delayed-ref.c 18.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Copyright (C) 2009 Oracle.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/sched.h>
20
#include <linux/slab.h>
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
#include <linux/sort.h>
#include "ctree.h"
#include "delayed-ref.h"
#include "transaction.h"

/*
 * delayed back reference update tracking.  For subvolume trees
 * we queue up extent allocations and backref maintenance for
 * delayed processing.   This avoids deep call chains where we
 * add extents in the middle of btrfs_search_slot, and it allows
 * us to buffer up frequently modified backrefs in an rb tree instead
 * of hammering updates on the extent allocation tree.
 */

/*
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
 * compare two delayed tree backrefs with same bytenr and type
 */
static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref2,
			  struct btrfs_delayed_tree_ref *ref1)
{
	if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) {
		if (ref1->root < ref2->root)
			return -1;
		if (ref1->root > ref2->root)
			return 1;
	} else {
		if (ref1->parent < ref2->parent)
			return -1;
		if (ref1->parent > ref2->parent)
			return 1;
	}
	return 0;
}

/*
 * compare two delayed data backrefs with same bytenr and type
57
 */
58 59
static int comp_data_refs(struct btrfs_delayed_data_ref *ref2,
			  struct btrfs_delayed_data_ref *ref1)
60
{
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
	if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
		if (ref1->root < ref2->root)
			return -1;
		if (ref1->root > ref2->root)
			return 1;
		if (ref1->objectid < ref2->objectid)
			return -1;
		if (ref1->objectid > ref2->objectid)
			return 1;
		if (ref1->offset < ref2->offset)
			return -1;
		if (ref1->offset > ref2->offset)
			return 1;
	} else {
		if (ref1->parent < ref2->parent)
			return -1;
		if (ref1->parent > ref2->parent)
			return 1;
	}
	return 0;
}

/*
 * entries in the rb tree are ordered by the byte number of the extent,
 * type of the delayed backrefs and content of delayed backrefs.
 */
static int comp_entry(struct btrfs_delayed_ref_node *ref2,
		      struct btrfs_delayed_ref_node *ref1)
{
	if (ref1->bytenr < ref2->bytenr)
91
		return -1;
92
	if (ref1->bytenr > ref2->bytenr)
93
		return 1;
94 95 96
	if (ref1->is_head && ref2->is_head)
		return 0;
	if (ref2->is_head)
97
		return -1;
98
	if (ref1->is_head)
99
		return 1;
100 101 102 103 104 105 106 107 108 109 110 111 112 113
	if (ref1->type < ref2->type)
		return -1;
	if (ref1->type > ref2->type)
		return 1;
	if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
	    ref1->type == BTRFS_SHARED_BLOCK_REF_KEY) {
		return comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref2),
				      btrfs_delayed_node_to_tree_ref(ref1));
	} else if (ref1->type == BTRFS_EXTENT_DATA_REF_KEY ||
		   ref1->type == BTRFS_SHARED_DATA_REF_KEY) {
		return comp_data_refs(btrfs_delayed_node_to_data_ref(ref2),
				      btrfs_delayed_node_to_data_ref(ref1));
	}
	BUG();
114 115 116 117 118 119 120 121 122 123 124 125 126 127
	return 0;
}

/*
 * insert a new ref into the rbtree.  This returns any existing refs
 * for the same (bytenr,parent) tuple, or NULL if the new node was properly
 * inserted.
 */
static struct btrfs_delayed_ref_node *tree_insert(struct rb_root *root,
						  struct rb_node *node)
{
	struct rb_node **p = &root->rb_node;
	struct rb_node *parent_node = NULL;
	struct btrfs_delayed_ref_node *entry;
128
	struct btrfs_delayed_ref_node *ins;
129 130
	int cmp;

131
	ins = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
132 133 134 135 136
	while (*p) {
		parent_node = *p;
		entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
				 rb_node);

137
		cmp = comp_entry(entry, ins);
138 139 140 141 142 143 144 145 146 147 148 149 150 151
		if (cmp < 0)
			p = &(*p)->rb_left;
		else if (cmp > 0)
			p = &(*p)->rb_right;
		else
			return entry;
	}

	rb_link_node(node, parent_node, p);
	rb_insert_color(node, root);
	return NULL;
}

/*
152 153
 * find an head entry based on bytenr. This returns the delayed ref
 * head if it was able to find one, or NULL if nothing was in that spot
154
 */
155 156
static struct btrfs_delayed_ref_node *find_ref_head(struct rb_root *root,
				  u64 bytenr,
157
				  struct btrfs_delayed_ref_node **last)
158 159 160 161 162 163 164 165
{
	struct rb_node *n = root->rb_node;
	struct btrfs_delayed_ref_node *entry;
	int cmp;

	while (n) {
		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
		WARN_ON(!entry->in_tree);
166 167
		if (last)
			*last = entry;
168

169 170 171 172 173 174 175 176 177
		if (bytenr < entry->bytenr)
			cmp = -1;
		else if (bytenr > entry->bytenr)
			cmp = 1;
		else if (!btrfs_delayed_ref_is_head(entry))
			cmp = 1;
		else
			cmp = 0;

178 179 180 181 182 183 184 185 186 187
		if (cmp < 0)
			n = n->rb_left;
		else if (cmp > 0)
			n = n->rb_right;
		else
			return entry;
	}
	return NULL;
}

188 189
int btrfs_delayed_ref_lock(struct btrfs_trans_handle *trans,
			   struct btrfs_delayed_ref_head *head)
190
{
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
	struct btrfs_delayed_ref_root *delayed_refs;

	delayed_refs = &trans->transaction->delayed_refs;
	assert_spin_locked(&delayed_refs->lock);
	if (mutex_trylock(&head->mutex))
		return 0;

	atomic_inc(&head->node.refs);
	spin_unlock(&delayed_refs->lock);

	mutex_lock(&head->mutex);
	spin_lock(&delayed_refs->lock);
	if (!head->node.in_tree) {
		mutex_unlock(&head->mutex);
		btrfs_put_delayed_ref(&head->node);
		return -EAGAIN;
	}
	btrfs_put_delayed_ref(&head->node);
	return 0;
}

int btrfs_find_ref_cluster(struct btrfs_trans_handle *trans,
			   struct list_head *cluster, u64 start)
{
	int count = 0;
	struct btrfs_delayed_ref_root *delayed_refs;
217
	struct rb_node *node;
218
	struct btrfs_delayed_ref_node *ref;
219 220
	struct btrfs_delayed_ref_head *head;

221 222 223 224 225
	delayed_refs = &trans->transaction->delayed_refs;
	if (start == 0) {
		node = rb_first(&delayed_refs->root);
	} else {
		ref = NULL;
226
		find_ref_head(&delayed_refs->root, start, &ref);
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
		if (ref) {
			struct btrfs_delayed_ref_node *tmp;

			node = rb_prev(&ref->rb_node);
			while (node) {
				tmp = rb_entry(node,
					       struct btrfs_delayed_ref_node,
					       rb_node);
				if (tmp->bytenr < start)
					break;
				ref = tmp;
				node = rb_prev(&ref->rb_node);
			}
			node = &ref->rb_node;
		} else
			node = rb_first(&delayed_refs->root);
	}
again:
	while (node && count < 32) {
		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
247 248
		if (btrfs_delayed_ref_is_head(ref)) {
			head = btrfs_delayed_node_to_head(ref);
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
			if (list_empty(&head->cluster)) {
				list_add_tail(&head->cluster, cluster);
				delayed_refs->run_delayed_start =
					head->node.bytenr;
				count++;

				WARN_ON(delayed_refs->num_heads_ready == 0);
				delayed_refs->num_heads_ready--;
			} else if (count) {
				/* the goal of the clustering is to find extents
				 * that are likely to end up in the same extent
				 * leaf on disk.  So, we don't want them spread
				 * all over the tree.  Stop now if we've hit
				 * a head that was already in use
				 */
264 265 266
				break;
			}
		}
267
		node = rb_next(node);
268
	}
269 270 271 272 273 274 275 276 277 278 279 280
	if (count) {
		return 0;
	} else if (start) {
		/*
		 * we've gone to the end of the rbtree without finding any
		 * clusters.  start from the beginning and try again
		 */
		start = 0;
		node = rb_first(&delayed_refs->root);
		goto again;
	}
	return 1;
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
}

/*
 * helper function to update an extent delayed ref in the
 * rbtree.  existing and update must both have the same
 * bytenr and parent
 *
 * This may free existing if the update cancels out whatever
 * operation it was doing.
 */
static noinline void
update_existing_ref(struct btrfs_trans_handle *trans,
		    struct btrfs_delayed_ref_root *delayed_refs,
		    struct btrfs_delayed_ref_node *existing,
		    struct btrfs_delayed_ref_node *update)
{
297
	if (update->action != existing->action) {
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
		/*
		 * this is effectively undoing either an add or a
		 * drop.  We decrement the ref_mod, and if it goes
		 * down to zero we just delete the entry without
		 * every changing the extent allocation tree.
		 */
		existing->ref_mod--;
		if (existing->ref_mod == 0) {
			rb_erase(&existing->rb_node,
				 &delayed_refs->root);
			existing->in_tree = 0;
			btrfs_put_delayed_ref(existing);
			delayed_refs->num_entries--;
			if (trans->delayed_ref_updates)
				trans->delayed_ref_updates--;
313 314 315
		} else {
			WARN_ON(existing->type == BTRFS_TREE_BLOCK_REF_KEY ||
				existing->type == BTRFS_SHARED_BLOCK_REF_KEY);
316 317
		}
	} else {
318 319
		WARN_ON(existing->type == BTRFS_TREE_BLOCK_REF_KEY ||
			existing->type == BTRFS_SHARED_BLOCK_REF_KEY);
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
		/*
		 * the action on the existing ref matches
		 * the action on the ref we're trying to add.
		 * Bump the ref_mod by one so the backref that
		 * is eventually added/removed has the correct
		 * reference count
		 */
		existing->ref_mod += update->ref_mod;
	}
}

/*
 * helper function to update the accounting in the head ref
 * existing and update must have the same bytenr
 */
static noinline void
update_existing_head_ref(struct btrfs_delayed_ref_node *existing,
			 struct btrfs_delayed_ref_node *update)
{
	struct btrfs_delayed_ref_head *existing_ref;
	struct btrfs_delayed_ref_head *ref;

	existing_ref = btrfs_delayed_node_to_head(existing);
	ref = btrfs_delayed_node_to_head(update);
344
	BUG_ON(existing_ref->is_data != ref->is_data);
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363

	if (ref->must_insert_reserved) {
		/* if the extent was freed and then
		 * reallocated before the delayed ref
		 * entries were processed, we can end up
		 * with an existing head ref without
		 * the must_insert_reserved flag set.
		 * Set it again here
		 */
		existing_ref->must_insert_reserved = ref->must_insert_reserved;

		/*
		 * update the num_bytes so we make sure the accounting
		 * is done correctly
		 */
		existing->num_bytes = update->num_bytes;

	}

364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
	if (ref->extent_op) {
		if (!existing_ref->extent_op) {
			existing_ref->extent_op = ref->extent_op;
		} else {
			if (ref->extent_op->update_key) {
				memcpy(&existing_ref->extent_op->key,
				       &ref->extent_op->key,
				       sizeof(ref->extent_op->key));
				existing_ref->extent_op->update_key = 1;
			}
			if (ref->extent_op->update_flags) {
				existing_ref->extent_op->flags_to_set |=
					ref->extent_op->flags_to_set;
				existing_ref->extent_op->update_flags = 1;
			}
			kfree(ref->extent_op);
		}
	}
382 383 384 385 386 387 388
	/*
	 * update the reference mod on the head to reflect this new operation
	 */
	existing->ref_mod += update->ref_mod;
}

/*
389
 * helper function to actually insert a head node into the rbtree.
390
 * this does all the dirty work in terms of maintaining the correct
391
 * overall modification count.
392
 */
393 394 395 396
static noinline int add_delayed_ref_head(struct btrfs_trans_handle *trans,
					struct btrfs_delayed_ref_node *ref,
					u64 bytenr, u64 num_bytes,
					int action, int is_data)
397 398
{
	struct btrfs_delayed_ref_node *existing;
399
	struct btrfs_delayed_ref_head *head_ref = NULL;
400 401 402 403 404 405 406 407
	struct btrfs_delayed_ref_root *delayed_refs;
	int count_mod = 1;
	int must_insert_reserved = 0;

	/*
	 * the head node stores the sum of all the mods, so dropping a ref
	 * should drop the sum in the head node by one.
	 */
408 409 410 411
	if (action == BTRFS_UPDATE_DELAYED_HEAD)
		count_mod = 0;
	else if (action == BTRFS_DROP_DELAYED_REF)
		count_mod = -1;
412 413 414 415 416 417 418 419 420 421 422 423

	/*
	 * BTRFS_ADD_DELAYED_EXTENT means that we need to update
	 * the reserved accounting when the extent is finally added, or
	 * if a later modification deletes the delayed ref without ever
	 * inserting the extent into the extent allocation tree.
	 * ref->must_insert_reserved is the flag used to record
	 * that accounting mods are required.
	 *
	 * Once we record must_insert_reserved, switch the action to
	 * BTRFS_ADD_DELAYED_REF because other special casing is not required.
	 */
424
	if (action == BTRFS_ADD_DELAYED_EXTENT)
425
		must_insert_reserved = 1;
426
	else
427 428 429 430 431 432 433
		must_insert_reserved = 0;

	delayed_refs = &trans->transaction->delayed_refs;

	/* first set the basic ref node struct up */
	atomic_set(&ref->refs, 1);
	ref->bytenr = bytenr;
434
	ref->num_bytes = num_bytes;
435
	ref->ref_mod = count_mod;
436 437 438
	ref->type  = 0;
	ref->action  = 0;
	ref->is_head = 1;
439
	ref->in_tree = 1;
440 441 442 443 444 445 446 447

	head_ref = btrfs_delayed_node_to_head(ref);
	head_ref->must_insert_reserved = must_insert_reserved;
	head_ref->is_data = is_data;

	INIT_LIST_HEAD(&head_ref->cluster);
	mutex_init(&head_ref->mutex);

448 449
	trace_btrfs_delayed_ref_head(ref, head_ref, action);

450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
	existing = tree_insert(&delayed_refs->root, &ref->rb_node);

	if (existing) {
		update_existing_head_ref(existing, ref);
		/*
		 * we've updated the existing ref, free the newly
		 * allocated ref
		 */
		kfree(ref);
	} else {
		delayed_refs->num_heads++;
		delayed_refs->num_heads_ready++;
		delayed_refs->num_entries++;
		trans->delayed_ref_updates++;
	}
	return 0;
}

/*
 * helper to insert a delayed tree ref into the rbtree.
 */
static noinline int add_delayed_tree_ref(struct btrfs_trans_handle *trans,
					 struct btrfs_delayed_ref_node *ref,
					 u64 bytenr, u64 num_bytes, u64 parent,
					 u64 ref_root, int level, int action)
{
	struct btrfs_delayed_ref_node *existing;
	struct btrfs_delayed_tree_ref *full_ref;
	struct btrfs_delayed_ref_root *delayed_refs;

	if (action == BTRFS_ADD_DELAYED_EXTENT)
		action = BTRFS_ADD_DELAYED_REF;

	delayed_refs = &trans->transaction->delayed_refs;

	/* first set the basic ref node struct up */
	atomic_set(&ref->refs, 1);
	ref->bytenr = bytenr;
488
	ref->num_bytes = num_bytes;
489 490 491 492
	ref->ref_mod = 1;
	ref->action = action;
	ref->is_head = 0;
	ref->in_tree = 1;
493

494 495 496 497
	full_ref = btrfs_delayed_node_to_tree_ref(ref);
	if (parent) {
		full_ref->parent = parent;
		ref->type = BTRFS_SHARED_BLOCK_REF_KEY;
498 499
	} else {
		full_ref->root = ref_root;
500
		ref->type = BTRFS_TREE_BLOCK_REF_KEY;
501
	}
502
	full_ref->level = level;
503

504 505
	trace_btrfs_delayed_tree_ref(ref, full_ref, action);

506
	existing = tree_insert(&delayed_refs->root, &ref->rb_node);
507 508

	if (existing) {
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
		update_existing_ref(trans, delayed_refs, existing, ref);
		/*
		 * we've updated the existing ref, free the newly
		 * allocated ref
		 */
		kfree(ref);
	} else {
		delayed_refs->num_entries++;
		trans->delayed_ref_updates++;
	}
	return 0;
}

/*
 * helper to insert a delayed data ref into the rbtree.
 */
static noinline int add_delayed_data_ref(struct btrfs_trans_handle *trans,
					 struct btrfs_delayed_ref_node *ref,
					 u64 bytenr, u64 num_bytes, u64 parent,
					 u64 ref_root, u64 owner, u64 offset,
					 int action)
{
	struct btrfs_delayed_ref_node *existing;
	struct btrfs_delayed_data_ref *full_ref;
	struct btrfs_delayed_ref_root *delayed_refs;

	if (action == BTRFS_ADD_DELAYED_EXTENT)
		action = BTRFS_ADD_DELAYED_REF;

	delayed_refs = &trans->transaction->delayed_refs;

	/* first set the basic ref node struct up */
	atomic_set(&ref->refs, 1);
	ref->bytenr = bytenr;
	ref->num_bytes = num_bytes;
	ref->ref_mod = 1;
	ref->action = action;
	ref->is_head = 0;
	ref->in_tree = 1;

	full_ref = btrfs_delayed_node_to_data_ref(ref);
	if (parent) {
		full_ref->parent = parent;
		ref->type = BTRFS_SHARED_DATA_REF_KEY;
	} else {
		full_ref->root = ref_root;
		ref->type = BTRFS_EXTENT_DATA_REF_KEY;
	}
	full_ref->objectid = owner;
	full_ref->offset = offset;
559

560 561
	trace_btrfs_delayed_data_ref(ref, full_ref, action);

562 563 564 565
	existing = tree_insert(&delayed_refs->root, &ref->rb_node);

	if (existing) {
		update_existing_ref(trans, delayed_refs, existing, ref);
566 567 568 569 570 571 572 573 574 575 576 577 578
		/*
		 * we've updated the existing ref, free the newly
		 * allocated ref
		 */
		kfree(ref);
	} else {
		delayed_refs->num_entries++;
		trans->delayed_ref_updates++;
	}
	return 0;
}

/*
579
 * add a delayed tree ref.  This does all of the accounting required
580 581 582
 * to make sure the delayed ref is eventually processed before this
 * transaction commits.
 */
583 584 585 586
int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
			       u64 bytenr, u64 num_bytes, u64 parent,
			       u64 ref_root,  int level, int action,
			       struct btrfs_delayed_extent_op *extent_op)
587
{
588
	struct btrfs_delayed_tree_ref *ref;
589 590 591 592
	struct btrfs_delayed_ref_head *head_ref;
	struct btrfs_delayed_ref_root *delayed_refs;
	int ret;

593
	BUG_ON(extent_op && extent_op->is_data);
594 595 596 597
	ref = kmalloc(sizeof(*ref), GFP_NOFS);
	if (!ref)
		return -ENOMEM;

598 599 600 601 602 603 604 605 606 607 608
	head_ref = kmalloc(sizeof(*head_ref), GFP_NOFS);
	if (!head_ref) {
		kfree(ref);
		return -ENOMEM;
	}

	head_ref->extent_op = extent_op;

	delayed_refs = &trans->transaction->delayed_refs;
	spin_lock(&delayed_refs->lock);

609
	/*
610 611
	 * insert both the head node and the new ref without dropping
	 * the spin lock
612
	 */
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
	ret = add_delayed_ref_head(trans, &head_ref->node, bytenr, num_bytes,
				   action, 0);
	BUG_ON(ret);

	ret = add_delayed_tree_ref(trans, &ref->node, bytenr, num_bytes,
				   parent, ref_root, level, action);
	BUG_ON(ret);
	spin_unlock(&delayed_refs->lock);
	return 0;
}

/*
 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
 */
int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
			       u64 bytenr, u64 num_bytes,
			       u64 parent, u64 ref_root,
			       u64 owner, u64 offset, int action,
			       struct btrfs_delayed_extent_op *extent_op)
{
	struct btrfs_delayed_data_ref *ref;
	struct btrfs_delayed_ref_head *head_ref;
	struct btrfs_delayed_ref_root *delayed_refs;
	int ret;

	BUG_ON(extent_op && !extent_op->is_data);
	ref = kmalloc(sizeof(*ref), GFP_NOFS);
	if (!ref)
		return -ENOMEM;
642 643 644 645 646 647

	head_ref = kmalloc(sizeof(*head_ref), GFP_NOFS);
	if (!head_ref) {
		kfree(ref);
		return -ENOMEM;
	}
648 649 650

	head_ref->extent_op = extent_op;

651 652 653 654 655 656 657
	delayed_refs = &trans->transaction->delayed_refs;
	spin_lock(&delayed_refs->lock);

	/*
	 * insert both the head node and the new ref without dropping
	 * the spin lock
	 */
658 659
	ret = add_delayed_ref_head(trans, &head_ref->node, bytenr, num_bytes,
				   action, 1);
660 661
	BUG_ON(ret);

662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
	ret = add_delayed_data_ref(trans, &ref->node, bytenr, num_bytes,
				   parent, ref_root, owner, offset, action);
	BUG_ON(ret);
	spin_unlock(&delayed_refs->lock);
	return 0;
}

int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
				u64 bytenr, u64 num_bytes,
				struct btrfs_delayed_extent_op *extent_op)
{
	struct btrfs_delayed_ref_head *head_ref;
	struct btrfs_delayed_ref_root *delayed_refs;
	int ret;

	head_ref = kmalloc(sizeof(*head_ref), GFP_NOFS);
	if (!head_ref)
		return -ENOMEM;

	head_ref->extent_op = extent_op;

	delayed_refs = &trans->transaction->delayed_refs;
	spin_lock(&delayed_refs->lock);

	ret = add_delayed_ref_head(trans, &head_ref->node, bytenr,
				   num_bytes, BTRFS_UPDATE_DELAYED_HEAD,
				   extent_op->is_data);
689
	BUG_ON(ret);
690

691 692 693 694
	spin_unlock(&delayed_refs->lock);
	return 0;
}

695 696 697 698 699 700 701 702 703 704 705 706
/*
 * this does a simple search for the head node for a given extent.
 * It must be called with the delayed ref spinlock held, and it returns
 * the head node if any where found, or NULL if not.
 */
struct btrfs_delayed_ref_head *
btrfs_find_delayed_ref_head(struct btrfs_trans_handle *trans, u64 bytenr)
{
	struct btrfs_delayed_ref_node *ref;
	struct btrfs_delayed_ref_root *delayed_refs;

	delayed_refs = &trans->transaction->delayed_refs;
707
	ref = find_ref_head(&delayed_refs->root, bytenr, NULL);
708 709 710 711
	if (ref)
		return btrfs_delayed_node_to_head(ref);
	return NULL;
}