fsl_ucc_hdlc.c 28.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
/* Freescale QUICC Engine HDLC Device Driver
 *
 * Copyright 2016 Freescale Semiconductor Inc.
 *
 * This program is free software; you can redistribute  it and/or modify it
 * under  the terms of  the GNU General  Public License as published by the
 * Free Software Foundation;  either version 2 of the  License, or (at your
 * option) any later version.
 */

#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/hdlc.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/sched.h>
#include <linux/skbuff.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stddef.h>
#include <soc/fsl/qe/qe_tdm.h>
#include <uapi/linux/if_arp.h>

#include "fsl_ucc_hdlc.h"

#define DRV_DESC "Freescale QE UCC HDLC Driver"
#define DRV_NAME "ucc_hdlc"

#define TDM_PPPOHT_SLIC_MAXIN
#define BROKEN_FRAME_INFO

static struct ucc_tdm_info utdm_primary_info = {
	.uf_info = {
		.tsa = 0,
		.cdp = 0,
		.cds = 1,
		.ctsp = 1,
		.ctss = 1,
		.revd = 0,
		.urfs = 256,
		.utfs = 256,
		.urfet = 128,
		.urfset = 192,
		.utfet = 128,
		.utftt = 0x40,
		.ufpt = 256,
		.mode = UCC_FAST_PROTOCOL_MODE_HDLC,
		.ttx_trx = UCC_FAST_GUMR_TRANSPARENT_TTX_TRX_NORMAL,
		.tenc = UCC_FAST_TX_ENCODING_NRZ,
		.renc = UCC_FAST_RX_ENCODING_NRZ,
		.tcrc = UCC_FAST_16_BIT_CRC,
		.synl = UCC_FAST_SYNC_LEN_NOT_USED,
	},

	.si_info = {
#ifdef TDM_PPPOHT_SLIC_MAXIN
		.simr_rfsd = 1,
		.simr_tfsd = 2,
#else
		.simr_rfsd = 0,
		.simr_tfsd = 0,
#endif
		.simr_crt = 0,
		.simr_sl = 0,
		.simr_ce = 1,
		.simr_fe = 1,
		.simr_gm = 0,
	},
};

static struct ucc_tdm_info utdm_info[MAX_HDLC_NUM];

static int uhdlc_init(struct ucc_hdlc_private *priv)
{
	struct ucc_tdm_info *ut_info;
	struct ucc_fast_info *uf_info;
	u32 cecr_subblock;
	u16 bd_status;
	int ret, i;
	void *bd_buffer;
	dma_addr_t bd_dma_addr;
	u32 riptr;
	u32 tiptr;
	u32 gumr;

	ut_info = priv->ut_info;
	uf_info = &ut_info->uf_info;

	if (priv->tsa) {
		uf_info->tsa = 1;
		uf_info->ctsp = 1;
	}
	uf_info->uccm_mask = ((UCC_HDLC_UCCE_RXB | UCC_HDLC_UCCE_RXF |
				UCC_HDLC_UCCE_TXB) << 16);

	ret = ucc_fast_init(uf_info, &priv->uccf);
	if (ret) {
		dev_err(priv->dev, "Failed to init uccf.");
		return ret;
	}

	priv->uf_regs = priv->uccf->uf_regs;
	ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);

	/* Loopback mode */
	if (priv->loopback) {
		dev_info(priv->dev, "Loopback Mode\n");
		gumr = ioread32be(&priv->uf_regs->gumr);
		gumr |= (UCC_FAST_GUMR_LOOPBACK | UCC_FAST_GUMR_CDS |
			 UCC_FAST_GUMR_TCI);
		gumr &= ~(UCC_FAST_GUMR_CTSP | UCC_FAST_GUMR_RSYN);
		iowrite32be(gumr, &priv->uf_regs->gumr);
	}

	/* Initialize SI */
	if (priv->tsa)
		ucc_tdm_init(priv->utdm, priv->ut_info);

	/* Write to QE CECR, UCCx channel to Stop Transmission */
	cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
	ret = qe_issue_cmd(QE_STOP_TX, cecr_subblock,
			   QE_CR_PROTOCOL_UNSPECIFIED, 0);

	/* Set UPSMR normal mode (need fixed)*/
	iowrite32be(0, &priv->uf_regs->upsmr);

	priv->rx_ring_size = RX_BD_RING_LEN;
	priv->tx_ring_size = TX_BD_RING_LEN;
	/* Alloc Rx BD */
	priv->rx_bd_base = dma_alloc_coherent(priv->dev,
			RX_BD_RING_LEN * sizeof(struct qe_bd *),
			&priv->dma_rx_bd, GFP_KERNEL);

	if (!priv->rx_bd_base) {
		dev_err(priv->dev, "Cannot allocate MURAM memory for RxBDs\n");
		ret = -ENOMEM;
146
		goto free_uccf;
147 148 149 150 151 152 153 154 155 156
	}

	/* Alloc Tx BD */
	priv->tx_bd_base = dma_alloc_coherent(priv->dev,
			TX_BD_RING_LEN * sizeof(struct qe_bd *),
			&priv->dma_tx_bd, GFP_KERNEL);

	if (!priv->tx_bd_base) {
		dev_err(priv->dev, "Cannot allocate MURAM memory for TxBDs\n");
		ret = -ENOMEM;
157
		goto free_rx_bd;
158 159 160 161 162 163 164
	}

	/* Alloc parameter ram for ucc hdlc */
	priv->ucc_pram_offset = qe_muram_alloc(sizeof(priv->ucc_pram),
				ALIGNMENT_OF_UCC_HDLC_PRAM);

	if (priv->ucc_pram_offset < 0) {
165
		dev_err(priv->dev, "Can not allocate MURAM for hdlc parameter.\n");
166
		ret = -ENOMEM;
167
		goto free_tx_bd;
168 169 170 171 172
	}

	priv->rx_skbuff = kzalloc(priv->rx_ring_size * sizeof(*priv->rx_skbuff),
				  GFP_KERNEL);
	if (!priv->rx_skbuff)
173
		goto free_ucc_pram;
174 175 176 177

	priv->tx_skbuff = kzalloc(priv->tx_ring_size * sizeof(*priv->tx_skbuff),
				  GFP_KERNEL);
	if (!priv->tx_skbuff)
178
		goto free_rx_skbuff;
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202

	priv->skb_curtx = 0;
	priv->skb_dirtytx = 0;
	priv->curtx_bd = priv->tx_bd_base;
	priv->dirty_tx = priv->tx_bd_base;
	priv->currx_bd = priv->rx_bd_base;
	priv->currx_bdnum = 0;

	/* init parameter base */
	cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
	ret = qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, cecr_subblock,
			   QE_CR_PROTOCOL_UNSPECIFIED, priv->ucc_pram_offset);

	priv->ucc_pram = (struct ucc_hdlc_param __iomem *)
					qe_muram_addr(priv->ucc_pram_offset);

	/* Zero out parameter ram */
	memset_io(priv->ucc_pram, 0, sizeof(struct ucc_hdlc_param));

	/* Alloc riptr, tiptr */
	riptr = qe_muram_alloc(32, 32);
	if (riptr < 0) {
		dev_err(priv->dev, "Cannot allocate MURAM mem for Receive internal temp data pointer\n");
		ret = -ENOMEM;
203
		goto free_tx_skbuff;
204 205 206 207 208 209
	}

	tiptr = qe_muram_alloc(32, 32);
	if (tiptr < 0) {
		dev_err(priv->dev, "Cannot allocate MURAM mem for Transmit internal temp data pointer\n");
		ret = -ENOMEM;
210
		goto free_riptr;
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
	}

	/* Set RIPTR, TIPTR */
	iowrite16be(riptr, &priv->ucc_pram->riptr);
	iowrite16be(tiptr, &priv->ucc_pram->tiptr);

	/* Set MRBLR */
	iowrite16be(MAX_RX_BUF_LENGTH, &priv->ucc_pram->mrblr);

	/* Set RBASE, TBASE */
	iowrite32be(priv->dma_rx_bd, &priv->ucc_pram->rbase);
	iowrite32be(priv->dma_tx_bd, &priv->ucc_pram->tbase);

	/* Set RSTATE, TSTATE */
	iowrite32be(BMR_GBL | BMR_BIG_ENDIAN, &priv->ucc_pram->rstate);
	iowrite32be(BMR_GBL | BMR_BIG_ENDIAN, &priv->ucc_pram->tstate);

	/* Set C_MASK, C_PRES for 16bit CRC */
	iowrite32be(CRC_16BIT_MASK, &priv->ucc_pram->c_mask);
	iowrite32be(CRC_16BIT_PRES, &priv->ucc_pram->c_pres);

	iowrite16be(MAX_FRAME_LENGTH, &priv->ucc_pram->mflr);
	iowrite16be(DEFAULT_RFTHR, &priv->ucc_pram->rfthr);
	iowrite16be(DEFAULT_RFTHR, &priv->ucc_pram->rfcnt);
	iowrite16be(DEFAULT_ADDR_MASK, &priv->ucc_pram->hmask);
	iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr1);
	iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr2);
	iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr3);
	iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr4);

	/* Get BD buffer */
	bd_buffer = dma_alloc_coherent(priv->dev,
				       (RX_BD_RING_LEN + TX_BD_RING_LEN) *
				       MAX_RX_BUF_LENGTH,
				       &bd_dma_addr, GFP_KERNEL);

	if (!bd_buffer) {
		dev_err(priv->dev, "Could not allocate buffer descriptors\n");
		ret = -ENOMEM;
250
		goto free_tiptr;
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
	}

	memset(bd_buffer, 0, (RX_BD_RING_LEN + TX_BD_RING_LEN)
			* MAX_RX_BUF_LENGTH);

	priv->rx_buffer = bd_buffer;
	priv->tx_buffer = bd_buffer + RX_BD_RING_LEN * MAX_RX_BUF_LENGTH;

	priv->dma_rx_addr = bd_dma_addr;
	priv->dma_tx_addr = bd_dma_addr + RX_BD_RING_LEN * MAX_RX_BUF_LENGTH;

	for (i = 0; i < RX_BD_RING_LEN; i++) {
		if (i < (RX_BD_RING_LEN - 1))
			bd_status = R_E_S | R_I_S;
		else
			bd_status = R_E_S | R_I_S | R_W_S;

		iowrite16be(bd_status, &priv->rx_bd_base[i].status);
		iowrite32be(priv->dma_rx_addr + i * MAX_RX_BUF_LENGTH,
			    &priv->rx_bd_base[i].buf);
	}

	for (i = 0; i < TX_BD_RING_LEN; i++) {
		if (i < (TX_BD_RING_LEN - 1))
			bd_status =  T_I_S | T_TC_S;
		else
			bd_status =  T_I_S | T_TC_S | T_W_S;

		iowrite16be(bd_status, &priv->tx_bd_base[i].status);
		iowrite32be(priv->dma_tx_addr + i * MAX_RX_BUF_LENGTH,
			    &priv->tx_bd_base[i].buf);
	}

	return 0;

286
free_tiptr:
287
	qe_muram_free(tiptr);
288
free_riptr:
289
	qe_muram_free(riptr);
290
free_tx_skbuff:
291
	kfree(priv->tx_skbuff);
292
free_rx_skbuff:
293
	kfree(priv->rx_skbuff);
294
free_ucc_pram:
295
	qe_muram_free(priv->ucc_pram_offset);
296
free_tx_bd:
297
	dma_free_coherent(priv->dev,
298
			  TX_BD_RING_LEN * sizeof(struct qe_bd *),
299
			  priv->tx_bd_base, priv->dma_tx_bd);
300
free_rx_bd:
301
	dma_free_coherent(priv->dev,
302
			  RX_BD_RING_LEN * sizeof(struct qe_bd *),
303
			  priv->rx_bd_base, priv->dma_rx_bd);
304
free_uccf:
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
	ucc_fast_free(priv->uccf);

	return ret;
}

static netdev_tx_t ucc_hdlc_tx(struct sk_buff *skb, struct net_device *dev)
{
	hdlc_device *hdlc = dev_to_hdlc(dev);
	struct ucc_hdlc_private *priv = (struct ucc_hdlc_private *)hdlc->priv;
	struct qe_bd __iomem *bd;
	u16 bd_status;
	unsigned long flags;
	u8 *send_buf;
	int i;
	u16 *proto_head;

	switch (dev->type) {
	case ARPHRD_RAWHDLC:
		if (skb_headroom(skb) < HDLC_HEAD_LEN) {
			dev->stats.tx_dropped++;
			dev_kfree_skb(skb);
			netdev_err(dev, "No enough space for hdlc head\n");
			return -ENOMEM;
		}

		skb_push(skb, HDLC_HEAD_LEN);

		proto_head = (u16 *)skb->data;
		*proto_head = htons(DEFAULT_HDLC_HEAD);

		dev->stats.tx_bytes += skb->len;
		break;

	case ARPHRD_PPP:
		proto_head = (u16 *)skb->data;
		if (*proto_head != htons(DEFAULT_PPP_HEAD)) {
			dev->stats.tx_dropped++;
			dev_kfree_skb(skb);
			netdev_err(dev, "Wrong ppp header\n");
			return -ENOMEM;
		}

		dev->stats.tx_bytes += skb->len;
		break;

	default:
		dev->stats.tx_dropped++;
		dev_kfree_skb(skb);
		return -ENOMEM;
	}

	pr_info("Tx data skb->len:%d ", skb->len);
	send_buf = (u8 *)skb->data;
	pr_info("\nTransmitted data:\n");
	for (i = 0; i < 16; i++) {
		if (i == skb->len)
			pr_info("++++");
		else
		pr_info("%02x\n", send_buf[i]);
	}
	spin_lock_irqsave(&priv->lock, flags);

	/* Start from the next BD that should be filled */
	bd = priv->curtx_bd;
	bd_status = ioread16be(&bd->status);
	/* Save the skb pointer so we can free it later */
	priv->tx_skbuff[priv->skb_curtx] = skb;

	/* Update the current skb pointer (wrapping if this was the last) */
	priv->skb_curtx =
	    (priv->skb_curtx + 1) & TX_RING_MOD_MASK(TX_BD_RING_LEN);

	/* copy skb data to tx buffer for sdma processing */
	memcpy(priv->tx_buffer + (be32_to_cpu(bd->buf) - priv->dma_tx_addr),
	       skb->data, skb->len);

	/* set bd status and length */
	bd_status = (bd_status & T_W_S) | T_R_S | T_I_S | T_L_S | T_TC_S;

	iowrite16be(bd_status, &bd->status);
	iowrite16be(skb->len, &bd->length);

	/* Move to next BD in the ring */
	if (!(bd_status & T_W_S))
		bd += 1;
	else
		bd = priv->tx_bd_base;

	if (bd == priv->dirty_tx) {
		if (!netif_queue_stopped(dev))
			netif_stop_queue(dev);
	}

	priv->curtx_bd = bd;

	spin_unlock_irqrestore(&priv->lock, flags);

	return NETDEV_TX_OK;
}

static int hdlc_tx_done(struct ucc_hdlc_private *priv)
{
	/* Start from the next BD that should be filled */
	struct net_device *dev = priv->ndev;
	struct qe_bd *bd;		/* BD pointer */
	u16 bd_status;

	bd = priv->dirty_tx;
	bd_status = ioread16be(&bd->status);

	/* Normal processing. */
	while ((bd_status & T_R_S) == 0) {
		struct sk_buff *skb;

		/* BD contains already transmitted buffer.   */
		/* Handle the transmitted buffer and release */
		/* the BD to be used with the current frame  */

		skb = priv->tx_skbuff[priv->skb_dirtytx];
		if (!skb)
			break;
		pr_info("TxBD: %x\n", bd_status);
		dev->stats.tx_packets++;
		memset(priv->tx_buffer +
		       (be32_to_cpu(bd->buf) - priv->dma_tx_addr),
		       0, skb->len);
		dev_kfree_skb_irq(skb);

		priv->tx_skbuff[priv->skb_dirtytx] = NULL;
		priv->skb_dirtytx =
		    (priv->skb_dirtytx +
		     1) & TX_RING_MOD_MASK(TX_BD_RING_LEN);

		/* We freed a buffer, so now we can restart transmission */
		if (netif_queue_stopped(dev))
			netif_wake_queue(dev);

		/* Advance the confirmation BD pointer */
		if (!(bd_status & T_W_S))
			bd += 1;
		else
			bd = priv->tx_bd_base;
		bd_status = ioread16be(&bd->status);
	}
	priv->dirty_tx = bd;

	return 0;
}

static int hdlc_rx_done(struct ucc_hdlc_private *priv, int rx_work_limit)
{
	struct net_device *dev = priv->ndev;
	struct sk_buff *skb;
	hdlc_device *hdlc = dev_to_hdlc(dev);
	struct qe_bd *bd;
	u32 bd_status;
	u16 length, howmany = 0;
	u8 *bdbuffer;
	int i;
	static int entry;

	bd = priv->currx_bd;
	bd_status = ioread16be(&bd->status);

	/* while there are received buffers and BD is full (~R_E) */
	while (!((bd_status & (R_E_S)) || (--rx_work_limit < 0))) {
		if (bd_status & R_OV_S)
			dev->stats.rx_over_errors++;
		if (bd_status & R_CR_S) {
#ifdef BROKEN_FRAME_INFO
			pr_info("Broken Frame with RxBD: %x\n", bd_status);
#endif
			dev->stats.rx_crc_errors++;
			dev->stats.rx_dropped++;
			goto recycle;
		}
		bdbuffer = priv->rx_buffer +
			(priv->currx_bdnum * MAX_RX_BUF_LENGTH);
		length = ioread16be(&bd->length);

		pr_info("Received data length:%d", length);
		pr_info("while entry times:%d", entry++);

		pr_info("\nReceived data:\n");
		for (i = 0; (i < 16); i++) {
			if (i == length)
				pr_info("++++");
			else
			pr_info("%02x\n", bdbuffer[i]);
		}

		switch (dev->type) {
		case ARPHRD_RAWHDLC:
			bdbuffer += HDLC_HEAD_LEN;
			length -= (HDLC_HEAD_LEN + HDLC_CRC_SIZE);

			skb = dev_alloc_skb(length);
			if (!skb) {
				dev->stats.rx_dropped++;
				return -ENOMEM;
			}

			skb_put(skb, length);
			skb->len = length;
			skb->dev = dev;
			memcpy(skb->data, bdbuffer, length);
			break;

		case ARPHRD_PPP:
			length -= HDLC_CRC_SIZE;

			skb = dev_alloc_skb(length);
			if (!skb) {
				dev->stats.rx_dropped++;
				return -ENOMEM;
			}

			skb_put(skb, length);
			skb->len = length;
			skb->dev = dev;
			memcpy(skb->data, bdbuffer, length);
			break;
		}

		dev->stats.rx_packets++;
		dev->stats.rx_bytes += skb->len;
		howmany++;
		if (hdlc->proto)
			skb->protocol = hdlc_type_trans(skb, dev);
		pr_info("skb->protocol:%x\n", skb->protocol);
		netif_receive_skb(skb);

recycle:
		iowrite16be(bd_status | R_E_S | R_I_S, &bd->status);

		/* update to point at the next bd */
		if (bd_status & R_W_S) {
			priv->currx_bdnum = 0;
			bd = priv->rx_bd_base;
		} else {
			if (priv->currx_bdnum < (RX_BD_RING_LEN - 1))
				priv->currx_bdnum += 1;
			else
				priv->currx_bdnum = RX_BD_RING_LEN - 1;

			bd += 1;
		}

		bd_status = ioread16be(&bd->status);
	}

	priv->currx_bd = bd;
	return howmany;
}

static int ucc_hdlc_poll(struct napi_struct *napi, int budget)
{
	struct ucc_hdlc_private *priv = container_of(napi,
						     struct ucc_hdlc_private,
						     napi);
	int howmany;

	/* Tx event processing */
	spin_lock(&priv->lock);
		hdlc_tx_done(priv);
	spin_unlock(&priv->lock);

	howmany = 0;
	howmany += hdlc_rx_done(priv, budget - howmany);

	if (howmany < budget) {
576
		napi_complete_done(napi, howmany);
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
		qe_setbits32(priv->uccf->p_uccm,
			     (UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS) << 16);
	}

	return howmany;
}

static irqreturn_t ucc_hdlc_irq_handler(int irq, void *dev_id)
{
	struct ucc_hdlc_private *priv = (struct ucc_hdlc_private *)dev_id;
	struct net_device *dev = priv->ndev;
	struct ucc_fast_private *uccf;
	struct ucc_tdm_info *ut_info;
	u32 ucce;
	u32 uccm;

	ut_info = priv->ut_info;
	uccf = priv->uccf;

	ucce = ioread32be(uccf->p_ucce);
	uccm = ioread32be(uccf->p_uccm);
	ucce &= uccm;
	iowrite32be(ucce, uccf->p_ucce);
	pr_info("irq ucce:%x\n", ucce);
	if (!ucce)
		return IRQ_NONE;

	if ((ucce >> 16) & (UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS)) {
		if (napi_schedule_prep(&priv->napi)) {
			uccm &= ~((UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS)
				  << 16);
			iowrite32be(uccm, uccf->p_uccm);
			__napi_schedule(&priv->napi);
		}
	}

	/* Errors and other events */
	if (ucce >> 16 & UCC_HDLC_UCCE_BSY)
		dev->stats.rx_errors++;
	if (ucce >> 16 & UCC_HDLC_UCCE_TXE)
		dev->stats.tx_errors++;

	return IRQ_HANDLED;
}

static int uhdlc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
	const size_t size = sizeof(te1_settings);
	te1_settings line;
	struct ucc_hdlc_private *priv = netdev_priv(dev);

	if (cmd != SIOCWANDEV)
		return hdlc_ioctl(dev, ifr, cmd);

	switch (ifr->ifr_settings.type) {
	case IF_GET_IFACE:
		ifr->ifr_settings.type = IF_IFACE_E1;
		if (ifr->ifr_settings.size < size) {
			ifr->ifr_settings.size = size; /* data size wanted */
			return -ENOBUFS;
		}
638
		memset(&line, 0, sizeof(line));
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
		line.clock_type = priv->clocking;

		if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &line, size))
			return -EFAULT;
		return 0;

	default:
		return hdlc_ioctl(dev, ifr, cmd);
	}
}

static int uhdlc_open(struct net_device *dev)
{
	u32 cecr_subblock;
	hdlc_device *hdlc = dev_to_hdlc(dev);
	struct ucc_hdlc_private *priv = hdlc->priv;
	struct ucc_tdm *utdm = priv->utdm;

	if (priv->hdlc_busy != 1) {
		if (request_irq(priv->ut_info->uf_info.irq,
				ucc_hdlc_irq_handler, 0, "hdlc", priv))
			return -ENODEV;

		cecr_subblock = ucc_fast_get_qe_cr_subblock(
					priv->ut_info->uf_info.ucc_num);

		qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
			     QE_CR_PROTOCOL_UNSPECIFIED, 0);

		ucc_fast_enable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);

		/* Enable the TDM port */
		if (priv->tsa)
			utdm->si_regs->siglmr1_h |= (0x1 << utdm->tdm_port);

		priv->hdlc_busy = 1;
		netif_device_attach(priv->ndev);
		napi_enable(&priv->napi);
		netif_start_queue(dev);
		hdlc_open(dev);
	}

	return 0;
}

static void uhdlc_memclean(struct ucc_hdlc_private *priv)
{
	qe_muram_free(priv->ucc_pram->riptr);
	qe_muram_free(priv->ucc_pram->tiptr);

	if (priv->rx_bd_base) {
		dma_free_coherent(priv->dev,
691
				  RX_BD_RING_LEN * sizeof(struct qe_bd *),
692 693 694 695 696 697 698 699
				  priv->rx_bd_base, priv->dma_rx_bd);

		priv->rx_bd_base = NULL;
		priv->dma_rx_bd = 0;
	}

	if (priv->tx_bd_base) {
		dma_free_coherent(priv->dev,
700
				  TX_BD_RING_LEN * sizeof(struct qe_bd *),
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
				  priv->tx_bd_base, priv->dma_tx_bd);

		priv->tx_bd_base = NULL;
		priv->dma_tx_bd = 0;
	}

	if (priv->ucc_pram) {
		qe_muram_free(priv->ucc_pram_offset);
		priv->ucc_pram = NULL;
		priv->ucc_pram_offset = 0;
	 }

	kfree(priv->rx_skbuff);
	priv->rx_skbuff = NULL;

	kfree(priv->tx_skbuff);
	priv->tx_skbuff = NULL;

	if (priv->uf_regs) {
		iounmap(priv->uf_regs);
		priv->uf_regs = NULL;
	}

	if (priv->uccf) {
		ucc_fast_free(priv->uccf);
		priv->uccf = NULL;
	}

	if (priv->rx_buffer) {
		dma_free_coherent(priv->dev,
				  RX_BD_RING_LEN * MAX_RX_BUF_LENGTH,
				  priv->rx_buffer, priv->dma_rx_addr);
		priv->rx_buffer = NULL;
		priv->dma_rx_addr = 0;
	}

	if (priv->tx_buffer) {
		dma_free_coherent(priv->dev,
				  TX_BD_RING_LEN * MAX_RX_BUF_LENGTH,
				  priv->tx_buffer, priv->dma_tx_addr);
		priv->tx_buffer = NULL;
		priv->dma_tx_addr = 0;
	}
}

static int uhdlc_close(struct net_device *dev)
{
	struct ucc_hdlc_private *priv = dev_to_hdlc(dev)->priv;
	struct ucc_tdm *utdm = priv->utdm;
	u32 cecr_subblock;

	napi_disable(&priv->napi);
	cecr_subblock = ucc_fast_get_qe_cr_subblock(
				priv->ut_info->uf_info.ucc_num);

	qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock,
		     (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
	qe_issue_cmd(QE_CLOSE_RX_BD, cecr_subblock,
		     (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);

	if (priv->tsa)
		utdm->si_regs->siglmr1_h &= ~(0x1 << utdm->tdm_port);

	ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);

	free_irq(priv->ut_info->uf_info.irq, priv);
	netif_stop_queue(dev);
	priv->hdlc_busy = 0;

	return 0;
}

static int ucc_hdlc_attach(struct net_device *dev, unsigned short encoding,
			   unsigned short parity)
{
	struct ucc_hdlc_private *priv = dev_to_hdlc(dev)->priv;

	if (encoding != ENCODING_NRZ &&
	    encoding != ENCODING_NRZI)
		return -EINVAL;

	if (parity != PARITY_NONE &&
	    parity != PARITY_CRC32_PR1_CCITT &&
	    parity != PARITY_CRC16_PR1_CCITT)
		return -EINVAL;

	priv->encoding = encoding;
	priv->parity = parity;

	return 0;
}

#ifdef CONFIG_PM
static void store_clk_config(struct ucc_hdlc_private *priv)
{
	struct qe_mux *qe_mux_reg = &qe_immr->qmx;

	/* store si clk */
	priv->cmxsi1cr_h = ioread32be(&qe_mux_reg->cmxsi1cr_h);
	priv->cmxsi1cr_l = ioread32be(&qe_mux_reg->cmxsi1cr_l);

	/* store si sync */
	priv->cmxsi1syr = ioread32be(&qe_mux_reg->cmxsi1syr);

	/* store ucc clk */
	memcpy_fromio(priv->cmxucr, qe_mux_reg->cmxucr, 4 * sizeof(u32));
}

static void resume_clk_config(struct ucc_hdlc_private *priv)
{
	struct qe_mux *qe_mux_reg = &qe_immr->qmx;

	memcpy_toio(qe_mux_reg->cmxucr, priv->cmxucr, 4 * sizeof(u32));

	iowrite32be(priv->cmxsi1cr_h, &qe_mux_reg->cmxsi1cr_h);
	iowrite32be(priv->cmxsi1cr_l, &qe_mux_reg->cmxsi1cr_l);

	iowrite32be(priv->cmxsi1syr, &qe_mux_reg->cmxsi1syr);
}

static int uhdlc_suspend(struct device *dev)
{
	struct ucc_hdlc_private *priv = dev_get_drvdata(dev);
	struct ucc_tdm_info *ut_info;
	struct ucc_fast __iomem *uf_regs;

	if (!priv)
		return -EINVAL;

	if (!netif_running(priv->ndev))
		return 0;

	netif_device_detach(priv->ndev);
	napi_disable(&priv->napi);

	ut_info = priv->ut_info;
	uf_regs = priv->uf_regs;

	/* backup gumr guemr*/
	priv->gumr = ioread32be(&uf_regs->gumr);
	priv->guemr = ioread8(&uf_regs->guemr);

	priv->ucc_pram_bak = kmalloc(sizeof(*priv->ucc_pram_bak),
					GFP_KERNEL);
	if (!priv->ucc_pram_bak)
		return -ENOMEM;

	/* backup HDLC parameter */
	memcpy_fromio(priv->ucc_pram_bak, priv->ucc_pram,
		      sizeof(struct ucc_hdlc_param));

	/* store the clk configuration */
	store_clk_config(priv);

	/* save power */
	ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);

	dev_dbg(dev, "ucc hdlc suspend\n");
	return 0;
}

static int uhdlc_resume(struct device *dev)
{
	struct ucc_hdlc_private *priv = dev_get_drvdata(dev);
865
	struct ucc_tdm *utdm;
866 867 868 869 870 871 872 873 874 875 876 877 878 879
	struct ucc_tdm_info *ut_info;
	struct ucc_fast __iomem *uf_regs;
	struct ucc_fast_private *uccf;
	struct ucc_fast_info *uf_info;
	int ret, i;
	u32 cecr_subblock;
	u16 bd_status;

	if (!priv)
		return -EINVAL;

	if (!netif_running(priv->ndev))
		return 0;

880
	utdm = priv->utdm;
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
	ut_info = priv->ut_info;
	uf_info = &ut_info->uf_info;
	uf_regs = priv->uf_regs;
	uccf = priv->uccf;

	/* restore gumr guemr */
	iowrite8(priv->guemr, &uf_regs->guemr);
	iowrite32be(priv->gumr, &uf_regs->gumr);

	/* Set Virtual Fifo registers */
	iowrite16be(uf_info->urfs, &uf_regs->urfs);
	iowrite16be(uf_info->urfet, &uf_regs->urfet);
	iowrite16be(uf_info->urfset, &uf_regs->urfset);
	iowrite16be(uf_info->utfs, &uf_regs->utfs);
	iowrite16be(uf_info->utfet, &uf_regs->utfet);
	iowrite16be(uf_info->utftt, &uf_regs->utftt);
	/* utfb, urfb are offsets from MURAM base */
	iowrite32be(uccf->ucc_fast_tx_virtual_fifo_base_offset, &uf_regs->utfb);
	iowrite32be(uccf->ucc_fast_rx_virtual_fifo_base_offset, &uf_regs->urfb);

	/* Rx Tx and sync clock routing */
	resume_clk_config(priv);

	iowrite32be(uf_info->uccm_mask, &uf_regs->uccm);
	iowrite32be(0xffffffff, &uf_regs->ucce);

	ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);

	/* rebuild SIRAM */
	if (priv->tsa)
		ucc_tdm_init(priv->utdm, priv->ut_info);

	/* Write to QE CECR, UCCx channel to Stop Transmission */
	cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
	ret = qe_issue_cmd(QE_STOP_TX, cecr_subblock,
			   (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);

	/* Set UPSMR normal mode */
	iowrite32be(0, &uf_regs->upsmr);

	/* init parameter base */
	cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
	ret = qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, cecr_subblock,
			   QE_CR_PROTOCOL_UNSPECIFIED, priv->ucc_pram_offset);

	priv->ucc_pram = (struct ucc_hdlc_param __iomem *)
				qe_muram_addr(priv->ucc_pram_offset);

	/* restore ucc parameter */
	memcpy_toio(priv->ucc_pram, priv->ucc_pram_bak,
		    sizeof(struct ucc_hdlc_param));
	kfree(priv->ucc_pram_bak);

	/* rebuild BD entry */
	for (i = 0; i < RX_BD_RING_LEN; i++) {
		if (i < (RX_BD_RING_LEN - 1))
			bd_status = R_E_S | R_I_S;
		else
			bd_status = R_E_S | R_I_S | R_W_S;

		iowrite16be(bd_status, &priv->rx_bd_base[i].status);
		iowrite32be(priv->dma_rx_addr + i * MAX_RX_BUF_LENGTH,
			    &priv->rx_bd_base[i].buf);
	}

	for (i = 0; i < TX_BD_RING_LEN; i++) {
		if (i < (TX_BD_RING_LEN - 1))
			bd_status =  T_I_S | T_TC_S;
		else
			bd_status =  T_I_S | T_TC_S | T_W_S;

		iowrite16be(bd_status, &priv->tx_bd_base[i].status);
		iowrite32be(priv->dma_tx_addr + i * MAX_RX_BUF_LENGTH,
			    &priv->tx_bd_base[i].buf);
	}

	/* if hdlc is busy enable TX and RX */
	if (priv->hdlc_busy == 1) {
		cecr_subblock = ucc_fast_get_qe_cr_subblock(
					priv->ut_info->uf_info.ucc_num);

		qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
			     (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);

		ucc_fast_enable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);

		/* Enable the TDM port */
		if (priv->tsa)
			utdm->si_regs->siglmr1_h |= (0x1 << utdm->tdm_port);
	}

	napi_enable(&priv->napi);
	netif_device_attach(priv->ndev);

	return 0;
}

static const struct dev_pm_ops uhdlc_pm_ops = {
	.suspend = uhdlc_suspend,
	.resume = uhdlc_resume,
	.freeze = uhdlc_suspend,
	.thaw = uhdlc_resume,
};

#define HDLC_PM_OPS (&uhdlc_pm_ops)

#else

#define HDLC_PM_OPS NULL

#endif
static const struct net_device_ops uhdlc_ops = {
	.ndo_open       = uhdlc_open,
	.ndo_stop       = uhdlc_close,
	.ndo_start_xmit = hdlc_start_xmit,
	.ndo_do_ioctl   = uhdlc_ioctl,
};

static int ucc_hdlc_probe(struct platform_device *pdev)
{
	struct device_node *np = pdev->dev.of_node;
	struct ucc_hdlc_private *uhdlc_priv = NULL;
	struct ucc_tdm_info *ut_info;
	struct ucc_tdm *utdm;
	struct resource res;
	struct net_device *dev;
	hdlc_device *hdlc;
	int ucc_num;
	const char *sprop;
	int ret;
	u32 val;

	ret = of_property_read_u32_index(np, "cell-index", 0, &val);
	if (ret) {
		dev_err(&pdev->dev, "Invalid ucc property\n");
		return -ENODEV;
	}

	ucc_num = val - 1;
	if ((ucc_num > 3) || (ucc_num < 0)) {
		dev_err(&pdev->dev, ": Invalid UCC num\n");
		return -EINVAL;
	}

	memcpy(&utdm_info[ucc_num], &utdm_primary_info,
	       sizeof(utdm_primary_info));

	ut_info = &utdm_info[ucc_num];
	ut_info->uf_info.ucc_num = ucc_num;

	sprop = of_get_property(np, "rx-clock-name", NULL);
	if (sprop) {
		ut_info->uf_info.rx_clock = qe_clock_source(sprop);
		if ((ut_info->uf_info.rx_clock < QE_CLK_NONE) ||
		    (ut_info->uf_info.rx_clock > QE_CLK24)) {
			dev_err(&pdev->dev, "Invalid rx-clock-name property\n");
			return -EINVAL;
		}
	} else {
		dev_err(&pdev->dev, "Invalid rx-clock-name property\n");
		return -EINVAL;
	}

	sprop = of_get_property(np, "tx-clock-name", NULL);
	if (sprop) {
		ut_info->uf_info.tx_clock = qe_clock_source(sprop);
		if ((ut_info->uf_info.tx_clock < QE_CLK_NONE) ||
		    (ut_info->uf_info.tx_clock > QE_CLK24)) {
			dev_err(&pdev->dev, "Invalid tx-clock-name property\n");
			return -EINVAL;
		}
	} else {
		dev_err(&pdev->dev, "Invalid tx-clock-name property\n");
		return -EINVAL;
	}

	/* use the same clock when work in loopback */
	if (ut_info->uf_info.rx_clock == ut_info->uf_info.tx_clock)
		qe_setbrg(ut_info->uf_info.rx_clock, 20000000, 1);

	ret = of_address_to_resource(np, 0, &res);
	if (ret)
		return -EINVAL;

	ut_info->uf_info.regs = res.start;
	ut_info->uf_info.irq = irq_of_parse_and_map(np, 0);

	uhdlc_priv = kzalloc(sizeof(*uhdlc_priv), GFP_KERNEL);
	if (!uhdlc_priv) {
1070
		return -ENOMEM;
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
	}

	dev_set_drvdata(&pdev->dev, uhdlc_priv);
	uhdlc_priv->dev = &pdev->dev;
	uhdlc_priv->ut_info = ut_info;

	if (of_get_property(np, "fsl,tdm-interface", NULL))
		uhdlc_priv->tsa = 1;

	if (of_get_property(np, "fsl,ucc-internal-loopback", NULL))
		uhdlc_priv->loopback = 1;

	if (uhdlc_priv->tsa == 1) {
		utdm = kzalloc(sizeof(*utdm), GFP_KERNEL);
		if (!utdm) {
			ret = -ENOMEM;
			dev_err(&pdev->dev, "No mem to alloc ucc tdm data\n");
1088
			goto free_uhdlc_priv;
1089 1090 1091 1092
		}
		uhdlc_priv->utdm = utdm;
		ret = ucc_of_parse_tdm(np, utdm, ut_info);
		if (ret)
1093
			goto free_utdm;
1094 1095 1096 1097 1098
	}

	ret = uhdlc_init(uhdlc_priv);
	if (ret) {
		dev_err(&pdev->dev, "Failed to init uhdlc\n");
1099
		goto free_utdm;
1100 1101 1102 1103 1104 1105
	}

	dev = alloc_hdlcdev(uhdlc_priv);
	if (!dev) {
		ret = -ENOMEM;
		pr_err("ucc_hdlc: unable to allocate memory\n");
1106
		goto undo_uhdlc_init;
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
	}

	uhdlc_priv->ndev = dev;
	hdlc = dev_to_hdlc(dev);
	dev->tx_queue_len = 16;
	dev->netdev_ops = &uhdlc_ops;
	hdlc->attach = ucc_hdlc_attach;
	hdlc->xmit = ucc_hdlc_tx;
	netif_napi_add(dev, &uhdlc_priv->napi, ucc_hdlc_poll, 32);
	if (register_hdlc_device(dev)) {
		ret = -ENOBUFS;
		pr_err("ucc_hdlc: unable to register hdlc device\n");
		free_netdev(dev);
1120
		goto free_dev;
1121 1122 1123 1124
	}

	return 0;

1125 1126 1127 1128
free_dev:
	free_netdev(dev);
undo_uhdlc_init:
free_utdm:
1129 1130
	if (uhdlc_priv->tsa)
		kfree(utdm);
1131
free_uhdlc_priv:
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
	kfree(uhdlc_priv);
	return ret;
}

static int ucc_hdlc_remove(struct platform_device *pdev)
{
	struct ucc_hdlc_private *priv = dev_get_drvdata(&pdev->dev);

	uhdlc_memclean(priv);

	if (priv->utdm->si_regs) {
		iounmap(priv->utdm->si_regs);
		priv->utdm->si_regs = NULL;
	}

	if (priv->utdm->siram) {
		iounmap(priv->utdm->siram);
		priv->utdm->siram = NULL;
	}
	kfree(priv);

	dev_info(&pdev->dev, "UCC based hdlc module removed\n");

	return 0;
}

static const struct of_device_id fsl_ucc_hdlc_of_match[] = {
	{
	.compatible = "fsl,ucc-hdlc",
	},
	{},
};

MODULE_DEVICE_TABLE(of, fsl_ucc_hdlc_of_match);

static struct platform_driver ucc_hdlc_driver = {
	.probe	= ucc_hdlc_probe,
	.remove	= ucc_hdlc_remove,
	.driver	= {
		.name		= DRV_NAME,
		.pm		= HDLC_PM_OPS,
		.of_match_table	= fsl_ucc_hdlc_of_match,
	},
};

1177
module_platform_driver(ucc_hdlc_driver);
1178
MODULE_LICENSE("GPL");