fw-device.c 20.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*						-*- c-basic-offset: 8 -*-
 *
 * fw-device.c - Device probing and sysfs code.
 *
 * Copyright (C) 2005-2006  Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

#include <linux/module.h>
#include <linux/wait.h>
#include <linux/errno.h>
#include <linux/kthread.h>
#include <linux/device.h>
#include <linux/delay.h>
28
#include <linux/idr.h>
29 30
#include <linux/rwsem.h>
#include <asm/semaphore.h>
31
#include <linux/ctype.h>
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
#include "fw-transaction.h"
#include "fw-topology.h"
#include "fw-device.h"

void fw_csr_iterator_init(struct fw_csr_iterator *ci, u32 * p)
{
	ci->p = p + 1;
	ci->end = ci->p + (p[0] >> 16);
}
EXPORT_SYMBOL(fw_csr_iterator_init);

int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
{
	*key = *ci->p >> 24;
	*value = *ci->p & 0xffffff;

	return ci->p++ < ci->end;
}
EXPORT_SYMBOL(fw_csr_iterator_next);

static int is_fw_unit(struct device *dev);

54
static int match_unit_directory(u32 * directory, const struct fw_device_id *id)
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
{
	struct fw_csr_iterator ci;
	int key, value, match;

	match = 0;
	fw_csr_iterator_init(&ci, directory);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		if (key == CSR_VENDOR && value == id->vendor)
			match |= FW_MATCH_VENDOR;
		if (key == CSR_MODEL && value == id->model)
			match |= FW_MATCH_MODEL;
		if (key == CSR_SPECIFIER_ID && value == id->specifier_id)
			match |= FW_MATCH_SPECIFIER_ID;
		if (key == CSR_VERSION && value == id->version)
			match |= FW_MATCH_VERSION;
	}

	return (match & id->match_flags) == id->match_flags;
}

static int fw_unit_match(struct device *dev, struct device_driver *drv)
{
	struct fw_unit *unit = fw_unit(dev);
	struct fw_driver *driver = fw_driver(drv);
	int i;

	/* We only allow binding to fw_units. */
	if (!is_fw_unit(dev))
		return 0;

	for (i = 0; driver->id_table[i].match_flags != 0; i++) {
		if (match_unit_directory(unit->directory, &driver->id_table[i]))
			return 1;
	}

	return 0;
}

static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
{
	struct fw_device *device = fw_device(unit->device.parent);
	struct fw_csr_iterator ci;

	int key, value;
	int vendor = 0;
	int model = 0;
	int specifier_id = 0;
	int version = 0;

	fw_csr_iterator_init(&ci, &device->config_rom[5]);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		switch (key) {
		case CSR_VENDOR:
			vendor = value;
			break;
		case CSR_MODEL:
			model = value;
			break;
		}
	}

	fw_csr_iterator_init(&ci, unit->directory);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		switch (key) {
		case CSR_SPECIFIER_ID:
			specifier_id = value;
			break;
		case CSR_VERSION:
			version = value;
			break;
		}
	}

	return snprintf(buffer, buffer_size,
			"ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
			vendor, model, specifier_id, version);
}

static int
fw_unit_uevent(struct device *dev, char **envp, int num_envp,
	       char *buffer, int buffer_size)
{
	struct fw_unit *unit = fw_unit(dev);
	char modalias[64];
	int length = 0;
	int i = 0;

	get_modalias(unit, modalias, sizeof modalias);

	if (add_uevent_var(envp, num_envp, &i,
			   buffer, buffer_size, &length,
			   "MODALIAS=%s", modalias))
		return -ENOMEM;

	envp[i] = NULL;

	return 0;
}

struct bus_type fw_bus_type = {
155
	.name = "firewire",
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
	.match = fw_unit_match,
};
EXPORT_SYMBOL(fw_bus_type);

extern struct fw_device *fw_device_get(struct fw_device *device)
{
	get_device(&device->device);

	return device;
}

extern void fw_device_put(struct fw_device *device)
{
	put_device(&device->device);
}

static void fw_device_release(struct device *dev)
{
	struct fw_device *device = fw_device(dev);
	unsigned long flags;

	/* Take the card lock so we don't set this to NULL while a
	 * FW_NODE_UPDATED callback is being handled. */
	spin_lock_irqsave(&device->card->lock, flags);
	device->node->data = NULL;
	spin_unlock_irqrestore(&device->card->lock, flags);

	fw_node_put(device->node);
	fw_card_put(device->card);
	kfree(device->config_rom);
	kfree(device);
}

int fw_device_enable_phys_dma(struct fw_device *device)
{
	return device->card->driver->enable_phys_dma(device->card,
						     device->node_id,
						     device->generation);
}
EXPORT_SYMBOL(fw_device_enable_phys_dma);

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
struct config_rom_attribute {
	struct device_attribute attr;
	u32 key;
};

static ssize_t
show_immediate(struct device *dev, struct device_attribute *dattr, char *buf)
{
	struct config_rom_attribute *attr =
		container_of(dattr, struct config_rom_attribute, attr);
	struct fw_csr_iterator ci;
	u32 *dir;
	int key, value;

	if (is_fw_unit(dev))
		dir = fw_unit(dev)->directory;
	else
		dir = fw_device(dev)->config_rom + 5;

	fw_csr_iterator_init(&ci, dir);
	while (fw_csr_iterator_next(&ci, &key, &value))
		if (attr->key == key)
			return snprintf(buf, buf ? PAGE_SIZE : 0,
					"0x%06x\n", value);

	return -ENOENT;
}

#define IMMEDIATE_ATTR(name, key)				\
	{ __ATTR(name, S_IRUGO, show_immediate, NULL), key }

static ssize_t
show_text_leaf(struct device *dev, struct device_attribute *dattr, char *buf)
{
	struct config_rom_attribute *attr =
		container_of(dattr, struct config_rom_attribute, attr);
	struct fw_csr_iterator ci;
	u32 *dir, *block = NULL, *p, *end;
	int length, key, value, last_key = 0;
	char *b;

	if (is_fw_unit(dev))
		dir = fw_unit(dev)->directory;
	else
		dir = fw_device(dev)->config_rom + 5;

	fw_csr_iterator_init(&ci, dir);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		if (attr->key == last_key &&
		    key == (CSR_DESCRIPTOR | CSR_LEAF))
			block = ci.p - 1 + value;
		last_key = key;
	}

	if (block == NULL)
		return -ENOENT;

	length = min(block[0] >> 16, 256U);
	if (length < 3)
		return -ENOENT;

	if (block[1] != 0 || block[2] != 0)
		/* Unknown encoding. */
		return -ENOENT;

	if (buf == NULL)
		return length * 4;

	b = buf;
	end = &block[length + 1];
	for (p = &block[3]; p < end; p++, b += 4)
		* (u32 *) b = (__force u32) __cpu_to_be32(*p);

	/* Strip trailing whitespace and add newline. */
	while (b--, (isspace(*b) || *b == '\0') && b > buf);
	strcpy(b + 1, "\n");

	return b + 2 - buf;
}

#define TEXT_LEAF_ATTR(name, key)				\
	{ __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }

static struct config_rom_attribute config_rom_attributes[] = {
	IMMEDIATE_ATTR(vendor, CSR_VENDOR),
	IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
	IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
	IMMEDIATE_ATTR(version, CSR_VERSION),
	IMMEDIATE_ATTR(model, CSR_MODEL),
	TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
	TEXT_LEAF_ATTR(model_name, CSR_MODEL),
	TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
};

static void
292 293 294
init_fw_attribute_group(struct device *dev,
			struct device_attribute *attrs,
			struct fw_attribute_group *group)
295 296
{
	struct device_attribute *attr;
297 298 299 300
	int i, j;

	for (j = 0; attrs[j].attr.name != NULL; j++)
		group->attrs[j] = &attrs[j].attr;
301 302 303 304 305

	for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
		attr = &config_rom_attributes[i].attr;
		if (attr->show(dev, attr, NULL) < 0)
			continue;
306
		group->attrs[j++] = &attr->attr;
307 308
	}

309 310 311 312 313 314
	BUG_ON(j >= ARRAY_SIZE(group->attrs));
	group->attrs[j++] = NULL;
	group->groups[0] = &group->group;
	group->groups[1] = NULL;
	group->group.attrs = group->attrs;
	dev->groups = group->groups;
315 316
}

317
static ssize_t
318 319
modalias_show(struct device *dev,
	      struct device_attribute *attr, char *buf)
320 321 322 323 324 325 326 327 328 329 330
{
	struct fw_unit *unit = fw_unit(dev);
	int length;

	length = get_modalias(unit, buf, PAGE_SIZE);
	strcpy(buf + length, "\n");

	return length + 1;
}

static ssize_t
331 332
rom_index_show(struct device *dev,
	       struct device_attribute *attr, char *buf)
333
{
334 335
	struct fw_device *device = fw_device(dev->parent);
	struct fw_unit *unit = fw_unit(dev);
336

337 338
	return snprintf(buf, PAGE_SIZE, "%d\n",
			(int)(unit->directory - device->config_rom));
339 340
}

341 342 343 344
static struct device_attribute fw_unit_attributes[] = {
	__ATTR_RO(modalias),
	__ATTR_RO(rom_index),
	__ATTR_NULL,
345 346
};

347
static ssize_t
348
config_rom_show(struct device *dev, struct device_attribute *attr, char *buf)
349
{
350
	struct fw_device *device = fw_device(dev);
351

352 353 354
	memcpy(buf, device->config_rom, device->config_rom_length * 4);

	return device->config_rom_length * 4;
355 356
}

357 358 359 360 361 362 363 364 365 366 367
static ssize_t
guid_show(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct fw_device *device = fw_device(dev);
	u64 guid;

	guid = ((u64)device->config_rom[3] << 32) | device->config_rom[4];

	return snprintf(buf, PAGE_SIZE, "0x%016llx\n", guid);
}

368 369
static struct device_attribute fw_device_attributes[] = {
	__ATTR_RO(config_rom),
370
	__ATTR_RO(guid),
371
	__ATTR_NULL,
372 373
};

374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
struct read_quadlet_callback_data {
	struct completion done;
	int rcode;
	u32 data;
};

static void
complete_transaction(struct fw_card *card, int rcode,
		     void *payload, size_t length, void *data)
{
	struct read_quadlet_callback_data *callback_data = data;

	if (rcode == RCODE_COMPLETE)
		callback_data->data = be32_to_cpu(*(__be32 *)payload);
	callback_data->rcode = rcode;
	complete(&callback_data->done);
}

static int read_rom(struct fw_device *device, int index, u32 * data)
{
	struct read_quadlet_callback_data callback_data;
	struct fw_transaction t;
	u64 offset;

	init_completion(&callback_data.done);

	offset = 0xfffff0000400ULL + index * 4;
	fw_send_request(device->card, &t, TCODE_READ_QUADLET_REQUEST,
402
			device->node_id,
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
			device->generation, SCODE_100,
			offset, NULL, 4, complete_transaction, &callback_data);

	wait_for_completion(&callback_data.done);

	*data = callback_data.data;

	return callback_data.rcode;
}

static int read_bus_info_block(struct fw_device *device)
{
	static u32 rom[256];
	u32 stack[16], sp, key;
	int i, end, length;

	/* First read the bus info block. */
	for (i = 0; i < 5; i++) {
		if (read_rom(device, i, &rom[i]) != RCODE_COMPLETE)
			return -1;
		/* As per IEEE1212 7.2, during power-up, devices can
		 * reply with a 0 for the first quadlet of the config
		 * rom to indicate that they are booting (for example,
		 * if the firmware is on the disk of a external
		 * harddisk).  In that case we just fail, and the
		 * retry mechanism will try again later. */
		if (i == 0 && rom[i] == 0)
			return -1;
	}

	/* Now parse the config rom.  The config rom is a recursive
	 * directory structure so we parse it using a stack of
	 * references to the blocks that make up the structure.  We
	 * push a reference to the root directory on the stack to
	 * start things off. */
	length = i;
	sp = 0;
	stack[sp++] = 0xc0000005;
	while (sp > 0) {
		/* Pop the next block reference of the stack.  The
		 * lower 24 bits is the offset into the config rom,
		 * the upper 8 bits are the type of the reference the
		 * block. */
		key = stack[--sp];
		i = key & 0xffffff;
		if (i >= ARRAY_SIZE(rom))
			/* The reference points outside the standard
			 * config rom area, something's fishy. */
			return -1;

		/* Read header quadlet for the block to get the length. */
		if (read_rom(device, i, &rom[i]) != RCODE_COMPLETE)
			return -1;
		end = i + (rom[i] >> 16) + 1;
		i++;
		if (end > ARRAY_SIZE(rom))
			/* This block extends outside standard config
			 * area (and the array we're reading it
			 * into).  That's broken, so ignore this
			 * device. */
			return -1;

		/* Now read in the block.  If this is a directory
		 * block, check the entries as we read them to see if
		 * it references another block, and push it in that case. */
		while (i < end) {
			if (read_rom(device, i, &rom[i]) != RCODE_COMPLETE)
				return -1;
			if ((key >> 30) == 3 && (rom[i] >> 30) > 1 &&
			    sp < ARRAY_SIZE(stack))
				stack[sp++] = i + rom[i];
			i++;
		}
		if (length < i)
			length = i;
	}

	device->config_rom = kmalloc(length * 4, GFP_KERNEL);
	if (device->config_rom == NULL)
		return -1;
	memcpy(device->config_rom, rom, length * 4);
	device->config_rom_length = length;

	return 0;
}

static void fw_unit_release(struct device *dev)
{
	struct fw_unit *unit = fw_unit(dev);

	kfree(unit);
}

496 497 498 499 500
static struct device_type fw_unit_type = {
	.uevent		= fw_unit_uevent,
	.release	= fw_unit_release,
};

501 502
static int is_fw_unit(struct device *dev)
{
503
	return dev->type == &fw_unit_type;
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
}

static void create_units(struct fw_device *device)
{
	struct fw_csr_iterator ci;
	struct fw_unit *unit;
	int key, value, i;

	i = 0;
	fw_csr_iterator_init(&ci, &device->config_rom[5]);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		if (key != (CSR_UNIT | CSR_DIRECTORY))
			continue;

		/* Get the address of the unit directory and try to
		 * match the drivers id_tables against it. */
		unit = kzalloc(sizeof *unit, GFP_KERNEL);
		if (unit == NULL) {
			fw_error("failed to allocate memory for unit\n");
			continue;
		}

		unit->directory = ci.p + value - 1;
		unit->device.bus = &fw_bus_type;
528
		unit->device.type = &fw_unit_type;
529 530 531 532
		unit->device.parent = &device->device;
		snprintf(unit->device.bus_id, sizeof unit->device.bus_id,
			 "%s.%d", device->device.bus_id, i++);

533 534 535
		init_fw_attribute_group(&unit->device,
					fw_unit_attributes,
					&unit->attribute_group);
536 537 538 539 540 541 542
		if (device_register(&unit->device) < 0)
			goto skip_unit;

		continue;

	skip_unit:
		kfree(unit);
543 544 545 546 547
	}
}

static int shutdown_unit(struct device *device, void *data)
{
548
	device_unregister(device);
549 550 551 552

	return 0;
}

553 554 555 556 557 558 559 560 561 562 563 564 565 566
static DEFINE_IDR(fw_device_idr);
int fw_cdev_major;

struct fw_device *fw_device_from_devt(dev_t devt)
{
	struct fw_device *device;

	down_read(&fw_bus_type.subsys.rwsem);
	device = idr_find(&fw_device_idr, MINOR(devt));
	up_read(&fw_bus_type.subsys.rwsem);

	return device;
}

567 568 569 570
static void fw_device_shutdown(struct work_struct *work)
{
	struct fw_device *device =
		container_of(work, struct fw_device, work.work);
571 572 573 574 575
	int minor = MINOR(device->device.devt);

	down_write(&fw_bus_type.subsys.rwsem);
	idr_remove(&fw_device_idr, minor);
	up_write(&fw_bus_type.subsys.rwsem);
576

577
	fw_device_cdev_remove(device);
578 579 580 581
	device_for_each_child(&device->device, NULL, shutdown_unit);
	device_unregister(&device->device);
}

582 583 584 585
static struct device_type fw_device_type = {
	.release	= fw_device_release,
};

586 587 588 589 590 591 592 593 594
/* These defines control the retry behavior for reading the config
 * rom.  It shouldn't be necessary to tweak these; if the device
 * doesn't respond to a config rom read within 10 seconds, it's not
 * going to respond at all.  As for the initial delay, a lot of
 * devices will be able to respond within half a second after bus
 * reset.  On the other hand, it's not really worth being more
 * aggressive than that, since it scales pretty well; if 10 devices
 * are plugged in, they're all getting read within one second. */

595 596
#define MAX_RETRIES	10
#define RETRY_DELAY	(3 * HZ)
597 598 599 600 601 602
#define INITIAL_DELAY	(HZ / 2)

static void fw_device_init(struct work_struct *work)
{
	struct fw_device *device =
		container_of(work, struct fw_device, work.work);
603
	int minor, err;
604 605 606 607 608 609 610 611 612 613

	/* All failure paths here set node->data to NULL, so that we
	 * don't try to do device_for_each_child() on a kfree()'d
	 * device. */

	if (read_bus_info_block(device) < 0) {
		if (device->config_rom_retries < MAX_RETRIES) {
			device->config_rom_retries++;
			schedule_delayed_work(&device->work, RETRY_DELAY);
		} else {
614
			fw_notify("giving up on config rom for node id %x\n",
615
				  device->node_id);
616 617
			if (device->node == device->card->root_node)
				schedule_delayed_work(&device->card->work, 0);
618 619 620 621 622
			fw_device_release(&device->device);
		}
		return;
	}

623 624 625 626 627 628 629 630
	err = -ENOMEM;
	down_write(&fw_bus_type.subsys.rwsem);
	if (idr_pre_get(&fw_device_idr, GFP_KERNEL))
		err = idr_get_new(&fw_device_idr, device, &minor);
	up_write(&fw_bus_type.subsys.rwsem);
	if (err < 0)
		goto error;

631
	device->device.bus = &fw_bus_type;
632
	device->device.type = &fw_device_type;
633
	device->device.parent = device->card->device;
634
	device->device.devt = MKDEV(fw_cdev_major, minor);
635
	snprintf(device->device.bus_id, sizeof device->device.bus_id,
636
		 "fw%d", minor);
637

638 639 640
	init_fw_attribute_group(&device->device,
				fw_device_attributes,
				&device->attribute_group);
641 642
	if (device_add(&device->device)) {
		fw_error("Failed to add device.\n");
643
		goto error_with_cdev;
644 645 646 647 648 649 650 651 652 653 654
	}

	create_units(device);

	/* Transition the device to running state.  If it got pulled
	 * out from under us while we did the intialization work, we
	 * have to shut down the device again here.  Normally, though,
	 * fw_node_event will be responsible for shutting it down when
	 * necessary.  We have to use the atomic cmpxchg here to avoid
	 * racing with the FW_NODE_DESTROYED case in
	 * fw_node_event(). */
655
	if (atomic_cmpxchg(&device->state,
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
		    FW_DEVICE_INITIALIZING,
		    FW_DEVICE_RUNNING) == FW_DEVICE_SHUTDOWN)
		fw_device_shutdown(&device->work.work);
	else
		fw_notify("created new fw device %s (%d config rom retries)\n",
			  device->device.bus_id, device->config_rom_retries);

	/* Reschedule the IRM work if we just finished reading the
	 * root node config rom.  If this races with a bus reset we
	 * just end up running the IRM work a couple of extra times -
	 * pretty harmless. */
	if (device->node == device->card->root_node)
		schedule_delayed_work(&device->card->work, 0);

	return;

672 673 674 675
 error_with_cdev:
	down_write(&fw_bus_type.subsys.rwsem);
	idr_remove(&fw_device_idr, minor);
	up_write(&fw_bus_type.subsys.rwsem);
S
Stefan Richter 已提交
676
 error:
677 678 679 680 681 682 683 684
	put_device(&device->device);
}

static int update_unit(struct device *dev, void *data)
{
	struct fw_unit *unit = fw_unit(dev);
	struct fw_driver *driver = (struct fw_driver *)dev->driver;

685 686
	if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
		down(&dev->sem);
687
		driver->update(unit);
688 689
		up(&dev->sem);
	}
690 691 692 693

	return 0;
}

694 695 696 697 698
static void fw_device_update(struct work_struct *work)
{
	struct fw_device *device =
		container_of(work, struct fw_device, work.work);

699
	fw_device_cdev_update(device);
700 701 702
	device_for_each_child(&device->device, NULL, update_unit);
}

703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
{
	struct fw_device *device;

	switch (event) {
	case FW_NODE_CREATED:
	case FW_NODE_LINK_ON:
		if (!node->link_on)
			break;

		device = kzalloc(sizeof(*device), GFP_ATOMIC);
		if (device == NULL)
			break;

		/* Do minimal intialization of the device here, the
		 * rest will happen in fw_device_init().  We need the
		 * card and node so we can read the config rom and we
		 * need to do device_initialize() now so
		 * device_for_each_child() in FW_NODE_UPDATED is
		 * doesn't freak out. */
		device_initialize(&device->device);
724
		atomic_set(&device->state, FW_DEVICE_INITIALIZING);
725 726 727 728
		device->card = fw_card_get(card);
		device->node = fw_node_get(node);
		device->node_id = node->node_id;
		device->generation = card->generation;
729
		INIT_LIST_HEAD(&device->client_list);
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750

		/* Set the node data to point back to this device so
		 * FW_NODE_UPDATED callbacks can update the node_id
		 * and generation for the device. */
		node->data = device;

		/* Many devices are slow to respond after bus resets,
		 * especially if they are bus powered and go through
		 * power-up after getting plugged in.  We schedule the
		 * first config rom scan half a second after bus reset. */
		INIT_DELAYED_WORK(&device->work, fw_device_init);
		schedule_delayed_work(&device->work, INITIAL_DELAY);
		break;

	case FW_NODE_UPDATED:
		if (!node->link_on || node->data == NULL)
			break;

		device = node->data;
		device->node_id = node->node_id;
		device->generation = card->generation;
751 752 753 754
		if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
			PREPARE_DELAYED_WORK(&device->work, fw_device_update);
			schedule_delayed_work(&device->work, 0);
		}
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
		break;

	case FW_NODE_DESTROYED:
	case FW_NODE_LINK_OFF:
		if (!node->data)
			break;

		/* Destroy the device associated with the node.  There
		 * are two cases here: either the device is fully
		 * initialized (FW_DEVICE_RUNNING) or we're in the
		 * process of reading its config rom
		 * (FW_DEVICE_INITIALIZING).  If it is fully
		 * initialized we can reuse device->work to schedule a
		 * full fw_device_shutdown().  If not, there's work
		 * scheduled to read it's config rom, and we just put
		 * the device in shutdown state to have that code fail
		 * to create the device. */
		device = node->data;
773
		if (atomic_xchg(&device->state,
774 775
				FW_DEVICE_SHUTDOWN) == FW_DEVICE_RUNNING) {
			PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
776 777 778 779 780
			schedule_delayed_work(&device->work, 0);
		}
		break;
	}
}