enabling power well\n");
		}
6325

6326
		hsw_power_well_post_enable(dev_priv);
6327 6328 6329
	} else {
		if (enable_requested) {
			I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
6330
			POSTING_READ(HSW_PWR_WELL_DRIVER);
6331
			DRM_DEBUG_KMS("Requesting to disable the power well\n");
6332 6333
		}
	}
6334
}
6335

6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360
static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
				   struct i915_power_well *power_well)
{
	hsw_set_power_well(dev_priv, power_well, power_well->count > 0);

	/*
	 * We're taking over the BIOS, so clear any requests made by it since
	 * the driver is in charge now.
	 */
	if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
		I915_WRITE(HSW_PWR_WELL_BIOS, 0);
}

static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
				  struct i915_power_well *power_well)
{
	hsw_set_power_well(dev_priv, power_well, true);
}

static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
				   struct i915_power_well *power_well)
{
	hsw_set_power_well(dev_priv, power_well, false);
}

6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371
static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
					   struct i915_power_well *power_well)
{
}

static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
					     struct i915_power_well *power_well)
{
	return true;
}

6372 6373
static void vlv_set_power_well(struct drm_i915_private *dev_priv,
			       struct i915_power_well *power_well, bool enable)
6374
{
6375
	enum punit_power_well power_well_id = power_well->data;
6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473
	u32 mask;
	u32 state;
	u32 ctrl;

	mask = PUNIT_PWRGT_MASK(power_well_id);
	state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
			 PUNIT_PWRGT_PWR_GATE(power_well_id);

	mutex_lock(&dev_priv->rps.hw_lock);

#define COND \
	((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)

	if (COND)
		goto out;

	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
	ctrl &= ~mask;
	ctrl |= state;
	vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);

	if (wait_for(COND, 100))
		DRM_ERROR("timout setting power well state %08x (%08x)\n",
			  state,
			  vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));

#undef COND

out:
	mutex_unlock(&dev_priv->rps.hw_lock);
}

static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
				   struct i915_power_well *power_well)
{
	vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
}

static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
				  struct i915_power_well *power_well)
{
	vlv_set_power_well(dev_priv, power_well, true);
}

static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
				   struct i915_power_well *power_well)
{
	vlv_set_power_well(dev_priv, power_well, false);
}

static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
				   struct i915_power_well *power_well)
{
	int power_well_id = power_well->data;
	bool enabled = false;
	u32 mask;
	u32 state;
	u32 ctrl;

	mask = PUNIT_PWRGT_MASK(power_well_id);
	ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);

	mutex_lock(&dev_priv->rps.hw_lock);

	state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
	/*
	 * We only ever set the power-on and power-gate states, anything
	 * else is unexpected.
	 */
	WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
		state != PUNIT_PWRGT_PWR_GATE(power_well_id));
	if (state == ctrl)
		enabled = true;

	/*
	 * A transient state at this point would mean some unexpected party
	 * is poking at the power controls too.
	 */
	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
	WARN_ON(ctrl != state);

	mutex_unlock(&dev_priv->rps.hw_lock);

	return enabled;
}

static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
					  struct i915_power_well *power_well)
{
	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);

	vlv_set_power_well(dev_priv, power_well, true);

	spin_lock_irq(&dev_priv->irq_lock);
	valleyview_enable_display_irqs(dev_priv);
	spin_unlock_irq(&dev_priv->irq_lock);

	/*
6474 6475
	 * During driver initialization/resume we can avoid restoring the
	 * part of the HW/SW state that will be inited anyway explicitly.
6476
	 */
6477 6478 6479 6480
	if (dev_priv->power_domains.initializing)
		return;

	intel_hpd_init(dev_priv->dev);
6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494

	i915_redisable_vga_power_on(dev_priv->dev);
}

static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
					   struct i915_power_well *power_well)
{
	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);

	spin_lock_irq(&dev_priv->irq_lock);
	valleyview_disable_display_irqs(dev_priv);
	spin_unlock_irq(&dev_priv->irq_lock);

	vlv_set_power_well(dev_priv, power_well, false);
6495 6496

	vlv_power_sequencer_reset(dev_priv);
6497 6498
}

6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535
static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
					   struct i915_power_well *power_well)
{
	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);

	/*
	 * Enable the CRI clock source so we can get at the
	 * display and the reference clock for VGA
	 * hotplug / manual detection.
	 */
	I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
		   DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
	udelay(1); /* >10ns for cmnreset, >0ns for sidereset */

	vlv_set_power_well(dev_priv, power_well, true);

	/*
	 * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
	 *  6.	De-assert cmn_reset/side_reset. Same as VLV X0.
	 *   a.	GUnit 0x2110 bit[0] set to 1 (def 0)
	 *   b.	The other bits such as sfr settings / modesel may all
	 *	be set to 0.
	 *
	 * This should only be done on init and resume from S3 with
	 * both PLLs disabled, or we risk losing DPIO and PLL
	 * synchronization.
	 */
	I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
}

static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
					    struct i915_power_well *power_well)
{
	enum pipe pipe;

	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);

6536
	for_each_pipe(dev_priv, pipe)
6537 6538 6539 6540 6541 6542 6543 6544
		assert_pll_disabled(dev_priv, pipe);

	/* Assert common reset */
	I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);

	vlv_set_power_well(dev_priv, power_well, false);
}

6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575
static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
					   struct i915_power_well *power_well)
{
	enum dpio_phy phy;

	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
		     power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);

	/*
	 * Enable the CRI clock source so we can get at the
	 * display and the reference clock for VGA
	 * hotplug / manual detection.
	 */
	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
		phy = DPIO_PHY0;
		I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
			   DPLL_REFA_CLK_ENABLE_VLV);
		I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
			   DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
	} else {
		phy = DPIO_PHY1;
		I915_WRITE(DPLL(PIPE_C), I915_READ(DPLL(PIPE_C)) |
			   DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
	}
	udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
	vlv_set_power_well(dev_priv, power_well, true);

	/* Poll for phypwrgood signal */
	if (wait_for(I915_READ(DISPLAY_PHY_STATUS) & PHY_POWERGOOD(phy), 1))
		DRM_ERROR("Display PHY %d is not power up\n", phy);

6576 6577
	I915_WRITE(DISPLAY_PHY_CONTROL, I915_READ(DISPLAY_PHY_CONTROL) |
		   PHY_COM_LANE_RESET_DEASSERT(phy));
6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596
}

static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
					    struct i915_power_well *power_well)
{
	enum dpio_phy phy;

	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
		     power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);

	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
		phy = DPIO_PHY0;
		assert_pll_disabled(dev_priv, PIPE_A);
		assert_pll_disabled(dev_priv, PIPE_B);
	} else {
		phy = DPIO_PHY1;
		assert_pll_disabled(dev_priv, PIPE_C);
	}

6597 6598
	I915_WRITE(DISPLAY_PHY_CONTROL, I915_READ(DISPLAY_PHY_CONTROL) &
		   ~PHY_COM_LANE_RESET_DEASSERT(phy));
6599 6600 6601 6602

	vlv_set_power_well(dev_priv, power_well, false);
}

6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691
static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
					struct i915_power_well *power_well)
{
	enum pipe pipe = power_well->data;
	bool enabled;
	u32 state, ctrl;

	mutex_lock(&dev_priv->rps.hw_lock);

	state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe);
	/*
	 * We only ever set the power-on and power-gate states, anything
	 * else is unexpected.
	 */
	WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe));
	enabled = state == DP_SSS_PWR_ON(pipe);

	/*
	 * A transient state at this point would mean some unexpected party
	 * is poking at the power controls too.
	 */
	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe);
	WARN_ON(ctrl << 16 != state);

	mutex_unlock(&dev_priv->rps.hw_lock);

	return enabled;
}

static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
				    struct i915_power_well *power_well,
				    bool enable)
{
	enum pipe pipe = power_well->data;
	u32 state;
	u32 ctrl;

	state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);

	mutex_lock(&dev_priv->rps.hw_lock);

#define COND \
	((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state)

	if (COND)
		goto out;

	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	ctrl &= ~DP_SSC_MASK(pipe);
	ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl);

	if (wait_for(COND, 100))
		DRM_ERROR("timout setting power well state %08x (%08x)\n",
			  state,
			  vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ));

#undef COND

out:
	mutex_unlock(&dev_priv->rps.hw_lock);
}

static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv,
					struct i915_power_well *power_well)
{
	chv_set_pipe_power_well(dev_priv, power_well, power_well->count > 0);
}

static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
				       struct i915_power_well *power_well)
{
	WARN_ON_ONCE(power_well->data != PIPE_A &&
		     power_well->data != PIPE_B &&
		     power_well->data != PIPE_C);

	chv_set_pipe_power_well(dev_priv, power_well, true);
}

static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
					struct i915_power_well *power_well)
{
	WARN_ON_ONCE(power_well->data != PIPE_A &&
		     power_well->data != PIPE_B &&
		     power_well->data != PIPE_C);

	chv_set_pipe_power_well(dev_priv, power_well, false);
}

6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714
static void check_power_well_state(struct drm_i915_private *dev_priv,
				   struct i915_power_well *power_well)
{
	bool enabled = power_well->ops->is_enabled(dev_priv, power_well);

	if (power_well->always_on || !i915.disable_power_well) {
		if (!enabled)
			goto mismatch;

		return;
	}

	if (enabled != (power_well->count > 0))
		goto mismatch;

	return;

mismatch:
	WARN(1, "state mismatch for '%s' (always_on %d hw state %d use-count %d disable_power_well %d\n",
		  power_well->name, power_well->always_on, enabled,
		  power_well->count, i915.disable_power_well);
}

6715
void intel_display_power_get(struct drm_i915_private *dev_priv,
6716 6717
			     enum intel_display_power_domain domain)
{
6718
	struct i915_power_domains *power_domains;
6719 6720
	struct i915_power_well *power_well;
	int i;
6721

6722 6723
	intel_runtime_pm_get(dev_priv);

6724 6725 6726
	power_domains = &dev_priv->power_domains;

	mutex_lock(&power_domains->lock);
6727

6728 6729 6730
	for_each_power_well(i, power_well, BIT(domain), power_domains) {
		if (!power_well->count++) {
			DRM_DEBUG_KMS("enabling %s\n", power_well->name);
6731
			power_well->ops->enable(dev_priv, power_well);
6732
			power_well->hw_enabled = true;
6733 6734 6735 6736
		}

		check_power_well_state(dev_priv, power_well);
	}
6737

6738 6739
	power_domains->domain_use_count[domain]++;

6740
	mutex_unlock(&power_domains->lock);
6741 6742
}

6743
void intel_display_power_put(struct drm_i915_private *dev_priv,
6744 6745
			     enum intel_display_power_domain domain)
{
6746
	struct i915_power_domains *power_domains;
6747 6748
	struct i915_power_well *power_well;
	int i;
6749

6750 6751 6752
	power_domains = &dev_priv->power_domains;

	mutex_lock(&power_domains->lock);
6753 6754 6755

	WARN_ON(!power_domains->domain_use_count[domain]);
	power_domains->domain_use_count[domain]--;
6756

6757 6758 6759
	for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
		WARN_ON(!power_well->count);

6760 6761
		if (!--power_well->count && i915.disable_power_well) {
			DRM_DEBUG_KMS("disabling %s\n", power_well->name);
6762
			power_well->hw_enabled = false;
6763
			power_well->ops->disable(dev_priv, power_well);
6764 6765 6766
		}

		check_power_well_state(dev_priv, power_well);
6767
	}
6768

6769
	mutex_unlock(&power_domains->lock);
6770 6771

	intel_runtime_pm_put(dev_priv);
6772 6773
}

6774
static struct i915_power_domains *hsw_pwr;
6775 6776

/* Display audio driver power well request */
6777
int i915_request_power_well(void)
6778
{
6779 6780
	struct drm_i915_private *dev_priv;

6781 6782
	if (!hsw_pwr)
		return -ENODEV;
6783

6784 6785
	dev_priv = container_of(hsw_pwr, struct drm_i915_private,
				power_domains);
6786
	intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
6787
	return 0;
6788 6789 6790 6791
}
EXPORT_SYMBOL_GPL(i915_request_power_well);

/* Display audio driver power well release */
6792
int i915_release_power_well(void)
6793
{
6794 6795
	struct drm_i915_private *dev_priv;

6796 6797
	if (!hsw_pwr)
		return -ENODEV;
6798

6799 6800
	dev_priv = container_of(hsw_pwr, struct drm_i915_private,
				power_domains);
6801
	intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
6802
	return 0;
6803 6804 6805
}
EXPORT_SYMBOL_GPL(i915_release_power_well);

6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826
/*
 * Private interface for the audio driver to get CDCLK in kHz.
 *
 * Caller must request power well using i915_request_power_well() prior to
 * making the call.
 */
int i915_get_cdclk_freq(void)
{
	struct drm_i915_private *dev_priv;

	if (!hsw_pwr)
		return -ENODEV;

	dev_priv = container_of(hsw_pwr, struct drm_i915_private,
				power_domains);

	return intel_ddi_get_cdclk_freq(dev_priv);
}
EXPORT_SYMBOL_GPL(i915_get_cdclk_freq);


6827 6828 6829 6830
#define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)

#define HSW_ALWAYS_ON_POWER_DOMAINS (			\
	BIT(POWER_DOMAIN_PIPE_A) |			\
6831
	BIT(POWER_DOMAIN_TRANSCODER_EDP) |		\
I
Imre Deak 已提交
6832 6833 6834 6835 6836 6837 6838 6839 6840
	BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |		\
	BIT(POWER_DOMAIN_PORT_CRT) |			\
P
Paulo Zanoni 已提交
6841
	BIT(POWER_DOMAIN_PLLS) |			\
6842
	BIT(POWER_DOMAIN_INIT))
6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853
#define HSW_DISPLAY_POWER_DOMAINS (				\
	(POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) |	\
	BIT(POWER_DOMAIN_INIT))

#define BDW_ALWAYS_ON_POWER_DOMAINS (			\
	HSW_ALWAYS_ON_POWER_DOMAINS |			\
	BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
#define BDW_DISPLAY_POWER_DOMAINS (				\
	(POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) |	\
	BIT(POWER_DOMAIN_INIT))

6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882
#define VLV_ALWAYS_ON_POWER_DOMAINS	BIT(POWER_DOMAIN_INIT)
#define VLV_DISPLAY_POWER_DOMAINS	POWER_DOMAIN_MASK

#define VLV_DPIO_CMN_BC_POWER_DOMAINS (		\
	BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |	\
	BIT(POWER_DOMAIN_PORT_CRT) |		\
	BIT(POWER_DOMAIN_INIT))

#define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS (	\
	BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |	\
	BIT(POWER_DOMAIN_INIT))

#define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS (	\
	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |	\
	BIT(POWER_DOMAIN_INIT))

#define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS (	\
	BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |	\
	BIT(POWER_DOMAIN_INIT))

#define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS (	\
	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |	\
	BIT(POWER_DOMAIN_INIT))

6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894
#define CHV_PIPE_A_POWER_DOMAINS (	\
	BIT(POWER_DOMAIN_PIPE_A) |	\
	BIT(POWER_DOMAIN_INIT))

#define CHV_PIPE_B_POWER_DOMAINS (	\
	BIT(POWER_DOMAIN_PIPE_B) |	\
	BIT(POWER_DOMAIN_INIT))

#define CHV_PIPE_C_POWER_DOMAINS (	\
	BIT(POWER_DOMAIN_PIPE_C) |	\
	BIT(POWER_DOMAIN_INIT))

6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906
#define CHV_DPIO_CMN_BC_POWER_DOMAINS (		\
	BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |	\
	BIT(POWER_DOMAIN_INIT))

#define CHV_DPIO_CMN_D_POWER_DOMAINS (		\
	BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |	\
	BIT(POWER_DOMAIN_INIT))

6907 6908 6909 6910 6911 6912 6913 6914 6915
#define CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS (	\
	BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |	\
	BIT(POWER_DOMAIN_INIT))

#define CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS (	\
	BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |	\
	BIT(POWER_DOMAIN_INIT))

6916 6917 6918 6919 6920 6921
static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
	.sync_hw = i9xx_always_on_power_well_noop,
	.enable = i9xx_always_on_power_well_noop,
	.disable = i9xx_always_on_power_well_noop,
	.is_enabled = i9xx_always_on_power_well_enabled,
};
6922

6923 6924 6925 6926 6927 6928 6929
static const struct i915_power_well_ops chv_pipe_power_well_ops = {
	.sync_hw = chv_pipe_power_well_sync_hw,
	.enable = chv_pipe_power_well_enable,
	.disable = chv_pipe_power_well_disable,
	.is_enabled = chv_pipe_power_well_enabled,
};

6930 6931 6932 6933 6934 6935 6936
static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
	.sync_hw = vlv_power_well_sync_hw,
	.enable = chv_dpio_cmn_power_well_enable,
	.disable = chv_dpio_cmn_power_well_disable,
	.is_enabled = vlv_power_well_enabled,
};

6937 6938 6939 6940 6941
static struct i915_power_well i9xx_always_on_power_well[] = {
	{
		.name = "always-on",
		.always_on = 1,
		.domains = POWER_DOMAIN_MASK,
6942
		.ops = &i9xx_always_on_power_well_ops,
6943 6944 6945
	},
};

6946 6947 6948 6949 6950 6951 6952
static const struct i915_power_well_ops hsw_power_well_ops = {
	.sync_hw = hsw_power_well_sync_hw,
	.enable = hsw_power_well_enable,
	.disable = hsw_power_well_disable,
	.is_enabled = hsw_power_well_enabled,
};

6953
static struct i915_power_well hsw_power_wells[] = {
6954 6955 6956 6957
	{
		.name = "always-on",
		.always_on = 1,
		.domains = HSW_ALWAYS_ON_POWER_DOMAINS,
6958
		.ops = &i9xx_always_on_power_well_ops,
6959
	},
6960 6961
	{
		.name = "display",
6962
		.domains = HSW_DISPLAY_POWER_DOMAINS,
6963
		.ops = &hsw_power_well_ops,
6964 6965 6966 6967
	},
};

static struct i915_power_well bdw_power_wells[] = {
6968 6969 6970 6971
	{
		.name = "always-on",
		.always_on = 1,
		.domains = BDW_ALWAYS_ON_POWER_DOMAINS,
6972
		.ops = &i9xx_always_on_power_well_ops,
6973
	},
6974 6975
	{
		.name = "display",
6976
		.domains = BDW_DISPLAY_POWER_DOMAINS,
6977
		.ops = &hsw_power_well_ops,
6978 6979 6980
	},
};

6981 6982 6983 6984 6985 6986 6987
static const struct i915_power_well_ops vlv_display_power_well_ops = {
	.sync_hw = vlv_power_well_sync_hw,
	.enable = vlv_display_power_well_enable,
	.disable = vlv_display_power_well_disable,
	.is_enabled = vlv_power_well_enabled,
};

6988 6989 6990 6991 6992 6993 6994
static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
	.sync_hw = vlv_power_well_sync_hw,
	.enable = vlv_dpio_cmn_power_well_enable,
	.disable = vlv_dpio_cmn_power_well_disable,
	.is_enabled = vlv_power_well_enabled,
};

6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050
static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
	.sync_hw = vlv_power_well_sync_hw,
	.enable = vlv_power_well_enable,
	.disable = vlv_power_well_disable,
	.is_enabled = vlv_power_well_enabled,
};

static struct i915_power_well vlv_power_wells[] = {
	{
		.name = "always-on",
		.always_on = 1,
		.domains = VLV_ALWAYS_ON_POWER_DOMAINS,
		.ops = &i9xx_always_on_power_well_ops,
	},
	{
		.name = "display",
		.domains = VLV_DISPLAY_POWER_DOMAINS,
		.data = PUNIT_POWER_WELL_DISP2D,
		.ops = &vlv_display_power_well_ops,
	},
	{
		.name = "dpio-tx-b-01",
		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
	},
	{
		.name = "dpio-tx-b-23",
		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
	},
	{
		.name = "dpio-tx-c-01",
		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
	},
	{
		.name = "dpio-tx-c-23",
		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
	},
7051 7052 7053 7054
	{
		.name = "dpio-common",
		.domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
		.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
7055
		.ops = &vlv_dpio_cmn_power_well_ops,
7056
	},
7057 7058
};

7059 7060 7061 7062 7063 7064 7065
static struct i915_power_well chv_power_wells[] = {
	{
		.name = "always-on",
		.always_on = 1,
		.domains = VLV_ALWAYS_ON_POWER_DOMAINS,
		.ops = &i9xx_always_on_power_well_ops,
	},
7066 7067 7068 7069 7070 7071 7072
#if 0
	{
		.name = "display",
		.domains = VLV_DISPLAY_POWER_DOMAINS,
		.data = PUNIT_POWER_WELL_DISP2D,
		.ops = &vlv_display_power_well_ops,
	},
7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090
	{
		.name = "pipe-a",
		.domains = CHV_PIPE_A_POWER_DOMAINS,
		.data = PIPE_A,
		.ops = &chv_pipe_power_well_ops,
	},
	{
		.name = "pipe-b",
		.domains = CHV_PIPE_B_POWER_DOMAINS,
		.data = PIPE_B,
		.ops = &chv_pipe_power_well_ops,
	},
	{
		.name = "pipe-c",
		.domains = CHV_PIPE_C_POWER_DOMAINS,
		.data = PIPE_C,
		.ops = &chv_pipe_power_well_ops,
	},
7091
#endif
7092 7093
	{
		.name = "dpio-common-bc",
7094 7095 7096 7097 7098 7099
		/*
		 * XXX: cmnreset for one PHY seems to disturb the other.
		 * As a workaround keep both powered on at the same
		 * time for now.
		 */
		.domains = CHV_DPIO_CMN_BC_POWER_DOMAINS | CHV_DPIO_CMN_D_POWER_DOMAINS,
7100 7101 7102 7103 7104
		.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
		.ops = &chv_dpio_cmn_power_well_ops,
	},
	{
		.name = "dpio-common-d",
7105 7106 7107 7108 7109 7110
		/*
		 * XXX: cmnreset for one PHY seems to disturb the other.
		 * As a workaround keep both powered on at the same
		 * time for now.
		 */
		.domains = CHV_DPIO_CMN_BC_POWER_DOMAINS | CHV_DPIO_CMN_D_POWER_DOMAINS,
7111 7112 7113
		.data = PUNIT_POWER_WELL_DPIO_CMN_D,
		.ops = &chv_dpio_cmn_power_well_ops,
	},
7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142
#if 0
	{
		.name = "dpio-tx-b-01",
		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
	},
	{
		.name = "dpio-tx-b-23",
		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
	},
	{
		.name = "dpio-tx-c-01",
		.domains = VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
	},
	{
		.name = "dpio-tx-c-23",
		.domains = VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
	},
7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156
	{
		.name = "dpio-tx-d-01",
		.domains = CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS |
			   CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_D_LANES_01,
	},
	{
		.name = "dpio-tx-d-23",
		.domains = CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS |
			   CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_D_LANES_23,
	},
7157
#endif
7158 7159
};

7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174
static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
						 enum punit_power_well power_well_id)
{
	struct i915_power_domains *power_domains = &dev_priv->power_domains;
	struct i915_power_well *power_well;
	int i;

	for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
		if (power_well->data == power_well_id)
			return power_well;
	}

	return NULL;
}

7175 7176 7177 7178 7179
#define set_power_wells(power_domains, __power_wells) ({		\
	(power_domains)->power_wells = (__power_wells);			\
	(power_domains)->power_well_count = ARRAY_SIZE(__power_wells);	\
})

7180
int intel_power_domains_init(struct drm_i915_private *dev_priv)
7181
{
7182
	struct i915_power_domains *power_domains = &dev_priv->power_domains;
7183

7184
	mutex_init(&power_domains->lock);
7185

7186 7187 7188 7189
	/*
	 * The enabling order will be from lower to higher indexed wells,
	 * the disabling order is reversed.
	 */
7190
	if (IS_HASWELL(dev_priv->dev)) {
7191 7192
		set_power_wells(power_domains, hsw_power_wells);
		hsw_pwr = power_domains;
7193
	} else if (IS_BROADWELL(dev_priv->dev)) {
7194 7195
		set_power_wells(power_domains, bdw_power_wells);
		hsw_pwr = power_domains;
7196 7197
	} else if (IS_CHERRYVIEW(dev_priv->dev)) {
		set_power_wells(power_domains, chv_power_wells);
7198 7199
	} else if (IS_VALLEYVIEW(dev_priv->dev)) {
		set_power_wells(power_domains, vlv_power_wells);
7200
	} else {
7201
		set_power_wells(power_domains, i9xx_always_on_power_well);
7202
	}
7203 7204 7205 7206

	return 0;
}

7207
void intel_power_domains_remove(struct drm_i915_private *dev_priv)
7208 7209 7210 7211
{
	hsw_pwr = NULL;
}

7212
static void intel_power_domains_resume(struct drm_i915_private *dev_priv)
7213
{
7214 7215
	struct i915_power_domains *power_domains = &dev_priv->power_domains;
	struct i915_power_well *power_well;
7216
	int i;
7217

7218
	mutex_lock(&power_domains->lock);
7219
	for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
7220
		power_well->ops->sync_hw(dev_priv, power_well);
7221 7222 7223
		power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
								     power_well);
	}
7224
	mutex_unlock(&power_domains->lock);
7225 7226
}

7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257
static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
{
	struct i915_power_well *cmn =
		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
	struct i915_power_well *disp2d =
		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);

	/* nothing to do if common lane is already off */
	if (!cmn->ops->is_enabled(dev_priv, cmn))
		return;

	/* If the display might be already active skip this */
	if (disp2d->ops->is_enabled(dev_priv, disp2d) &&
	    I915_READ(DPIO_CTL) & DPIO_CMNRST)
		return;

	DRM_DEBUG_KMS("toggling display PHY side reset\n");

	/* cmnlane needs DPLL registers */
	disp2d->ops->enable(dev_priv, disp2d);

	/*
	 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
	 * Need to assert and de-assert PHY SB reset by gating the
	 * common lane power, then un-gating it.
	 * Simply ungating isn't enough to reset the PHY enough to get
	 * ports and lanes running.
	 */
	cmn->ops->disable(dev_priv, cmn);
}

7258
void intel_power_domains_init_hw(struct drm_i915_private *dev_priv)
7259
{
7260
	struct drm_device *dev = dev_priv->dev;
7261 7262 7263
	struct i915_power_domains *power_domains = &dev_priv->power_domains;

	power_domains->initializing = true;
7264 7265 7266 7267 7268 7269 7270

	if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
		mutex_lock(&power_domains->lock);
		vlv_cmnlane_wa(dev_priv);
		mutex_unlock(&power_domains->lock);
	}

7271
	/* For now, we need the power well to be always enabled. */
7272 7273
	intel_display_set_init_power(dev_priv, true);
	intel_power_domains_resume(dev_priv);
7274
	power_domains->initializing = false;
7275 7276
}

7277 7278
void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
{
7279
	intel_runtime_pm_get(dev_priv);
7280 7281 7282 7283
}

void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
{
7284
	intel_runtime_pm_put(dev_priv);
7285 7286
}

7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298
void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;
	struct device *device = &dev->pdev->dev;

	if (!HAS_RUNTIME_PM(dev))
		return;

	pm_runtime_get_sync(device);
	WARN(dev_priv->pm.suspended, "Device still suspended.\n");
}

7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310
void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;
	struct device *device = &dev->pdev->dev;

	if (!HAS_RUNTIME_PM(dev))
		return;

	WARN(dev_priv->pm.suspended, "Getting nosync-ref while suspended.\n");
	pm_runtime_get_noresume(device);
}

7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332
void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;
	struct device *device = &dev->pdev->dev;

	if (!HAS_RUNTIME_PM(dev))
		return;

	pm_runtime_mark_last_busy(device);
	pm_runtime_put_autosuspend(device);
}

void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;
	struct device *device = &dev->pdev->dev;

	if (!HAS_RUNTIME_PM(dev))
		return;

	pm_runtime_set_active(device);

7333 7334 7335 7336 7337 7338 7339 7340 7341
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!intel_enable_rc6(dev)) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		return;
	}

7342 7343 7344
	pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
	pm_runtime_mark_last_busy(device);
	pm_runtime_use_autosuspend(device);
7345 7346

	pm_runtime_put_autosuspend(device);
7347 7348 7349 7350 7351 7352 7353 7354 7355 7356
}

void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;
	struct device *device = &dev->pdev->dev;

	if (!HAS_RUNTIME_PM(dev))
		return;

7357 7358 7359
	if (!intel_enable_rc6(dev))
		return;

7360 7361 7362 7363 7364
	/* Make sure we're not suspended first. */
	pm_runtime_get_sync(device);
	pm_runtime_disable(device);
}

7365 7366 7367 7368 7369
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7370
	if (HAS_FBC(dev)) {
7371
		if (INTEL_INFO(dev)->gen >= 7) {
7372
			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
7373 7374 7375 7376 7377
			dev_priv->display.enable_fbc = gen7_enable_fbc;
			dev_priv->display.disable_fbc = ironlake_disable_fbc;
		} else if (INTEL_INFO(dev)->gen >= 5) {
			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
			dev_priv->display.enable_fbc = ironlake_enable_fbc;
7378 7379 7380 7381 7382
			dev_priv->display.disable_fbc = ironlake_disable_fbc;
		} else if (IS_GM45(dev)) {
			dev_priv->display.fbc_enabled = g4x_fbc_enabled;
			dev_priv->display.enable_fbc = g4x_enable_fbc;
			dev_priv->display.disable_fbc = g4x_disable_fbc;
7383
		} else {
7384 7385 7386
			dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
			dev_priv->display.enable_fbc = i8xx_enable_fbc;
			dev_priv->display.disable_fbc = i8xx_disable_fbc;
7387 7388 7389

			/* This value was pulled out of someone's hat */
			I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
7390 7391 7392
		}
	}

7393 7394 7395 7396 7397 7398
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
	else if (IS_GEN5(dev))
		i915_ironlake_get_mem_freq(dev);

7399
	/* For FIFO watermark updates */
7400 7401 7402
	if (IS_GEN9(dev)) {
		dev_priv->display.init_clock_gating = gen9_init_clock_gating;
	} else if (HAS_PCH_SPLIT(dev)) {
7403
		ilk_setup_wm_latency(dev);
7404

7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416
		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
			dev_priv->display.update_wm = ilk_update_wm;
			dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}

		if (IS_GEN5(dev))
7417
			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7418
		else if (IS_GEN6(dev))
7419
			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7420
		else if (IS_IVYBRIDGE(dev))
7421
			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7422
		else if (IS_HASWELL(dev))
7423
			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7424
		else if (INTEL_INFO(dev)->gen == 8)
7425
			dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7426
	} else if (IS_CHERRYVIEW(dev)) {
7427
		dev_priv->display.update_wm = cherryview_update_wm;
7428
		dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
7429 7430
		dev_priv->display.init_clock_gating =
			cherryview_init_clock_gating;
7431 7432
	} else if (IS_VALLEYVIEW(dev)) {
		dev_priv->display.update_wm = valleyview_update_wm;
7433
		dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446
		dev_priv->display.init_clock_gating =
			valleyview_init_clock_gating;
	} else if (IS_PINEVIEW(dev)) {
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7447
			intel_set_memory_cxsr(dev_priv, false);
7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	} else if (IS_G4X(dev)) {
		dev_priv->display.update_wm = g4x_update_wm;
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	} else if (IS_GEN4(dev)) {
		dev_priv->display.update_wm = i965_update_wm;
		if (IS_CRESTLINE(dev))
			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
		else if (IS_BROADWATER(dev))
			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	} else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7465 7466 7467
	} else if (IS_GEN2(dev)) {
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
7468
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7469 7470
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7471
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7472 7473 7474 7475 7476 7477 7478 7479
		}

		if (IS_I85X(dev) || IS_I865G(dev))
			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
		else
			dev_priv->display.init_clock_gating = i830_init_clock_gating;
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7480 7481 7482
	}
}

B
Ben Widawsky 已提交
7483 7484
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
{
7485
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, *val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	*val = I915_READ(GEN6_PCODE_DATA);
	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}

int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
{
7509
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}
7529

7530
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7531
{
7532
	int div;
7533

7534
	/* 4 x czclk */
7535
	switch (dev_priv->mem_freq) {
7536
	case 800:
7537
		div = 10;
7538 7539
		break;
	case 1066:
7540
		div = 12;
7541 7542
		break;
	case 1333:
7543
		div = 16;
7544 7545 7546 7547 7548
		break;
	default:
		return -1;
	}

7549
	return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
7550 7551
}

7552
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7553
{
7554
	int mul;
7555

7556
	/* 4 x czclk */
7557
	switch (dev_priv->mem_freq) {
7558
	case 800:
7559
		mul = 10;
7560 7561
		break;
	case 1066:
7562
		mul = 12;
7563 7564
		break;
	case 1333:
7565
		mul = 16;
7566 7567 7568 7569 7570
		break;
	default:
		return -1;
	}

7571
	return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
7572 7573
}

7574
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598
{
	int div, freq;

	switch (dev_priv->rps.cz_freq) {
	case 200:
		div = 5;
		break;
	case 267:
		div = 6;
		break;
	case 320:
	case 333:
	case 400:
		div = 8;
		break;
	default:
		return -1;
	}

	freq = (DIV_ROUND_CLOSEST((dev_priv->rps.cz_freq * val), 2 * div) / 2);

	return freq;
}

7599
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618
{
	int mul, opcode;

	switch (dev_priv->rps.cz_freq) {
	case 200:
		mul = 5;
		break;
	case 267:
		mul = 6;
		break;
	case 320:
	case 333:
	case 400:
		mul = 8;
		break;
	default:
		return -1;
	}

7619
	/* CHV needs even values */
7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648
	opcode = (DIV_ROUND_CLOSEST((val * 2 * mul), dev_priv->rps.cz_freq) * 2);

	return opcode;
}

int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
	int ret = -1;

	if (IS_CHERRYVIEW(dev_priv->dev))
		ret = chv_gpu_freq(dev_priv, val);
	else if (IS_VALLEYVIEW(dev_priv->dev))
		ret = byt_gpu_freq(dev_priv, val);

	return ret;
}

int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
	int ret = -1;

	if (IS_CHERRYVIEW(dev_priv->dev))
		ret = chv_freq_opcode(dev_priv, val);
	else if (IS_VALLEYVIEW(dev_priv->dev))
		ret = byt_freq_opcode(dev_priv, val);

	return ret;
}

D
Daniel Vetter 已提交
7649
void intel_pm_setup(struct drm_device *dev)
7650 7651 7652
{
	struct drm_i915_private *dev_priv = dev->dev_private;

D
Daniel Vetter 已提交
7653 7654
	mutex_init(&dev_priv->rps.hw_lock);

7655 7656
	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
			  intel_gen6_powersave_work);
7657

7658
	dev_priv->pm.suspended = false;
7659
	dev_priv->pm._irqs_disabled = false;
7660
}