intel_bw.c 26.8 KB
Newer Older
1 2 3 4 5 6 7
// SPDX-License-Identifier: MIT
/*
 * Copyright © 2019 Intel Corporation
 */

#include <drm/drm_atomic_state_helper.h>

8
#include "intel_atomic.h"
9
#include "intel_bw.h"
10
#include "intel_cdclk.h"
11
#include "intel_display_types.h"
12
#include "intel_pcode.h"
13
#include "intel_pm.h"
14 15 16 17 18 19

/* Parameters for Qclk Geyserville (QGV) */
struct intel_qgv_point {
	u16 dclk, t_rp, t_rdpre, t_rc, t_ras, t_rcd;
};

20 21 22 23
struct intel_psf_gv_point {
	u8 clk; /* clock in multiples of 16.6666 MHz */
};

24
struct intel_qgv_info {
25
	struct intel_qgv_point points[I915_NUM_QGV_POINTS];
26
	struct intel_psf_gv_point psf_points[I915_NUM_PSF_GV_POINTS];
27
	u8 num_points;
28
	u8 num_psf_points;
29
	u8 t_bl;
30 31 32
	u8 max_numchannels;
	u8 channel_width;
	u8 deinterleave;
33 34
};

35 36 37 38 39 40 41 42 43 44 45 46 47
static int dg1_mchbar_read_qgv_point_info(struct drm_i915_private *dev_priv,
					  struct intel_qgv_point *sp,
					  int point)
{
	u32 dclk_ratio, dclk_reference;
	u32 val;

	val = intel_uncore_read(&dev_priv->uncore, SA_PERF_STATUS_0_0_0_MCHBAR_PC);
	dclk_ratio = REG_FIELD_GET(DG1_QCLK_RATIO_MASK, val);
	if (val & DG1_QCLK_REFERENCE)
		dclk_reference = 6; /* 6 * 16.666 MHz = 100 MHz */
	else
		dclk_reference = 8; /* 8 * 16.666 MHz = 133 MHz */
48
	sp->dclk = DIV_ROUND_UP((16667 * dclk_ratio * dclk_reference) + 500, 1000);
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

	val = intel_uncore_read(&dev_priv->uncore, SKL_MC_BIOS_DATA_0_0_0_MCHBAR_PCU);
	if (val & DG1_GEAR_TYPE)
		sp->dclk *= 2;

	if (sp->dclk == 0)
		return -EINVAL;

	val = intel_uncore_read(&dev_priv->uncore, MCHBAR_CH0_CR_TC_PRE_0_0_0_MCHBAR);
	sp->t_rp = REG_FIELD_GET(DG1_DRAM_T_RP_MASK, val);
	sp->t_rdpre = REG_FIELD_GET(DG1_DRAM_T_RDPRE_MASK, val);

	val = intel_uncore_read(&dev_priv->uncore, MCHBAR_CH0_CR_TC_PRE_0_0_0_MCHBAR_HIGH);
	sp->t_rcd = REG_FIELD_GET(DG1_DRAM_T_RCD_MASK, val);
	sp->t_ras = REG_FIELD_GET(DG1_DRAM_T_RAS_MASK, val);

	sp->t_rc = sp->t_rp + sp->t_ras;

	return 0;
}

70 71 72 73
static int icl_pcode_read_qgv_point_info(struct drm_i915_private *dev_priv,
					 struct intel_qgv_point *sp,
					 int point)
{
74
	u32 val = 0, val2 = 0;
75
	u16 dclk;
76 77 78 79 80 81 82 83 84
	int ret;

	ret = sandybridge_pcode_read(dev_priv,
				     ICL_PCODE_MEM_SUBSYSYSTEM_INFO |
				     ICL_PCODE_MEM_SS_READ_QGV_POINT_INFO(point),
				     &val, &val2);
	if (ret)
		return ret;

85 86
	dclk = val & 0xffff;
	sp->dclk = DIV_ROUND_UP((16667 * dclk) + (DISPLAY_VER(dev_priv) > 11 ? 500 : 0), 1000);
87 88 89 90 91 92 93 94 95 96 97
	sp->t_rp = (val & 0xff0000) >> 16;
	sp->t_rcd = (val & 0xff000000) >> 24;

	sp->t_rdpre = val2 & 0xff;
	sp->t_ras = (val2 & 0xff00) >> 8;

	sp->t_rc = sp->t_rp + sp->t_ras;

	return 0;
}

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
static int adls_pcode_read_psf_gv_point_info(struct drm_i915_private *dev_priv,
					    struct intel_psf_gv_point *points)
{
	u32 val = 0;
	int ret;
	int i;

	ret = sandybridge_pcode_read(dev_priv,
				     ICL_PCODE_MEM_SUBSYSYSTEM_INFO |
				     ADL_PCODE_MEM_SS_READ_PSF_GV_INFO,
				     &val, NULL);
	if (ret)
		return ret;

	for (i = 0; i < I915_NUM_PSF_GV_POINTS; i++) {
		points[i].clk = val & 0xff;
		val >>= 8;
	}

	return 0;
}

120 121 122 123 124 125 126 127 128 129 130 131 132
int icl_pcode_restrict_qgv_points(struct drm_i915_private *dev_priv,
				  u32 points_mask)
{
	int ret;

	/* bspec says to keep retrying for at least 1 ms */
	ret = skl_pcode_request(dev_priv, ICL_PCODE_SAGV_DE_MEM_SS_CONFIG,
				points_mask,
				ICL_PCODE_POINTS_RESTRICTED_MASK,
				ICL_PCODE_POINTS_RESTRICTED,
				1);

	if (ret < 0) {
133
		drm_err(&dev_priv->drm, "Failed to disable qgv points (%d) points: 0x%x\n", ret, points_mask);
134 135 136 137 138 139
		return ret;
	}

	return 0;
}

140
static int icl_get_qgv_points(struct drm_i915_private *dev_priv,
141 142
			      struct intel_qgv_info *qi,
			      bool is_y_tile)
143
{
144
	const struct dram_info *dram_info = &dev_priv->dram_info;
145 146
	int i, ret;

147
	qi->num_points = dram_info->num_qgv_points;
148
	qi->num_psf_points = dram_info->num_psf_gv_points;
149

150
	if (DISPLAY_VER(dev_priv) == 12)
151 152
		switch (dram_info->type) {
		case INTEL_DRAM_DDR4:
153 154 155 156
			qi->t_bl = is_y_tile ? 8 : 4;
			qi->max_numchannels = 2;
			qi->channel_width = 64;
			qi->deinterleave = is_y_tile ? 1 : 2;
157 158
			break;
		case INTEL_DRAM_DDR5:
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
			qi->t_bl = is_y_tile ? 16 : 8;
			qi->max_numchannels = 4;
			qi->channel_width = 32;
			qi->deinterleave = is_y_tile ? 1 : 2;
			break;
		case INTEL_DRAM_LPDDR4:
			if (IS_ROCKETLAKE(dev_priv)) {
				qi->t_bl = 8;
				qi->max_numchannels = 4;
				qi->channel_width = 32;
				qi->deinterleave = 2;
				break;
			}
			fallthrough;
		case INTEL_DRAM_LPDDR5:
			qi->t_bl = 16;
			qi->max_numchannels = 8;
			qi->channel_width = 16;
			qi->deinterleave = is_y_tile ? 2 : 4;
178 179 180
			break;
		default:
			qi->t_bl = 16;
181
			qi->max_numchannels = 1;
182 183
			break;
		}
184
	else if (DISPLAY_VER(dev_priv) == 11) {
185
		qi->t_bl = dev_priv->dram_info.type == INTEL_DRAM_DDR4 ? 4 : 8;
186 187
		qi->max_numchannels = 1;
	}
188

189 190
	if (drm_WARN_ON(&dev_priv->drm,
			qi->num_points > ARRAY_SIZE(qi->points)))
191 192 193 194 195
		qi->num_points = ARRAY_SIZE(qi->points);

	for (i = 0; i < qi->num_points; i++) {
		struct intel_qgv_point *sp = &qi->points[i];

196 197 198 199 200
		if (IS_DG1(dev_priv))
			ret = dg1_mchbar_read_qgv_point_info(dev_priv, sp, i);
		else
			ret = icl_pcode_read_qgv_point_info(dev_priv, sp, i);

201 202 203
		if (ret)
			return ret;

204 205 206 207
		drm_dbg_kms(&dev_priv->drm,
			    "QGV %d: DCLK=%d tRP=%d tRDPRE=%d tRAS=%d tRCD=%d tRC=%d\n",
			    i, sp->dclk, sp->t_rp, sp->t_rdpre, sp->t_ras,
			    sp->t_rcd, sp->t_rc);
208 209
	}

210 211 212 213 214 215 216 217 218 219 220 221 222
	if (qi->num_psf_points > 0) {
		ret = adls_pcode_read_psf_gv_point_info(dev_priv, qi->psf_points);
		if (ret) {
			drm_err(&dev_priv->drm, "Failed to read PSF point data; PSF points will not be considered in bandwidth calculations.\n");
			qi->num_psf_points = 0;
		}

		for (i = 0; i < qi->num_psf_points; i++)
			drm_dbg_kms(&dev_priv->drm,
				    "PSF GV %d: CLK=%d \n",
				    i, qi->psf_points[i].clk);
	}

223 224 225
	return 0;
}

226 227 228 229 230 231 232 233 234 235
static int adl_calc_psf_bw(int clk)
{
	/*
	 * clk is multiples of 16.666MHz (100/6)
	 * According to BSpec PSF GV bandwidth is
	 * calculated as BW = 64 * clk * 16.666Mhz
	 */
	return DIV_ROUND_CLOSEST(64 * clk * 100, 6);
}

236 237 238 239 240 241 242 243 244 245 246 247
static int icl_sagv_max_dclk(const struct intel_qgv_info *qi)
{
	u16 dclk = 0;
	int i;

	for (i = 0; i < qi->num_points; i++)
		dclk = max(dclk, qi->points[i].dclk);

	return dclk;
}

struct intel_sa_info {
248
	u16 displayrtids;
249
	u8 deburst, deprogbwlimit, derating;
250 251 252 253 254 255
};

static const struct intel_sa_info icl_sa_info = {
	.deburst = 8,
	.deprogbwlimit = 25, /* GB/s */
	.displayrtids = 128,
256
	.derating = 10,
257 258
};

259 260 261 262
static const struct intel_sa_info tgl_sa_info = {
	.deburst = 16,
	.deprogbwlimit = 34, /* GB/s */
	.displayrtids = 256,
263
	.derating = 10,
264 265
};

266
static const struct intel_sa_info rkl_sa_info = {
267
	.deburst = 8,
268 269
	.deprogbwlimit = 20, /* GB/s */
	.displayrtids = 128,
270
	.derating = 10,
271 272
};

273 274 275 276
static const struct intel_sa_info adls_sa_info = {
	.deburst = 16,
	.deprogbwlimit = 38, /* GB/s */
	.displayrtids = 256,
277 278 279 280 281 282 283 284
	.derating = 10,
};

static const struct intel_sa_info adlp_sa_info = {
	.deburst = 16,
	.deprogbwlimit = 38, /* GB/s */
	.displayrtids = 256,
	.derating = 20,
285 286
};

287
static int icl_get_bw_info(struct drm_i915_private *dev_priv, const struct intel_sa_info *sa)
288 289 290
{
	struct intel_qgv_info qi = {};
	bool is_y_tile = true; /* assume y tile may be used */
291
	int num_channels = max_t(u8, 1, dev_priv->dram_info.num_channels);
292
	int ipqdepth, ipqdepthpch = 16;
293 294
	int dclk_max;
	int maxdebw;
295
	int num_groups = ARRAY_SIZE(dev_priv->max_bw);
296 297
	int i, ret;

298
	ret = icl_get_qgv_points(dev_priv, &qi, is_y_tile);
299
	if (ret) {
300 301
		drm_dbg_kms(&dev_priv->drm,
			    "Failed to get memory subsystem information, ignoring bandwidth limits");
302 303 304 305
		return ret;
	}

	dclk_max = icl_sagv_max_dclk(&qi);
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
	maxdebw = min(sa->deprogbwlimit * 1000, dclk_max * 16 * 6 / 10);
	ipqdepth = min(ipqdepthpch, sa->displayrtids / num_channels);
	qi.deinterleave = DIV_ROUND_UP(num_channels, is_y_tile ? 4 : 2);

	for (i = 0; i < num_groups; i++) {
		struct intel_bw_info *bi = &dev_priv->max_bw[i];
		int clpchgroup;
		int j;

		clpchgroup = (sa->deburst * qi.deinterleave / num_channels) << i;
		bi->num_planes = (ipqdepth - clpchgroup) / clpchgroup + 1;

		bi->num_qgv_points = qi.num_points;
		bi->num_psf_gv_points = qi.num_psf_points;

		for (j = 0; j < qi.num_points; j++) {
			const struct intel_qgv_point *sp = &qi.points[j];
			int ct, bw;

			/*
			 * Max row cycle time
			 *
			 * FIXME what is the logic behind the
			 * assumed burst length?
			 */
			ct = max_t(int, sp->t_rc, sp->t_rp + sp->t_rcd +
				   (clpchgroup - 1) * qi.t_bl + sp->t_rdpre);
			bw = DIV_ROUND_UP(sp->dclk * clpchgroup * 32 * num_channels, ct);
334

335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
			bi->deratedbw[j] = min(maxdebw,
					       bw * (100 - sa->derating) / 100);

			drm_dbg_kms(&dev_priv->drm,
				    "BW%d / QGV %d: num_planes=%d deratedbw=%u\n",
				    i, j, bi->num_planes, bi->deratedbw[j]);
		}
	}
	/*
	 * In case if SAGV is disabled in BIOS, we always get 1
	 * SAGV point, but we can't send PCode commands to restrict it
	 * as it will fail and pointless anyway.
	 */
	if (qi.num_points == 1)
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
	else
		dev_priv->sagv_status = I915_SAGV_ENABLED;

	return 0;
}

static int tgl_get_bw_info(struct drm_i915_private *dev_priv, const struct intel_sa_info *sa)
{
	struct intel_qgv_info qi = {};
	const struct dram_info *dram_info = &dev_priv->dram_info;
	bool is_y_tile = true; /* assume y tile may be used */
	int num_channels = max_t(u8, 1, dev_priv->dram_info.num_channels);
	int ipqdepth, ipqdepthpch = 16;
	int dclk_max;
	int maxdebw, peakbw;
	int clperchgroup;
	int num_groups = ARRAY_SIZE(dev_priv->max_bw);
	int i, ret;

	ret = icl_get_qgv_points(dev_priv, &qi, is_y_tile);
	if (ret) {
		drm_dbg_kms(&dev_priv->drm,
			    "Failed to get memory subsystem information, ignoring bandwidth limits");
		return ret;
	}

	if (dram_info->type == INTEL_DRAM_LPDDR4 || dram_info->type == INTEL_DRAM_LPDDR5)
		num_channels *= 2;

	qi.deinterleave = qi.deinterleave ? : DIV_ROUND_UP(num_channels, is_y_tile ? 4 : 2);

	if (num_channels < qi.max_numchannels && DISPLAY_VER(dev_priv) >= 12)
		qi.deinterleave = max(DIV_ROUND_UP(qi.deinterleave, 2), 1);

	if (DISPLAY_VER(dev_priv) > 11 && num_channels > qi.max_numchannels)
		drm_warn(&dev_priv->drm, "Number of channels exceeds max number of channels.");
	if (qi.max_numchannels != 0)
		num_channels = min_t(u8, num_channels, qi.max_numchannels);

	dclk_max = icl_sagv_max_dclk(&qi);

	peakbw = num_channels * DIV_ROUND_UP(qi.channel_width, 8) * dclk_max;
	maxdebw = min(sa->deprogbwlimit * 1000, peakbw * 6 / 10); /* 60% */
393 394

	ipqdepth = min(ipqdepthpch, sa->displayrtids / num_channels);
395 396 397 398 399
	/*
	 * clperchgroup = 4kpagespermempage * clperchperblock,
	 * clperchperblock = 8 / num_channels * interleave
	 */
	clperchgroup = 4 * DIV_ROUND_UP(8, num_channels) * qi.deinterleave;
400

401
	for (i = 0; i < num_groups; i++) {
402
		struct intel_bw_info *bi = &dev_priv->max_bw[i];
403
		struct intel_bw_info *bi_next;
404 405 406
		int clpchgroup;
		int j;

407 408 409 410 411 412 413 414 415
		if (i < num_groups - 1)
			bi_next = &dev_priv->max_bw[i + 1];

		clpchgroup = (sa->deburst * qi.deinterleave / num_channels) << i;

		if (i < num_groups - 1 && clpchgroup < clperchgroup)
			bi_next->num_planes = (ipqdepth - clpchgroup) / clpchgroup + 1;
		else
			bi_next->num_planes = 0;
416

417
		bi->num_qgv_points = qi.num_points;
418
		bi->num_psf_gv_points = qi.num_psf_points;
419

420 421 422 423 424 425 426 427 428 429 430 431
		for (j = 0; j < qi.num_points; j++) {
			const struct intel_qgv_point *sp = &qi.points[j];
			int ct, bw;

			/*
			 * Max row cycle time
			 *
			 * FIXME what is the logic behind the
			 * assumed burst length?
			 */
			ct = max_t(int, sp->t_rc, sp->t_rp + sp->t_rcd +
				   (clpchgroup - 1) * qi.t_bl + sp->t_rdpre);
432
			bw = DIV_ROUND_UP(sp->dclk * clpchgroup * 32 * num_channels, ct);
433 434

			bi->deratedbw[j] = min(maxdebw,
435
					       bw * (100 - sa->derating) / 100);
436

437 438 439
			drm_dbg_kms(&dev_priv->drm,
				    "BW%d / QGV %d: num_planes=%d deratedbw=%u\n",
				    i, j, bi->num_planes, bi->deratedbw[j]);
440 441
		}

442 443 444 445 446 447 448 449 450
		for (j = 0; j < qi.num_psf_points; j++) {
			const struct intel_psf_gv_point *sp = &qi.psf_points[j];

			bi->psf_bw[j] = adl_calc_psf_bw(sp->clk);

			drm_dbg_kms(&dev_priv->drm,
				    "BW%d / PSF GV %d: num_planes=%d bw=%u\n",
				    i, j, bi->num_planes, bi->psf_bw[j]);
		}
451 452
	}

453 454 455 456 457 458 459 460 461 462
	/*
	 * In case if SAGV is disabled in BIOS, we always get 1
	 * SAGV point, but we can't send PCode commands to restrict it
	 * as it will fail and pointless anyway.
	 */
	if (qi.num_points == 1)
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
	else
		dev_priv->sagv_status = I915_SAGV_ENABLED;

463 464 465
	return 0;
}

466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
static void dg2_get_bw_info(struct drm_i915_private *i915)
{
	struct intel_bw_info *bi = &i915->max_bw[0];

	/*
	 * DG2 doesn't have SAGV or QGV points, just a constant max bandwidth
	 * that doesn't depend on the number of planes enabled.  Create a
	 * single dummy QGV point to reflect that.  DG2-G10 platforms have a
	 * constant 50 GB/s bandwidth, whereas DG2-G11 platforms have 38 GB/s.
	 */
	bi->num_planes = 1;
	bi->num_qgv_points = 1;
	if (IS_DG2_G11(i915))
		bi->deratedbw[0] = 38000;
	else
		bi->deratedbw[0] = 50000;

	i915->sagv_status = I915_SAGV_NOT_CONTROLLED;
}

486 487 488 489 490
static unsigned int icl_max_bw(struct drm_i915_private *dev_priv,
			       int num_planes, int qgv_point)
{
	int i;

491 492 493 494 495
	/*
	 * Let's return max bw for 0 planes
	 */
	num_planes = max(1, num_planes);

496 497 498 499
	for (i = 0; i < ARRAY_SIZE(dev_priv->max_bw); i++) {
		const struct intel_bw_info *bi =
			&dev_priv->max_bw[i];

500 501 502 503 504 505 506
		/*
		 * Pcode will not expose all QGV points when
		 * SAGV is forced to off/min/med/max.
		 */
		if (qgv_point >= bi->num_qgv_points)
			return UINT_MAX;

507 508 509 510 511 512 513
		if (num_planes >= bi->num_planes)
			return bi->deratedbw[qgv_point];
	}

	return 0;
}

514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
static unsigned int tgl_max_bw(struct drm_i915_private *dev_priv,
			       int num_planes, int qgv_point)
{
	int i;

	/*
	 * Let's return max bw for 0 planes
	 */
	num_planes = max(1, num_planes);

	for (i = ARRAY_SIZE(dev_priv->max_bw) - 1; i >= 0; i--) {
		const struct intel_bw_info *bi =
			&dev_priv->max_bw[i];

		/*
		 * Pcode will not expose all QGV points when
		 * SAGV is forced to off/min/med/max.
		 */
		if (qgv_point >= bi->num_qgv_points)
			return UINT_MAX;

		if (num_planes <= bi->num_planes)
			return bi->deratedbw[qgv_point];
	}

	return dev_priv->max_bw[0].deratedbw[qgv_point];
}

542 543 544 545 546 547 548 549 550
static unsigned int adl_psf_bw(struct drm_i915_private *dev_priv,
			       int psf_gv_point)
{
	const struct intel_bw_info *bi =
			&dev_priv->max_bw[0];

	return bi->psf_bw[psf_gv_point];
}

551 552
void intel_bw_init_hw(struct drm_i915_private *dev_priv)
{
553 554 555
	if (!HAS_DISPLAY(dev_priv))
		return;

556 557
	if (IS_DG2(dev_priv))
		dg2_get_bw_info(dev_priv);
558
	else if (IS_ALDERLAKE_P(dev_priv))
559
		tgl_get_bw_info(dev_priv, &adlp_sa_info);
560
	else if (IS_ALDERLAKE_S(dev_priv))
561
		tgl_get_bw_info(dev_priv, &adls_sa_info);
562
	else if (IS_ROCKETLAKE(dev_priv))
563
		tgl_get_bw_info(dev_priv, &rkl_sa_info);
564
	else if (DISPLAY_VER(dev_priv) == 12)
565
		tgl_get_bw_info(dev_priv, &tgl_sa_info);
566
	else if (DISPLAY_VER(dev_priv) == 11)
567
		icl_get_bw_info(dev_priv, &icl_sa_info);
568 569 570 571 572 573 574 575 576 577 578 579 580
}

static unsigned int intel_bw_crtc_num_active_planes(const struct intel_crtc_state *crtc_state)
{
	/*
	 * We assume cursors are small enough
	 * to not not cause bandwidth problems.
	 */
	return hweight8(crtc_state->active_planes & ~BIT(PLANE_CURSOR));
}

static unsigned int intel_bw_crtc_data_rate(const struct intel_crtc_state *crtc_state)
{
581
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
	unsigned int data_rate = 0;
	enum plane_id plane_id;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		/*
		 * We assume cursors are small enough
		 * to not not cause bandwidth problems.
		 */
		if (plane_id == PLANE_CURSOR)
			continue;

		data_rate += crtc_state->data_rate[plane_id];
	}

	return data_rate;
}
598

599 600 601
void intel_bw_crtc_update(struct intel_bw_state *bw_state,
			  const struct intel_crtc_state *crtc_state)
{
602
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
603
	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
604 605 606 607 608 609

	bw_state->data_rate[crtc->pipe] =
		intel_bw_crtc_data_rate(crtc_state);
	bw_state->num_active_planes[crtc->pipe] =
		intel_bw_crtc_num_active_planes(crtc_state);

610 611 612 613
	drm_dbg_kms(&i915->drm, "pipe %c data rate %u num active planes %u\n",
		    pipe_name(crtc->pipe),
		    bw_state->data_rate[crtc->pipe],
		    bw_state->num_active_planes[crtc->pipe]);
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
}

static unsigned int intel_bw_num_active_planes(struct drm_i915_private *dev_priv,
					       const struct intel_bw_state *bw_state)
{
	unsigned int num_active_planes = 0;
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe)
		num_active_planes += bw_state->num_active_planes[pipe];

	return num_active_planes;
}

static unsigned int intel_bw_data_rate(struct drm_i915_private *dev_priv,
				       const struct intel_bw_state *bw_state)
{
	unsigned int data_rate = 0;
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe)
		data_rate += bw_state->data_rate[pipe];

637 638 639
	if (DISPLAY_VER(dev_priv) >= 13 && intel_vtd_active())
		data_rate = data_rate * 105 / 100;

640 641 642
	return data_rate;
}

643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
struct intel_bw_state *
intel_atomic_get_old_bw_state(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct intel_global_state *bw_state;

	bw_state = intel_atomic_get_old_global_obj_state(state, &dev_priv->bw_obj);

	return to_intel_bw_state(bw_state);
}

struct intel_bw_state *
intel_atomic_get_new_bw_state(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct intel_global_state *bw_state;

	bw_state = intel_atomic_get_new_global_obj_state(state, &dev_priv->bw_obj);

	return to_intel_bw_state(bw_state);
}

struct intel_bw_state *
666 667 668
intel_atomic_get_bw_state(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
669
	struct intel_global_state *bw_state;
670

671
	bw_state = intel_atomic_get_global_obj_state(state, &dev_priv->bw_obj);
672 673 674 675 676 677
	if (IS_ERR(bw_state))
		return ERR_CAST(bw_state);

	return to_intel_bw_state(bw_state);
}

678 679 680
int skl_bw_calc_min_cdclk(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
681 682
	struct intel_bw_state *new_bw_state = NULL;
	struct intel_bw_state *old_bw_state = NULL;
683 684 685
	const struct intel_crtc_state *crtc_state;
	struct intel_crtc *crtc;
	int max_bw = 0;
686
	enum pipe pipe;
687
	int i;
688 689 690 691 692 693 694 695 696

	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
		enum plane_id plane_id;
		struct intel_dbuf_bw *crtc_bw;

		new_bw_state = intel_atomic_get_bw_state(state);
		if (IS_ERR(new_bw_state))
			return PTR_ERR(new_bw_state);

697 698
		old_bw_state = intel_atomic_get_old_bw_state(state);

699 700 701 702
		crtc_bw = &new_bw_state->dbuf_bw[crtc->pipe];

		memset(&crtc_bw->used_bw, 0, sizeof(crtc_bw->used_bw));

703 704 705
		if (!crtc_state->hw.active)
			continue;

706 707 708 709 710 711 712
		for_each_plane_id_on_crtc(crtc, plane_id) {
			const struct skl_ddb_entry *plane_alloc =
				&crtc_state->wm.skl.plane_ddb_y[plane_id];
			const struct skl_ddb_entry *uv_plane_alloc =
				&crtc_state->wm.skl.plane_ddb_uv[plane_id];
			unsigned int data_rate = crtc_state->data_rate[plane_id];
			unsigned int dbuf_mask = 0;
713
			enum dbuf_slice slice;
714 715 716 717 718

			dbuf_mask |= skl_ddb_dbuf_slice_mask(dev_priv, plane_alloc);
			dbuf_mask |= skl_ddb_dbuf_slice_mask(dev_priv, uv_plane_alloc);

			/*
719 720 721 722 723 724 725 726 727 728 729
			 * FIXME: To calculate that more properly we probably
			 * need to to split per plane data_rate into data_rate_y
			 * and data_rate_uv for multiplanar formats in order not
			 * to get accounted those twice if they happen to reside
			 * on different slices.
			 * However for pre-icl this would work anyway because
			 * we have only single slice and for icl+ uv plane has
			 * non-zero data rate.
			 * So in worst case those calculation are a bit
			 * pessimistic, which shouldn't pose any significant
			 * problem anyway.
730
			 */
731 732
			for_each_dbuf_slice_in_mask(dev_priv, slice, dbuf_mask)
				crtc_bw->used_bw[slice] += data_rate;
733
		}
734 735 736 737 738 739 740
	}

	if (!old_bw_state)
		return 0;

	for_each_pipe(dev_priv, pipe) {
		struct intel_dbuf_bw *crtc_bw;
741
		enum dbuf_slice slice;
742 743

		crtc_bw = &new_bw_state->dbuf_bw[pipe];
744

745
		for_each_dbuf_slice(dev_priv, slice) {
746
			/*
747 748 749 750 751 752
			 * Current experimental observations show that contrary
			 * to BSpec we get underruns once we exceed 64 * CDCLK
			 * for slices in total.
			 * As a temporary measure in order not to keep CDCLK
			 * bumped up all the time we calculate CDCLK according
			 * to this formula for  overall bw consumed by slices.
753
			 */
754
			max_bw += crtc_bw->used_bw[slice];
755 756 757
		}
	}

758
	new_bw_state->min_cdclk = max_bw / 64;
759 760 761 762 763 764 765 766 767 768 769 770 771

	if (new_bw_state->min_cdclk != old_bw_state->min_cdclk) {
		int ret = intel_atomic_lock_global_state(&new_bw_state->base);

		if (ret)
			return ret;
	}

	return 0;
}

int intel_bw_calc_min_cdclk(struct intel_atomic_state *state)
{
772 773 774
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct intel_bw_state *new_bw_state = NULL;
	struct intel_bw_state *old_bw_state = NULL;
775 776 777
	const struct intel_crtc_state *crtc_state;
	struct intel_crtc *crtc;
	int min_cdclk = 0;
778 779
	enum pipe pipe;
	int i;
780 781 782 783 784 785 786 787 788 789 790 791

	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
		new_bw_state = intel_atomic_get_bw_state(state);
		if (IS_ERR(new_bw_state))
			return PTR_ERR(new_bw_state);

		old_bw_state = intel_atomic_get_old_bw_state(state);
	}

	if (!old_bw_state)
		return 0;

792 793 794 795 796 797 798 799 800 801 802 803
	for_each_pipe(dev_priv, pipe) {
		struct intel_cdclk_state *cdclk_state;

		cdclk_state = intel_atomic_get_new_cdclk_state(state);
		if (!cdclk_state)
			return 0;

		min_cdclk = max(cdclk_state->min_cdclk[pipe], min_cdclk);
	}

	new_bw_state->min_cdclk = min_cdclk;

804 805 806 807 808 809 810 811 812 813
	if (new_bw_state->min_cdclk != old_bw_state->min_cdclk) {
		int ret = intel_atomic_lock_global_state(&new_bw_state->base);

		if (ret)
			return ret;
	}

	return 0;
}

814 815 816 817
int intel_bw_atomic_check(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct intel_crtc_state *new_crtc_state, *old_crtc_state;
818
	struct intel_bw_state *new_bw_state = NULL;
819 820
	const struct intel_bw_state *old_bw_state = NULL;
	unsigned int data_rate;
821 822
	unsigned int num_active_planes;
	struct intel_crtc *crtc;
823
	int i, ret;
824 825 826
	u32 allowed_points = 0;
	unsigned int max_bw_point = 0, max_bw = 0;
	unsigned int num_qgv_points = dev_priv->max_bw[0].num_qgv_points;
827 828
	unsigned int num_psf_gv_points = dev_priv->max_bw[0].num_psf_gv_points;
	u32 mask = 0;
829 830

	/* FIXME earlier gens need some checks too */
831
	if (DISPLAY_VER(dev_priv) < 11)
832 833
		return 0;

834 835 836 837 838 839 840 841 842 843 844
	/*
	 * We can _not_ use the whole ADLS_QGV_PT_MASK here, as PCode rejects
	 * it with failure if we try masking any unadvertised points.
	 * So need to operate only with those returned from PCode.
	 */
	if (num_qgv_points > 0)
		mask |= REG_GENMASK(num_qgv_points - 1, 0);

	if (num_psf_gv_points > 0)
		mask |= REG_GENMASK(num_psf_gv_points - 1, 0) << ADLS_PSF_PT_SHIFT;

845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
					    new_crtc_state, i) {
		unsigned int old_data_rate =
			intel_bw_crtc_data_rate(old_crtc_state);
		unsigned int new_data_rate =
			intel_bw_crtc_data_rate(new_crtc_state);
		unsigned int old_active_planes =
			intel_bw_crtc_num_active_planes(old_crtc_state);
		unsigned int new_active_planes =
			intel_bw_crtc_num_active_planes(new_crtc_state);

		/*
		 * Avoid locking the bw state when
		 * nothing significant has changed.
		 */
		if (old_data_rate == new_data_rate &&
		    old_active_planes == new_active_planes)
			continue;

864 865 866
		new_bw_state = intel_atomic_get_bw_state(state);
		if (IS_ERR(new_bw_state))
			return PTR_ERR(new_bw_state);
867

868 869
		new_bw_state->data_rate[crtc->pipe] = new_data_rate;
		new_bw_state->num_active_planes[crtc->pipe] = new_active_planes;
870

871 872 873
		drm_dbg_kms(&dev_priv->drm,
			    "pipe %c data rate %u num active planes %u\n",
			    pipe_name(crtc->pipe),
874 875
			    new_bw_state->data_rate[crtc->pipe],
			    new_bw_state->num_active_planes[crtc->pipe]);
876 877
	}

878
	if (!new_bw_state)
879 880
		return 0;

881
	ret = intel_atomic_lock_global_state(&new_bw_state->base);
882 883 884
	if (ret)
		return ret;

885
	data_rate = intel_bw_data_rate(dev_priv, new_bw_state);
886 887
	data_rate = DIV_ROUND_UP(data_rate, 1000);

888
	num_active_planes = intel_bw_num_active_planes(dev_priv, new_bw_state);
889

890 891
	for (i = 0; i < num_qgv_points; i++) {
		unsigned int max_data_rate;
892

893 894 895 896
		if (DISPLAY_VER(dev_priv) > 11)
			max_data_rate = tgl_max_bw(dev_priv, num_active_planes, i);
		else
			max_data_rate = icl_max_bw(dev_priv, num_active_planes, i);
897 898 899 900 901 902 903 904 905 906 907 908 909
		/*
		 * We need to know which qgv point gives us
		 * maximum bandwidth in order to disable SAGV
		 * if we find that we exceed SAGV block time
		 * with watermarks. By that moment we already
		 * have those, as it is calculated earlier in
		 * intel_atomic_check,
		 */
		if (max_data_rate > max_bw) {
			max_bw_point = i;
			max_bw = max_data_rate;
		}
		if (max_data_rate >= data_rate)
910 911
			allowed_points |= REG_FIELD_PREP(ADLS_QGV_PT_MASK, BIT(i));

912 913 914
		drm_dbg_kms(&dev_priv->drm, "QGV point %d: max bw %d required %d\n",
			    i, max_data_rate, data_rate);
	}
915

916 917 918 919 920 921 922 923 924 925 926
	for (i = 0; i < num_psf_gv_points; i++) {
		unsigned int max_data_rate = adl_psf_bw(dev_priv, i);

		if (max_data_rate >= data_rate)
			allowed_points |= REG_FIELD_PREP(ADLS_PSF_PT_MASK, BIT(i));

		drm_dbg_kms(&dev_priv->drm, "PSF GV point %d: max bw %d"
			    " required %d\n",
			    i, max_data_rate, data_rate);
	}

927 928 929 930 931
	/*
	 * BSpec states that we always should have at least one allowed point
	 * left, so if we couldn't - simply reject the configuration for obvious
	 * reasons.
	 */
932
	if ((allowed_points & ADLS_QGV_PT_MASK) == 0) {
933 934 935
		drm_dbg_kms(&dev_priv->drm, "No QGV points provide sufficient memory"
			    " bandwidth %d for display configuration(%d active planes).\n",
			    data_rate, num_active_planes);
936 937 938
		return -EINVAL;
	}

939 940 941 942 943 944 945 946 947
	if (num_psf_gv_points > 0) {
		if ((allowed_points & ADLS_PSF_PT_MASK) == 0) {
			drm_dbg_kms(&dev_priv->drm, "No PSF GV points provide sufficient memory"
				    " bandwidth %d for display configuration(%d active planes).\n",
				    data_rate, num_active_planes);
			return -EINVAL;
		}
	}

948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
	/*
	 * Leave only single point with highest bandwidth, if
	 * we can't enable SAGV due to the increased memory latency it may
	 * cause.
	 */
	if (!intel_can_enable_sagv(dev_priv, new_bw_state)) {
		allowed_points = BIT(max_bw_point);
		drm_dbg_kms(&dev_priv->drm, "No SAGV, using single QGV point %d\n",
			    max_bw_point);
	}
	/*
	 * We store the ones which need to be masked as that is what PCode
	 * actually accepts as a parameter.
	 */
	new_bw_state->qgv_points_mask = ~allowed_points & mask;

	old_bw_state = intel_atomic_get_old_bw_state(state);
	/*
	 * If the actual mask had changed we need to make sure that
	 * the commits are serialized(in case this is a nomodeset, nonblocking)
	 */
	if (new_bw_state->qgv_points_mask != old_bw_state->qgv_points_mask) {
		ret = intel_atomic_serialize_global_state(&new_bw_state->base);
		if (ret)
			return ret;
	}

975 976 977
	return 0;
}

978 979
static struct intel_global_state *
intel_bw_duplicate_state(struct intel_global_obj *obj)
980 981 982 983 984 985 986 987 988 989
{
	struct intel_bw_state *state;

	state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
	if (!state)
		return NULL;

	return &state->base;
}

990 991
static void intel_bw_destroy_state(struct intel_global_obj *obj,
				   struct intel_global_state *state)
992 993 994 995
{
	kfree(state);
}

996
static const struct intel_global_state_funcs intel_bw_funcs = {
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
	.atomic_duplicate_state = intel_bw_duplicate_state,
	.atomic_destroy_state = intel_bw_destroy_state,
};

int intel_bw_init(struct drm_i915_private *dev_priv)
{
	struct intel_bw_state *state;

	state = kzalloc(sizeof(*state), GFP_KERNEL);
	if (!state)
		return -ENOMEM;

1009 1010
	intel_atomic_global_obj_init(dev_priv, &dev_priv->bw_obj,
				     &state->base, &intel_bw_funcs);
1011 1012 1013

	return 0;
}