common.c 11.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
 * This file contains common KASAN code.
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
 *
 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
 *
 * Some code borrowed from https://github.com/xairy/kasan-prototype by
 *        Andrey Konovalov <andreyknvl@gmail.com>
 */

#include <linux/export.h>
#include <linux/init.h>
#include <linux/kasan.h>
#include <linux/kernel.h>
#include <linux/linkage.h>
#include <linux/memblock.h>
#include <linux/memory.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/printk.h>
#include <linux/sched.h>
#include <linux/sched/task_stack.h>
#include <linux/slab.h>
#include <linux/stacktrace.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/bug.h>

#include "kasan.h"
#include "../slab.h"

33
depot_stack_handle_t kasan_save_stack(gfp_t flags)
34 35
{
	unsigned long entries[KASAN_STACK_DEPTH];
36
	unsigned int nr_entries;
37

38 39 40
	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0);
	nr_entries = filter_irq_stacks(entries, nr_entries);
	return stack_depot_save(entries, nr_entries, flags);
41 42
}

43
void kasan_set_track(struct kasan_track *track, gfp_t flags)
44 45
{
	track->pid = current->pid;
46
	track->stack = kasan_save_stack(flags);
47 48
}

49
#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
50 51 52 53 54 55 56 57 58
void kasan_enable_current(void)
{
	current->kasan_depth++;
}

void kasan_disable_current(void)
{
	current->kasan_depth--;
}
59
#endif /* CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS */
60

61 62 63 64 65
void kasan_unpoison_range(const void *address, size_t size)
{
	unpoison_range(address, size);
}

66 67 68 69 70
static void __kasan_unpoison_stack(struct task_struct *task, const void *sp)
{
	void *base = task_stack_page(task);
	size_t size = sp - base;

71
	unpoison_range(base, size);
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
}

/* Unpoison the entire stack for a task. */
void kasan_unpoison_task_stack(struct task_struct *task)
{
	__kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE);
}

/* Unpoison the stack for the current task beyond a watermark sp value. */
asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
{
	/*
	 * Calculate the task stack base address.  Avoid using 'current'
	 * because this function is called by early resume code which hasn't
	 * yet set up the percpu register (%gs).
	 */
	void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));

90
	unpoison_range(base, watermark - base);
91 92 93 94
}

void kasan_alloc_pages(struct page *page, unsigned int order)
{
95 96 97
	u8 tag;
	unsigned long i;

98 99
	if (unlikely(PageHighMem(page)))
		return;
100 101 102 103

	tag = random_tag();
	for (i = 0; i < (1 << order); i++)
		page_kasan_tag_set(page + i, tag);
104
	unpoison_range(page_address(page), PAGE_SIZE << order);
105 106 107 108 109
}

void kasan_free_pages(struct page *page, unsigned int order)
{
	if (likely(!PageHighMem(page)))
110
		poison_range(page_address(page),
111 112 113 114 115 116 117 118 119 120
				PAGE_SIZE << order,
				KASAN_FREE_PAGE);
}

/*
 * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
 * For larger allocations larger redzones are used.
 */
static inline unsigned int optimal_redzone(unsigned int object_size)
{
121
	if (!IS_ENABLED(CONFIG_KASAN_GENERIC))
122 123
		return 0;

124 125 126 127 128 129 130 131 132 133 134 135 136 137
	return
		object_size <= 64        - 16   ? 16 :
		object_size <= 128       - 32   ? 32 :
		object_size <= 512       - 64   ? 64 :
		object_size <= 4096      - 128  ? 128 :
		object_size <= (1 << 14) - 256  ? 256 :
		object_size <= (1 << 15) - 512  ? 512 :
		object_size <= (1 << 16) - 1024 ? 1024 : 2048;
}

void kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
			slab_flags_t *flags)
{
	unsigned int orig_size = *size;
138
	unsigned int redzone_size;
139 140 141 142 143 144 145
	int redzone_adjust;

	/* Add alloc meta. */
	cache->kasan_info.alloc_meta_offset = *size;
	*size += sizeof(struct kasan_alloc_meta);

	/* Add free meta. */
146 147 148
	if (IS_ENABLED(CONFIG_KASAN_GENERIC) &&
	    (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor ||
	     cache->object_size < sizeof(struct kasan_free_meta))) {
149 150 151 152
		cache->kasan_info.free_meta_offset = *size;
		*size += sizeof(struct kasan_free_meta);
	}

153 154
	redzone_size = optimal_redzone(cache->object_size);
	redzone_adjust = redzone_size -	(*size - cache->object_size);
155 156 157 158
	if (redzone_adjust > 0)
		*size += redzone_adjust;

	*size = min_t(unsigned int, KMALLOC_MAX_SIZE,
159
			max(*size, cache->object_size + redzone_size));
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

	/*
	 * If the metadata doesn't fit, don't enable KASAN at all.
	 */
	if (*size <= cache->kasan_info.alloc_meta_offset ||
			*size <= cache->kasan_info.free_meta_offset) {
		cache->kasan_info.alloc_meta_offset = 0;
		cache->kasan_info.free_meta_offset = 0;
		*size = orig_size;
		return;
	}

	*flags |= SLAB_KASAN;
}

size_t kasan_metadata_size(struct kmem_cache *cache)
{
	return (cache->kasan_info.alloc_meta_offset ?
		sizeof(struct kasan_alloc_meta) : 0) +
		(cache->kasan_info.free_meta_offset ?
		sizeof(struct kasan_free_meta) : 0);
}

struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache,
					const void *object)
{
186
	return (void *)reset_tag(object) + cache->kasan_info.alloc_meta_offset;
187 188 189 190 191 192
}

struct kasan_free_meta *get_free_info(struct kmem_cache *cache,
				      const void *object)
{
	BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
193
	return (void *)reset_tag(object) + cache->kasan_info.free_meta_offset;
194 195 196 197
}

void kasan_poison_slab(struct page *page)
{
198 199
	unsigned long i;

200
	for (i = 0; i < compound_nr(page); i++)
201
		page_kasan_tag_reset(page + i);
202 203
	poison_range(page_address(page), page_size(page),
		     KASAN_KMALLOC_REDZONE);
204 205 206 207
}

void kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
{
208
	unpoison_range(object, cache->object_size);
209 210 211 212
}

void kasan_poison_object_data(struct kmem_cache *cache, void *object)
{
213
	poison_range(object,
214
			round_up(cache->object_size, KASAN_GRANULE_SIZE),
215 216 217
			KASAN_KMALLOC_REDZONE);
}

218
/*
219 220 221 222 223 224 225 226 227 228 229 230
 * This function assigns a tag to an object considering the following:
 * 1. A cache might have a constructor, which might save a pointer to a slab
 *    object somewhere (e.g. in the object itself). We preassign a tag for
 *    each object in caches with constructors during slab creation and reuse
 *    the same tag each time a particular object is allocated.
 * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be
 *    accessed after being freed. We preassign tags for objects in these
 *    caches as well.
 * 3. For SLAB allocator we can't preassign tags randomly since the freelist
 *    is stored as an array of indexes instead of a linked list. Assign tags
 *    based on objects indexes, so that objects that are next to each other
 *    get different tags.
231
 */
232
static u8 assign_tag(struct kmem_cache *cache, const void *object,
233
			bool init, bool keep_tag)
234
{
235 236 237 238 239 240 241
	/*
	 * 1. When an object is kmalloc()'ed, two hooks are called:
	 *    kasan_slab_alloc() and kasan_kmalloc(). We assign the
	 *    tag only in the first one.
	 * 2. We reuse the same tag for krealloc'ed objects.
	 */
	if (keep_tag)
242 243 244 245 246 247
		return get_tag(object);

	/*
	 * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU
	 * set, assign a tag when the object is being allocated (init == false).
	 */
248
	if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU))
249
		return init ? KASAN_TAG_KERNEL : random_tag();
250

251
	/* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */
252
#ifdef CONFIG_SLAB
253
	/* For SLAB assign tags based on the object index in the freelist. */
254 255
	return (u8)obj_to_index(cache, virt_to_page(object), (void *)object);
#else
256 257 258 259 260
	/*
	 * For SLUB assign a random tag during slab creation, otherwise reuse
	 * the already assigned tag.
	 */
	return init ? random_tag() : get_tag(object);
261 262 263
#endif
}

264 265
void * __must_check kasan_init_slab_obj(struct kmem_cache *cache,
						const void *object)
266 267 268 269 270 271 272 273 274
{
	struct kasan_alloc_meta *alloc_info;

	if (!(cache->flags & SLAB_KASAN))
		return (void *)object;

	alloc_info = get_alloc_info(cache, object);
	__memset(alloc_info, 0, sizeof(*alloc_info));

275 276
	if (IS_ENABLED(CONFIG_KASAN_SW_TAGS) || IS_ENABLED(CONFIG_KASAN_HW_TAGS))
		object = set_tag(object, assign_tag(cache, object, true, false));
277

278 279 280 281 282 283
	return (void *)object;
}

static bool __kasan_slab_free(struct kmem_cache *cache, void *object,
			      unsigned long ip, bool quarantine)
{
284 285
	u8 tag;
	void *tagged_object;
286 287
	unsigned long rounded_up_size;

288 289 290 291
	tag = get_tag(object);
	tagged_object = object;
	object = reset_tag(object);

292 293
	if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) !=
	    object)) {
294
		kasan_report_invalid_free(tagged_object, ip);
295 296 297 298 299 300 301
		return true;
	}

	/* RCU slabs could be legally used after free within the RCU period */
	if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
		return false;

302
	if (check_invalid_free(tagged_object)) {
303
		kasan_report_invalid_free(tagged_object, ip);
304 305 306
		return true;
	}

307
	rounded_up_size = round_up(cache->object_size, KASAN_GRANULE_SIZE);
308
	poison_range(object, rounded_up_size, KASAN_KMALLOC_FREE);
309

310 311
	if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine) ||
			unlikely(!(cache->flags & SLAB_KASAN)))
312 313
		return false;

314 315
	kasan_set_free_info(cache, object, tag);

316
	quarantine_put(cache, object);
317 318

	return IS_ENABLED(CONFIG_KASAN_GENERIC);
319 320 321 322 323 324 325
}

bool kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip)
{
	return __kasan_slab_free(cache, object, ip, true);
}

326
static void *__kasan_kmalloc(struct kmem_cache *cache, const void *object,
327
				size_t size, gfp_t flags, bool keep_tag)
328 329 330
{
	unsigned long redzone_start;
	unsigned long redzone_end;
331
	u8 tag = 0xff;
332 333 334 335 336 337 338 339

	if (gfpflags_allow_blocking(flags))
		quarantine_reduce();

	if (unlikely(object == NULL))
		return NULL;

	redzone_start = round_up((unsigned long)(object + size),
340
				KASAN_GRANULE_SIZE);
341
	redzone_end = round_up((unsigned long)object + cache->object_size,
342
				KASAN_GRANULE_SIZE);
343

344
	if (IS_ENABLED(CONFIG_KASAN_SW_TAGS) || IS_ENABLED(CONFIG_KASAN_HW_TAGS))
345
		tag = assign_tag(cache, object, false, keep_tag);
346

347
	/* Tag is ignored in set_tag without CONFIG_KASAN_SW/HW_TAGS */
348 349 350
	unpoison_range(set_tag(object, tag), size);
	poison_range((void *)redzone_start, redzone_end - redzone_start,
		     KASAN_KMALLOC_REDZONE);
351 352

	if (cache->flags & SLAB_KASAN)
353
		kasan_set_track(&get_alloc_info(cache, object)->alloc_track, flags);
354

355
	return set_tag(object, tag);
356
}
357

358 359 360 361 362 363
void * __must_check kasan_slab_alloc(struct kmem_cache *cache, void *object,
					gfp_t flags)
{
	return __kasan_kmalloc(cache, object, cache->object_size, flags, false);
}

364 365 366
void * __must_check kasan_kmalloc(struct kmem_cache *cache, const void *object,
				size_t size, gfp_t flags)
{
367
	return __kasan_kmalloc(cache, object, size, flags, true);
368
}
369 370
EXPORT_SYMBOL(kasan_kmalloc);

371 372
void * __must_check kasan_kmalloc_large(const void *ptr, size_t size,
						gfp_t flags)
373 374 375 376 377 378 379 380 381 382 383 384 385
{
	struct page *page;
	unsigned long redzone_start;
	unsigned long redzone_end;

	if (gfpflags_allow_blocking(flags))
		quarantine_reduce();

	if (unlikely(ptr == NULL))
		return NULL;

	page = virt_to_page(ptr);
	redzone_start = round_up((unsigned long)(ptr + size),
386
				KASAN_GRANULE_SIZE);
387
	redzone_end = (unsigned long)ptr + page_size(page);
388

389 390 391
	unpoison_range(ptr, size);
	poison_range((void *)redzone_start, redzone_end - redzone_start,
		     KASAN_PAGE_REDZONE);
392 393 394 395

	return (void *)ptr;
}

396
void * __must_check kasan_krealloc(const void *object, size_t size, gfp_t flags)
397 398 399 400 401 402 403 404 405 406 407
{
	struct page *page;

	if (unlikely(object == ZERO_SIZE_PTR))
		return (void *)object;

	page = virt_to_head_page(object);

	if (unlikely(!PageSlab(page)))
		return kasan_kmalloc_large(object, size, flags);
	else
408 409
		return __kasan_kmalloc(page->slab_cache, object, size,
						flags, true);
410 411 412 413 414 415 416 417 418
}

void kasan_poison_kfree(void *ptr, unsigned long ip)
{
	struct page *page;

	page = virt_to_head_page(ptr);

	if (unlikely(!PageSlab(page))) {
419
		if (ptr != page_address(page)) {
420 421 422
			kasan_report_invalid_free(ptr, ip);
			return;
		}
423
		poison_range(ptr, page_size(page), KASAN_FREE_PAGE);
424 425 426 427 428 429 430
	} else {
		__kasan_slab_free(page->slab_cache, ptr, ip, false);
	}
}

void kasan_kfree_large(void *ptr, unsigned long ip)
{
431
	if (ptr != page_address(virt_to_head_page(ptr)))
432 433 434
		kasan_report_invalid_free(ptr, ip);
	/* The object will be poisoned by page_alloc. */
}