xhci-hcd.c 54.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * xHCI host controller driver
 *
 * Copyright (C) 2008 Intel Corp.
 *
 * Author: Sarah Sharp
 * Some code borrowed from the Linux EHCI driver.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/irq.h>
#include <linux/module.h>
25
#include <linux/moduleparam.h>
26 27 28 29 30 31

#include "xhci.h"

#define DRIVER_AUTHOR "Sarah Sharp"
#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"

32 33 34 35 36
/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
static int link_quirk;
module_param(link_quirk, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
/* TODO: copied from ehci-hcd.c - can this be refactored? */
/*
 * handshake - spin reading hc until handshake completes or fails
 * @ptr: address of hc register to be read
 * @mask: bits to look at in result of read
 * @done: value of those bits when handshake succeeds
 * @usec: timeout in microseconds
 *
 * Returns negative errno, or zero on success
 *
 * Success happens when the "mask" bits have the specified value (hardware
 * handshake done).  There are two failure modes:  "usec" have passed (major
 * hardware flakeout), or the register reads as all-ones (hardware removed).
 */
static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
		      u32 mask, u32 done, int usec)
{
	u32	result;

	do {
		result = xhci_readl(xhci, ptr);
		if (result == ~(u32)0)		/* card removed */
			return -ENODEV;
		result &= mask;
		if (result == done)
			return 0;
		udelay(1);
		usec--;
	} while (usec > 0);
	return -ETIMEDOUT;
}

/*
 * Force HC into halt state.
 *
 * Disable any IRQs and clear the run/stop bit.
 * HC will complete any current and actively pipelined transactions, and
 * should halt within 16 microframes of the run/stop bit being cleared.
 * Read HC Halted bit in the status register to see when the HC is finished.
 * XXX: shouldn't we set HC_STATE_HALT here somewhere?
 */
int xhci_halt(struct xhci_hcd *xhci)
{
	u32 halted;
	u32 cmd;
	u32 mask;

	xhci_dbg(xhci, "// Halt the HC\n");
	/* Disable all interrupts from the host controller */
	mask = ~(XHCI_IRQS);
	halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
	if (!halted)
		mask &= ~CMD_RUN;

	cmd = xhci_readl(xhci, &xhci->op_regs->command);
	cmd &= mask;
	xhci_writel(xhci, cmd, &xhci->op_regs->command);

	return handshake(xhci, &xhci->op_regs->status,
			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
}

/*
 * Reset a halted HC, and set the internal HC state to HC_STATE_HALT.
 *
 * This resets pipelines, timers, counters, state machines, etc.
 * Transactions will be terminated immediately, and operational registers
 * will be set to their defaults.
 */
int xhci_reset(struct xhci_hcd *xhci)
{
	u32 command;
	u32 state;

	state = xhci_readl(xhci, &xhci->op_regs->status);
112 113 114 115
	if ((state & STS_HALT) == 0) {
		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
		return 0;
	}
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222

	xhci_dbg(xhci, "// Reset the HC\n");
	command = xhci_readl(xhci, &xhci->op_regs->command);
	command |= CMD_RESET;
	xhci_writel(xhci, command, &xhci->op_regs->command);
	/* XXX: Why does EHCI set this here?  Shouldn't other code do this? */
	xhci_to_hcd(xhci)->state = HC_STATE_HALT;

	return handshake(xhci, &xhci->op_regs->command, CMD_RESET, 0, 250 * 1000);
}

/*
 * Stop the HC from processing the endpoint queues.
 */
static void xhci_quiesce(struct xhci_hcd *xhci)
{
	/*
	 * Queues are per endpoint, so we need to disable an endpoint or slot.
	 *
	 * To disable a slot, we need to insert a disable slot command on the
	 * command ring and ring the doorbell.  This will also free any internal
	 * resources associated with the slot (which might not be what we want).
	 *
	 * A Release Endpoint command sounds better - doesn't free internal HC
	 * memory, but removes the endpoints from the schedule and releases the
	 * bandwidth, disables the doorbells, and clears the endpoint enable
	 * flag.  Usually used prior to a set interface command.
	 *
	 * TODO: Implement after command ring code is done.
	 */
	BUG_ON(!HC_IS_RUNNING(xhci_to_hcd(xhci)->state));
	xhci_dbg(xhci, "Finished quiescing -- code not written yet\n");
}

#if 0
/* Set up MSI-X table for entry 0 (may claim other entries later) */
static int xhci_setup_msix(struct xhci_hcd *xhci)
{
	int ret;
	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);

	xhci->msix_count = 0;
	/* XXX: did I do this right?  ixgbe does kcalloc for more than one */
	xhci->msix_entries = kmalloc(sizeof(struct msix_entry), GFP_KERNEL);
	if (!xhci->msix_entries) {
		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
		return -ENOMEM;
	}
	xhci->msix_entries[0].entry = 0;

	ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
	if (ret) {
		xhci_err(xhci, "Failed to enable MSI-X\n");
		goto free_entries;
	}

	/*
	 * Pass the xhci pointer value as the request_irq "cookie".
	 * If more irqs are added, this will need to be unique for each one.
	 */
	ret = request_irq(xhci->msix_entries[0].vector, &xhci_irq, 0,
			"xHCI", xhci_to_hcd(xhci));
	if (ret) {
		xhci_err(xhci, "Failed to allocate MSI-X interrupt\n");
		goto disable_msix;
	}
	xhci_dbg(xhci, "Finished setting up MSI-X\n");
	return 0;

disable_msix:
	pci_disable_msix(pdev);
free_entries:
	kfree(xhci->msix_entries);
	xhci->msix_entries = NULL;
	return ret;
}

/* XXX: code duplication; can xhci_setup_msix call this? */
/* Free any IRQs and disable MSI-X */
static void xhci_cleanup_msix(struct xhci_hcd *xhci)
{
	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
	if (!xhci->msix_entries)
		return;

	free_irq(xhci->msix_entries[0].vector, xhci);
	pci_disable_msix(pdev);
	kfree(xhci->msix_entries);
	xhci->msix_entries = NULL;
	xhci_dbg(xhci, "Finished cleaning up MSI-X\n");
}
#endif

/*
 * Initialize memory for HCD and xHC (one-time init).
 *
 * Program the PAGESIZE register, initialize the device context array, create
 * device contexts (?), set up a command ring segment (or two?), create event
 * ring (one for now).
 */
int xhci_init(struct usb_hcd *hcd)
{
	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
	int retval = 0;

	xhci_dbg(xhci, "xhci_init\n");
	spin_lock_init(&xhci->lock);
223 224 225 226
	if (link_quirk) {
		xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
	} else {
227
		xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
228
	}
229 230 231 232 233 234
	retval = xhci_mem_init(xhci, GFP_KERNEL);
	xhci_dbg(xhci, "Finished xhci_init\n");

	return retval;
}

235 236 237 238 239 240 241 242 243
/*
 * Called in interrupt context when there might be work
 * queued on the event ring
 *
 * xhci->lock must be held by caller.
 */
static void xhci_work(struct xhci_hcd *xhci)
{
	u32 temp;
244
	u64 temp_64;
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264

	/*
	 * Clear the op reg interrupt status first,
	 * so we can receive interrupts from other MSI-X interrupters.
	 * Write 1 to clear the interrupt status.
	 */
	temp = xhci_readl(xhci, &xhci->op_regs->status);
	temp |= STS_EINT;
	xhci_writel(xhci, temp, &xhci->op_regs->status);
	/* FIXME when MSI-X is supported and there are multiple vectors */
	/* Clear the MSI-X event interrupt status */

	/* Acknowledge the interrupt */
	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
	temp |= 0x3;
	xhci_writel(xhci, temp, &xhci->ir_set->irq_pending);
	/* Flush posted writes */
	xhci_readl(xhci, &xhci->ir_set->irq_pending);

	/* FIXME this should be a delayed service routine that clears the EHB */
265
	xhci_handle_event(xhci);
266

267
	/* Clear the event handler busy flag (RW1C); the event ring should be empty. */
268
	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
269
	xhci_write_64(xhci, temp_64 | ERST_EHB, &xhci->ir_set->erst_dequeue);
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
	/* Flush posted writes -- FIXME is this necessary? */
	xhci_readl(xhci, &xhci->ir_set->irq_pending);
}

/*-------------------------------------------------------------------------*/

/*
 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
 * we might get bad data out of the event ring.  Section 4.10.2.7 has a list of
 * indicators of an event TRB error, but we check the status *first* to be safe.
 */
irqreturn_t xhci_irq(struct usb_hcd *hcd)
{
	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
	u32 temp, temp2;
285
	union xhci_trb *trb;
286 287

	spin_lock(&xhci->lock);
288
	trb = xhci->event_ring->dequeue;
289 290 291
	/* Check if the xHC generated the interrupt, or the irq is shared */
	temp = xhci_readl(xhci, &xhci->op_regs->status);
	temp2 = xhci_readl(xhci, &xhci->ir_set->irq_pending);
292 293 294
	if (temp == 0xffffffff && temp2 == 0xffffffff)
		goto hw_died;

295 296 297 298
	if (!(temp & STS_EINT) && !ER_IRQ_PENDING(temp2)) {
		spin_unlock(&xhci->lock);
		return IRQ_NONE;
	}
299 300 301 302 303 304 305 306 307
	xhci_dbg(xhci, "op reg status = %08x\n", temp);
	xhci_dbg(xhci, "ir set irq_pending = %08x\n", temp2);
	xhci_dbg(xhci, "Event ring dequeue ptr:\n");
	xhci_dbg(xhci, "@%llx %08x %08x %08x %08x\n",
			(unsigned long long)xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, trb),
			lower_32_bits(trb->link.segment_ptr),
			upper_32_bits(trb->link.segment_ptr),
			(unsigned int) trb->link.intr_target,
			(unsigned int) trb->link.control);
308 309 310 311

	if (temp & STS_FATAL) {
		xhci_warn(xhci, "WARNING: Host System Error\n");
		xhci_halt(xhci);
312
hw_died:
313
		xhci_to_hcd(xhci)->state = HC_STATE_HALT;
314
		spin_unlock(&xhci->lock);
315 316 317 318 319 320 321 322 323 324
		return -ESHUTDOWN;
	}

	xhci_work(xhci);
	spin_unlock(&xhci->lock);

	return IRQ_HANDLED;
}

#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
325
void xhci_event_ring_work(unsigned long arg)
326 327 328
{
	unsigned long flags;
	int temp;
329
	u64 temp_64;
330 331 332 333 334 335 336 337
	struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
	int i, j;

	xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);

	spin_lock_irqsave(&xhci->lock, flags);
	temp = xhci_readl(xhci, &xhci->op_regs->status);
	xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
338 339 340 341 342 343
	if (temp == 0xffffffff) {
		xhci_dbg(xhci, "HW died, polling stopped.\n");
		spin_unlock_irqrestore(&xhci->lock, flags);
		return;
	}

344 345 346 347 348 349 350 351
	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
	xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
	xhci_dbg(xhci, "No-op commands handled = %d\n", xhci->noops_handled);
	xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
	xhci->error_bitmask = 0;
	xhci_dbg(xhci, "Event ring:\n");
	xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
352 353 354
	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
	temp_64 &= ~ERST_PTR_MASK;
	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
355 356 357 358
	xhci_dbg(xhci, "Command ring:\n");
	xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
	xhci_dbg_cmd_ptrs(xhci);
359
	for (i = 0; i < MAX_HC_SLOTS; ++i) {
360 361 362 363 364 365 366 367
		if (!xhci->devs[i])
			continue;
		for (j = 0; j < 31; ++j) {
			struct xhci_ring *ring = xhci->devs[i]->eps[j].ring;
			if (!ring)
				continue;
			xhci_dbg(xhci, "Dev %d endpoint ring %d:\n", i, j);
			xhci_debug_segment(xhci, ring->deq_seg);
368 369
		}
	}
370 371

	if (xhci->noops_submitted != NUM_TEST_NOOPS)
372 373
		if (xhci_setup_one_noop(xhci))
			xhci_ring_cmd_db(xhci);
374 375 376 377 378 379 380 381 382
	spin_unlock_irqrestore(&xhci->lock, flags);

	if (!xhci->zombie)
		mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
	else
		xhci_dbg(xhci, "Quit polling the event ring.\n");
}
#endif

383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
/*
 * Start the HC after it was halted.
 *
 * This function is called by the USB core when the HC driver is added.
 * Its opposite is xhci_stop().
 *
 * xhci_init() must be called once before this function can be called.
 * Reset the HC, enable device slot contexts, program DCBAAP, and
 * set command ring pointer and event ring pointer.
 *
 * Setup MSI-X vectors and enable interrupts.
 */
int xhci_run(struct usb_hcd *hcd)
{
	u32 temp;
398
	u64 temp_64;
399
	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
400
	void (*doorbell)(struct xhci_hcd *) = NULL;
401

S
Sarah Sharp 已提交
402 403 404
	hcd->uses_new_polling = 1;
	hcd->poll_rh = 0;

405
	xhci_dbg(xhci, "xhci_run\n");
406 407 408 409 410 411 412 413
#if 0	/* FIXME: MSI not setup yet */
	/* Do this at the very last minute */
	ret = xhci_setup_msix(xhci);
	if (!ret)
		return ret;

	return -ENOSYS;
#endif
414 415 416
#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
	init_timer(&xhci->event_ring_timer);
	xhci->event_ring_timer.data = (unsigned long) xhci;
417
	xhci->event_ring_timer.function = xhci_event_ring_work;
418 419 420 421 422 423 424
	/* Poll the event ring */
	xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
	xhci->zombie = 0;
	xhci_dbg(xhci, "Setting event ring polling timer\n");
	add_timer(&xhci->event_ring_timer);
#endif

425 426 427 428 429 430 431 432 433 434 435 436 437 438
	xhci_dbg(xhci, "Command ring memory map follows:\n");
	xhci_debug_ring(xhci, xhci->cmd_ring);
	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
	xhci_dbg_cmd_ptrs(xhci);

	xhci_dbg(xhci, "ERST memory map follows:\n");
	xhci_dbg_erst(xhci, &xhci->erst);
	xhci_dbg(xhci, "Event ring:\n");
	xhci_debug_ring(xhci, xhci->event_ring);
	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
	temp_64 &= ~ERST_PTR_MASK;
	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);

439 440
	xhci_dbg(xhci, "// Set the interrupt modulation register\n");
	temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
441
	temp &= ~ER_IRQ_INTERVAL_MASK;
442 443 444 445 446 447 448 449 450 451 452 453
	temp |= (u32) 160;
	xhci_writel(xhci, temp, &xhci->ir_set->irq_control);

	/* Set the HCD state before we enable the irqs */
	hcd->state = HC_STATE_RUNNING;
	temp = xhci_readl(xhci, &xhci->op_regs->command);
	temp |= (CMD_EIE);
	xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
			temp);
	xhci_writel(xhci, temp, &xhci->op_regs->command);

	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
454 455
	xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
456 457 458 459
	xhci_writel(xhci, ER_IRQ_ENABLE(temp),
			&xhci->ir_set->irq_pending);
	xhci_print_ir_set(xhci, xhci->ir_set, 0);

460
	if (NUM_TEST_NOOPS > 0)
461
		doorbell = xhci_setup_one_noop(xhci);
462

463 464 465 466 467 468 469
	temp = xhci_readl(xhci, &xhci->op_regs->command);
	temp |= (CMD_RUN);
	xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
			temp);
	xhci_writel(xhci, temp, &xhci->op_regs->command);
	/* Flush PCI posted writes */
	temp = xhci_readl(xhci, &xhci->op_regs->command);
470
	xhci_dbg(xhci, "// @%p = 0x%x\n", &xhci->op_regs->command, temp);
471 472
	if (doorbell)
		(*doorbell)(xhci);
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501

	xhci_dbg(xhci, "Finished xhci_run\n");
	return 0;
}

/*
 * Stop xHCI driver.
 *
 * This function is called by the USB core when the HC driver is removed.
 * Its opposite is xhci_run().
 *
 * Disable device contexts, disable IRQs, and quiesce the HC.
 * Reset the HC, finish any completed transactions, and cleanup memory.
 */
void xhci_stop(struct usb_hcd *hcd)
{
	u32 temp;
	struct xhci_hcd *xhci = hcd_to_xhci(hcd);

	spin_lock_irq(&xhci->lock);
	if (HC_IS_RUNNING(hcd->state))
		xhci_quiesce(xhci);
	xhci_halt(xhci);
	xhci_reset(xhci);
	spin_unlock_irq(&xhci->lock);

#if 0	/* No MSI yet */
	xhci_cleanup_msix(xhci);
#endif
502 503 504 505 506 507
#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
	/* Tell the event ring poll function not to reschedule */
	xhci->zombie = 1;
	del_timer_sync(&xhci->event_ring_timer);
#endif

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
	xhci_dbg(xhci, "// Disabling event ring interrupts\n");
	temp = xhci_readl(xhci, &xhci->op_regs->status);
	xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
	xhci_writel(xhci, ER_IRQ_DISABLE(temp),
			&xhci->ir_set->irq_pending);
	xhci_print_ir_set(xhci, xhci->ir_set, 0);

	xhci_dbg(xhci, "cleaning up memory\n");
	xhci_mem_cleanup(xhci);
	xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
		    xhci_readl(xhci, &xhci->op_regs->status));
}

/*
 * Shutdown HC (not bus-specific)
 *
 * This is called when the machine is rebooting or halting.  We assume that the
 * machine will be powered off, and the HC's internal state will be reset.
 * Don't bother to free memory.
 */
void xhci_shutdown(struct usb_hcd *hcd)
{
	struct xhci_hcd *xhci = hcd_to_xhci(hcd);

	spin_lock_irq(&xhci->lock);
	xhci_halt(xhci);
	spin_unlock_irq(&xhci->lock);

#if 0
	xhci_cleanup_msix(xhci);
#endif

	xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
		    xhci_readl(xhci, &xhci->op_regs->status));
}

545 546
/*-------------------------------------------------------------------------*/

547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
/**
 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
 * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
 * value to right shift 1 for the bitmask.
 *
 * Index  = (epnum * 2) + direction - 1,
 * where direction = 0 for OUT, 1 for IN.
 * For control endpoints, the IN index is used (OUT index is unused), so
 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
 */
unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
{
	unsigned int index;
	if (usb_endpoint_xfer_control(desc))
		index = (unsigned int) (usb_endpoint_num(desc)*2);
	else
		index = (unsigned int) (usb_endpoint_num(desc)*2) +
			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
	return index;
}

568 569 570 571 572 573 574 575 576
/* Find the flag for this endpoint (for use in the control context).  Use the
 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
 * bit 1, etc.
 */
unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
{
	return 1 << (xhci_get_endpoint_index(desc) + 1);
}

577 578 579 580 581 582 583 584 585
/* Find the flag for this endpoint (for use in the control context).  Use the
 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
 * bit 1, etc.
 */
unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
{
	return 1 << (ep_index + 1);
}

586 587 588 589 590 591
/* Compute the last valid endpoint context index.  Basically, this is the
 * endpoint index plus one.  For slot contexts with more than valid endpoint,
 * we find the most significant bit set in the added contexts flags.
 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
 */
592
unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
593 594 595 596
{
	return fls(added_ctxs) - 1;
}

597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
/* Returns 1 if the arguments are OK;
 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
 */
int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
		struct usb_host_endpoint *ep, int check_ep, const char *func) {
	if (!hcd || (check_ep && !ep) || !udev) {
		printk(KERN_DEBUG "xHCI %s called with invalid args\n",
				func);
		return -EINVAL;
	}
	if (!udev->parent) {
		printk(KERN_DEBUG "xHCI %s called for root hub\n",
				func);
		return 0;
	}
	if (!udev->slot_id) {
		printk(KERN_DEBUG "xHCI %s called with unaddressed device\n",
				func);
		return -EINVAL;
	}
	return 1;
}

620
static int xhci_configure_endpoint(struct xhci_hcd *xhci,
621 622
		struct usb_device *udev, struct xhci_command *command,
		bool ctx_change, bool must_succeed);
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653

/*
 * Full speed devices may have a max packet size greater than 8 bytes, but the
 * USB core doesn't know that until it reads the first 8 bytes of the
 * descriptor.  If the usb_device's max packet size changes after that point,
 * we need to issue an evaluate context command and wait on it.
 */
static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
		unsigned int ep_index, struct urb *urb)
{
	struct xhci_container_ctx *in_ctx;
	struct xhci_container_ctx *out_ctx;
	struct xhci_input_control_ctx *ctrl_ctx;
	struct xhci_ep_ctx *ep_ctx;
	int max_packet_size;
	int hw_max_packet_size;
	int ret = 0;

	out_ctx = xhci->devs[slot_id]->out_ctx;
	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
	hw_max_packet_size = MAX_PACKET_DECODED(ep_ctx->ep_info2);
	max_packet_size = urb->dev->ep0.desc.wMaxPacketSize;
	if (hw_max_packet_size != max_packet_size) {
		xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
		xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
				max_packet_size);
		xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
				hw_max_packet_size);
		xhci_dbg(xhci, "Issuing evaluate context command.\n");

		/* Set up the modified control endpoint 0 */
654 655
		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
				xhci->devs[slot_id]->out_ctx, ep_index);
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
		in_ctx = xhci->devs[slot_id]->in_ctx;
		ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
		ep_ctx->ep_info2 &= ~MAX_PACKET_MASK;
		ep_ctx->ep_info2 |= MAX_PACKET(max_packet_size);

		/* Set up the input context flags for the command */
		/* FIXME: This won't work if a non-default control endpoint
		 * changes max packet sizes.
		 */
		ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
		ctrl_ctx->add_flags = EP0_FLAG;
		ctrl_ctx->drop_flags = 0;

		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
		xhci_dbg_ctx(xhci, in_ctx, ep_index);
		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
		xhci_dbg_ctx(xhci, out_ctx, ep_index);

674 675
		ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
				true, false);
676 677 678 679 680 681 682 683 684

		/* Clean up the input context for later use by bandwidth
		 * functions.
		 */
		ctrl_ctx->add_flags = SLOT_FLAG;
	}
	return ret;
}

685 686 687 688 689 690 691 692 693 694 695
/*
 * non-error returns are a promise to giveback() the urb later
 * we drop ownership so next owner (or urb unlink) can get it
 */
int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
{
	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
	unsigned long flags;
	int ret = 0;
	unsigned int slot_id, ep_index;

696

697 698 699 700 701 702 703 704 705
	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, true, __func__) <= 0)
		return -EINVAL;

	slot_id = urb->dev->slot_id;
	ep_index = xhci_get_endpoint_index(&urb->ep->desc);

	if (!xhci->devs || !xhci->devs[slot_id]) {
		if (!in_interrupt())
			dev_warn(&urb->dev->dev, "WARN: urb submitted for dev with no Slot ID\n");
706 707
		ret = -EINVAL;
		goto exit;
708 709 710 711 712 713 714
	}
	if (!test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags)) {
		if (!in_interrupt())
			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
		ret = -ESHUTDOWN;
		goto exit;
	}
715 716 717 718 719 720 721 722 723 724 725
	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
		/* Check to see if the max packet size for the default control
		 * endpoint changed during FS device enumeration
		 */
		if (urb->dev->speed == USB_SPEED_FULL) {
			ret = xhci_check_maxpacket(xhci, slot_id,
					ep_index, urb);
			if (ret < 0)
				return ret;
		}

726 727 728
		/* We have a spinlock and interrupts disabled, so we must pass
		 * atomic context to this function, which may allocate memory.
		 */
729
		spin_lock_irqsave(&xhci->lock, flags);
730
		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
731
				slot_id, ep_index);
732 733 734
		spin_unlock_irqrestore(&xhci->lock, flags);
	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
		spin_lock_irqsave(&xhci->lock, flags);
735
		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
736
				slot_id, ep_index);
737
		spin_unlock_irqrestore(&xhci->lock, flags);
738 739 740 741 742
	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
		spin_lock_irqsave(&xhci->lock, flags);
		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
				slot_id, ep_index);
		spin_unlock_irqrestore(&xhci->lock, flags);
743
	} else {
S
Sarah Sharp 已提交
744
		ret = -EINVAL;
745
	}
746 747 748 749
exit:
	return ret;
}

750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
/*
 * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
 * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
 * should pick up where it left off in the TD, unless a Set Transfer Ring
 * Dequeue Pointer is issued.
 *
 * The TRBs that make up the buffers for the canceled URB will be "removed" from
 * the ring.  Since the ring is a contiguous structure, they can't be physically
 * removed.  Instead, there are two options:
 *
 *  1) If the HC is in the middle of processing the URB to be canceled, we
 *     simply move the ring's dequeue pointer past those TRBs using the Set
 *     Transfer Ring Dequeue Pointer command.  This will be the common case,
 *     when drivers timeout on the last submitted URB and attempt to cancel.
 *
 *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
 *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
 *     HC will need to invalidate the any TRBs it has cached after the stop
 *     endpoint command, as noted in the xHCI 0.95 errata.
 *
 *  3) The TD may have completed by the time the Stop Endpoint Command
 *     completes, so software needs to handle that case too.
 *
 * This function should protect against the TD enqueueing code ringing the
 * doorbell while this code is waiting for a Stop Endpoint command to complete.
 * It also needs to account for multiple cancellations on happening at the same
 * time for the same endpoint.
 *
 * Note that this function can be called in any context, or so says
 * usb_hcd_unlink_urb()
780 781 782
 */
int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
{
783 784
	unsigned long flags;
	int ret;
785
	u32 temp;
786 787 788 789
	struct xhci_hcd *xhci;
	struct xhci_td *td;
	unsigned int ep_index;
	struct xhci_ring *ep_ring;
790
	struct xhci_virt_ep *ep;
791 792 793 794 795 796 797

	xhci = hcd_to_xhci(hcd);
	spin_lock_irqsave(&xhci->lock, flags);
	/* Make sure the URB hasn't completed or been unlinked already */
	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
	if (ret || !urb->hcpriv)
		goto done;
798 799 800 801 802 803 804 805 806 807 808
	temp = xhci_readl(xhci, &xhci->op_regs->status);
	if (temp == 0xffffffff) {
		xhci_dbg(xhci, "HW died, freeing TD.\n");
		td = (struct xhci_td *) urb->hcpriv;

		usb_hcd_unlink_urb_from_ep(hcd, urb);
		spin_unlock_irqrestore(&xhci->lock, flags);
		usb_hcd_giveback_urb(xhci_to_hcd(xhci), urb, -ESHUTDOWN);
		kfree(td);
		return ret;
	}
809

810
	xhci_dbg(xhci, "Cancel URB %p\n", urb);
811 812
	xhci_dbg(xhci, "Event ring:\n");
	xhci_debug_ring(xhci, xhci->event_ring);
813
	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
814 815
	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
	ep_ring = ep->ring;
816 817
	xhci_dbg(xhci, "Endpoint ring:\n");
	xhci_debug_ring(xhci, ep_ring);
818 819
	td = (struct xhci_td *) urb->hcpriv;

820 821
	ep->cancels_pending++;
	list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
822 823 824
	/* Queue a stop endpoint command, but only if this is
	 * the first cancellation to be handled.
	 */
825
	if (ep->cancels_pending == 1) {
826 827
		xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index);
		xhci_ring_cmd_db(xhci);
828 829 830 831
	}
done:
	spin_unlock_irqrestore(&xhci->lock, flags);
	return ret;
832 833
}

834 835 836 837 838 839 840 841
/* Drop an endpoint from a new bandwidth configuration for this device.
 * Only one call to this function is allowed per endpoint before
 * check_bandwidth() or reset_bandwidth() must be called.
 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
 * add the endpoint to the schedule with possibly new parameters denoted by a
 * different endpoint descriptor in usb_host_endpoint.
 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
 * not allowed.
842 843 844 845
 *
 * The USB core will not allow URBs to be queued to an endpoint that is being
 * disabled, so there's no need for mutual exclusion to protect
 * the xhci->devs[slot_id] structure.
846 847 848 849 850
 */
int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
		struct usb_host_endpoint *ep)
{
	struct xhci_hcd *xhci;
851 852 853
	struct xhci_container_ctx *in_ctx, *out_ctx;
	struct xhci_input_control_ctx *ctrl_ctx;
	struct xhci_slot_ctx *slot_ctx;
854 855 856 857 858 859 860 861 862 863 864
	unsigned int last_ctx;
	unsigned int ep_index;
	struct xhci_ep_ctx *ep_ctx;
	u32 drop_flag;
	u32 new_add_flags, new_drop_flags, new_slot_info;
	int ret;

	ret = xhci_check_args(hcd, udev, ep, 1, __func__);
	if (ret <= 0)
		return ret;
	xhci = hcd_to_xhci(hcd);
865
	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880

	drop_flag = xhci_get_endpoint_flag(&ep->desc);
	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
				__func__, drop_flag);
		return 0;
	}

	if (!xhci->devs || !xhci->devs[udev->slot_id]) {
		xhci_warn(xhci, "xHCI %s called with unaddressed device\n",
				__func__);
		return -EINVAL;
	}

	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
881 882
	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
883
	ep_index = xhci_get_endpoint_index(&ep->desc);
884
	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
885 886 887 888
	/* If the HC already knows the endpoint is disabled,
	 * or the HCD has noted it is disabled, ignore this request
	 */
	if ((ep_ctx->ep_info & EP_STATE_MASK) == EP_STATE_DISABLED ||
889
			ctrl_ctx->drop_flags & xhci_get_endpoint_flag(&ep->desc)) {
890 891
		xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
				__func__, ep);
892 893 894
		return 0;
	}

895 896
	ctrl_ctx->drop_flags |= drop_flag;
	new_drop_flags = ctrl_ctx->drop_flags;
897

898 899
	ctrl_ctx->add_flags = ~drop_flag;
	new_add_flags = ctrl_ctx->add_flags;
900

901 902
	last_ctx = xhci_last_valid_endpoint(ctrl_ctx->add_flags);
	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
903
	/* Update the last valid endpoint context, if we deleted the last one */
904 905 906
	if ((slot_ctx->dev_info & LAST_CTX_MASK) > LAST_CTX(last_ctx)) {
		slot_ctx->dev_info &= ~LAST_CTX_MASK;
		slot_ctx->dev_info |= LAST_CTX(last_ctx);
907
	}
908
	new_slot_info = slot_ctx->dev_info;
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928

	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);

	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
			(unsigned int) ep->desc.bEndpointAddress,
			udev->slot_id,
			(unsigned int) new_drop_flags,
			(unsigned int) new_add_flags,
			(unsigned int) new_slot_info);
	return 0;
}

/* Add an endpoint to a new possible bandwidth configuration for this device.
 * Only one call to this function is allowed per endpoint before
 * check_bandwidth() or reset_bandwidth() must be called.
 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
 * add the endpoint to the schedule with possibly new parameters denoted by a
 * different endpoint descriptor in usb_host_endpoint.
 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
 * not allowed.
929 930 931 932
 *
 * The USB core will not allow URBs to be queued to an endpoint until the
 * configuration or alt setting is installed in the device, so there's no need
 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
933 934 935 936 937
 */
int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
		struct usb_host_endpoint *ep)
{
	struct xhci_hcd *xhci;
938
	struct xhci_container_ctx *in_ctx, *out_ctx;
939 940
	unsigned int ep_index;
	struct xhci_ep_ctx *ep_ctx;
941 942
	struct xhci_slot_ctx *slot_ctx;
	struct xhci_input_control_ctx *ctrl_ctx;
943 944 945 946 947 948
	u32 added_ctxs;
	unsigned int last_ctx;
	u32 new_add_flags, new_drop_flags, new_slot_info;
	int ret = 0;

	ret = xhci_check_args(hcd, udev, ep, 1, __func__);
949 950 951
	if (ret <= 0) {
		/* So we won't queue a reset ep command for a root hub */
		ep->hcpriv = NULL;
952
		return ret;
953
	}
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
	xhci = hcd_to_xhci(hcd);

	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
	last_ctx = xhci_last_valid_endpoint(added_ctxs);
	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
		/* FIXME when we have to issue an evaluate endpoint command to
		 * deal with ep0 max packet size changing once we get the
		 * descriptors
		 */
		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
				__func__, added_ctxs);
		return 0;
	}

	if (!xhci->devs || !xhci->devs[udev->slot_id]) {
		xhci_warn(xhci, "xHCI %s called with unaddressed device\n",
				__func__);
		return -EINVAL;
	}

	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
975 976
	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
977
	ep_index = xhci_get_endpoint_index(&ep->desc);
978
	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
979 980 981
	/* If the HCD has already noted the endpoint is enabled,
	 * ignore this request.
	 */
982
	if (ctrl_ctx->add_flags & xhci_get_endpoint_flag(&ep->desc)) {
983 984
		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
				__func__, ep);
985 986 987
		return 0;
	}

988 989 990 991 992 993 994
	/*
	 * Configuration and alternate setting changes must be done in
	 * process context, not interrupt context (or so documenation
	 * for usb_set_interface() and usb_set_configuration() claim).
	 */
	if (xhci_endpoint_init(xhci, xhci->devs[udev->slot_id],
				udev, ep, GFP_KERNEL) < 0) {
995 996 997 998 999
		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
				__func__, ep->desc.bEndpointAddress);
		return -ENOMEM;
	}

1000 1001
	ctrl_ctx->add_flags |= added_ctxs;
	new_add_flags = ctrl_ctx->add_flags;
1002 1003 1004 1005 1006 1007 1008

	/* If xhci_endpoint_disable() was called for this endpoint, but the
	 * xHC hasn't been notified yet through the check_bandwidth() call,
	 * this re-adds a new state for the endpoint from the new endpoint
	 * descriptors.  We must drop and re-add this endpoint, so we leave the
	 * drop flags alone.
	 */
1009
	new_drop_flags = ctrl_ctx->drop_flags;
1010

1011
	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1012
	/* Update the last valid endpoint context, if we just added one past */
1013 1014 1015
	if ((slot_ctx->dev_info & LAST_CTX_MASK) < LAST_CTX(last_ctx)) {
		slot_ctx->dev_info &= ~LAST_CTX_MASK;
		slot_ctx->dev_info |= LAST_CTX(last_ctx);
1016
	}
1017
	new_slot_info = slot_ctx->dev_info;
1018

1019 1020 1021
	/* Store the usb_device pointer for later use */
	ep->hcpriv = udev;

1022 1023 1024 1025 1026 1027 1028 1029 1030
	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
			(unsigned int) ep->desc.bEndpointAddress,
			udev->slot_id,
			(unsigned int) new_drop_flags,
			(unsigned int) new_add_flags,
			(unsigned int) new_slot_info);
	return 0;
}

1031
static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1032
{
1033
	struct xhci_input_control_ctx *ctrl_ctx;
1034
	struct xhci_ep_ctx *ep_ctx;
1035
	struct xhci_slot_ctx *slot_ctx;
1036 1037 1038 1039 1040 1041 1042
	int i;

	/* When a device's add flag and drop flag are zero, any subsequent
	 * configure endpoint command will leave that endpoint's state
	 * untouched.  Make sure we don't leave any old state in the input
	 * endpoint contexts.
	 */
1043 1044 1045 1046 1047
	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
	ctrl_ctx->drop_flags = 0;
	ctrl_ctx->add_flags = 0;
	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
	slot_ctx->dev_info &= ~LAST_CTX_MASK;
1048
	/* Endpoint 0 is always valid */
1049
	slot_ctx->dev_info |= LAST_CTX(1);
1050
	for (i = 1; i < 31; ++i) {
1051
		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1052 1053
		ep_ctx->ep_info = 0;
		ep_ctx->ep_info2 = 0;
1054
		ep_ctx->deq = 0;
1055 1056 1057 1058
		ep_ctx->tx_info = 0;
	}
}

1059
static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1060
		struct usb_device *udev, int *cmd_status)
1061 1062 1063
{
	int ret;

1064
	switch (*cmd_status) {
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
	case COMP_ENOMEM:
		dev_warn(&udev->dev, "Not enough host controller resources "
				"for new device state.\n");
		ret = -ENOMEM;
		/* FIXME: can we allocate more resources for the HC? */
		break;
	case COMP_BW_ERR:
		dev_warn(&udev->dev, "Not enough bandwidth "
				"for new device state.\n");
		ret = -ENOSPC;
		/* FIXME: can we go back to the old state? */
		break;
	case COMP_TRB_ERR:
		/* the HCD set up something wrong */
		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
				"add flag = 1, "
				"and endpoint is not disabled.\n");
		ret = -EINVAL;
		break;
	case COMP_SUCCESS:
		dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
		ret = 0;
		break;
	default:
		xhci_err(xhci, "ERROR: unexpected command completion "
1090
				"code 0x%x.\n", *cmd_status);
1091 1092 1093 1094 1095 1096 1097
		ret = -EINVAL;
		break;
	}
	return ret;
}

static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1098
		struct usb_device *udev, int *cmd_status)
1099 1100
{
	int ret;
1101
	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1102

1103
	switch (*cmd_status) {
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
	case COMP_EINVAL:
		dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
				"context command.\n");
		ret = -EINVAL;
		break;
	case COMP_EBADSLT:
		dev_warn(&udev->dev, "WARN: slot not enabled for"
				"evaluate context command.\n");
	case COMP_CTX_STATE:
		dev_warn(&udev->dev, "WARN: invalid context state for "
				"evaluate context command.\n");
		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
		ret = -EINVAL;
		break;
	case COMP_SUCCESS:
		dev_dbg(&udev->dev, "Successful evaluate context command\n");
		ret = 0;
		break;
	default:
		xhci_err(xhci, "ERROR: unexpected command completion "
1124
				"code 0x%x.\n", *cmd_status);
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
		ret = -EINVAL;
		break;
	}
	return ret;
}

/* Issue a configure endpoint command or evaluate context command
 * and wait for it to finish.
 */
static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1135 1136 1137
		struct usb_device *udev,
		struct xhci_command *command,
		bool ctx_change, bool must_succeed)
1138 1139 1140 1141
{
	int ret;
	int timeleft;
	unsigned long flags;
1142 1143 1144 1145
	struct xhci_container_ctx *in_ctx;
	struct completion *cmd_completion;
	int *cmd_status;
	struct xhci_virt_device *virt_dev;
1146 1147

	spin_lock_irqsave(&xhci->lock, flags);
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
	virt_dev = xhci->devs[udev->slot_id];
	if (command) {
		in_ctx = command->in_ctx;
		cmd_completion = command->completion;
		cmd_status = &command->status;
		command->command_trb = xhci->cmd_ring->enqueue;
		list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
	} else {
		in_ctx = virt_dev->in_ctx;
		cmd_completion = &virt_dev->cmd_completion;
		cmd_status = &virt_dev->cmd_status;
	}

1161
	if (!ctx_change)
1162 1163
		ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
				udev->slot_id, must_succeed);
1164
	else
1165
		ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
				udev->slot_id);
	if (ret < 0) {
		spin_unlock_irqrestore(&xhci->lock, flags);
		xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
		return -ENOMEM;
	}
	xhci_ring_cmd_db(xhci);
	spin_unlock_irqrestore(&xhci->lock, flags);

	/* Wait for the configure endpoint command to complete */
	timeleft = wait_for_completion_interruptible_timeout(
1177
			cmd_completion,
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
			USB_CTRL_SET_TIMEOUT);
	if (timeleft <= 0) {
		xhci_warn(xhci, "%s while waiting for %s command\n",
				timeleft == 0 ? "Timeout" : "Signal",
				ctx_change == 0 ?
					"configure endpoint" :
					"evaluate context");
		/* FIXME cancel the configure endpoint command */
		return -ETIME;
	}

	if (!ctx_change)
1190 1191
		return xhci_configure_endpoint_result(xhci, udev, cmd_status);
	return xhci_evaluate_context_result(xhci, udev, cmd_status);
1192 1193
}

1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
/* Called after one or more calls to xhci_add_endpoint() or
 * xhci_drop_endpoint().  If this call fails, the USB core is expected
 * to call xhci_reset_bandwidth().
 *
 * Since we are in the middle of changing either configuration or
 * installing a new alt setting, the USB core won't allow URBs to be
 * enqueued for any endpoint on the old config or interface.  Nothing
 * else should be touching the xhci->devs[slot_id] structure, so we
 * don't need to take the xhci->lock for manipulating that.
 */
1204 1205 1206 1207 1208 1209
int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
{
	int i;
	int ret = 0;
	struct xhci_hcd *xhci;
	struct xhci_virt_device	*virt_dev;
1210 1211
	struct xhci_input_control_ctx *ctrl_ctx;
	struct xhci_slot_ctx *slot_ctx;
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222

	ret = xhci_check_args(hcd, udev, NULL, 0, __func__);
	if (ret <= 0)
		return ret;
	xhci = hcd_to_xhci(hcd);

	if (!udev->slot_id || !xhci->devs || !xhci->devs[udev->slot_id]) {
		xhci_warn(xhci, "xHCI %s called with unaddressed device\n",
				__func__);
		return -EINVAL;
	}
1223
	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1224 1225 1226
	virt_dev = xhci->devs[udev->slot_id];

	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
1227 1228 1229 1230 1231
	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
	ctrl_ctx->add_flags |= SLOT_FLAG;
	ctrl_ctx->add_flags &= ~EP0_FLAG;
	ctrl_ctx->drop_flags &= ~SLOT_FLAG;
	ctrl_ctx->drop_flags &= ~EP0_FLAG;
1232
	xhci_dbg(xhci, "New Input Control Context:\n");
1233 1234 1235
	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
			LAST_CTX_TO_EP_NUM(slot_ctx->dev_info));
1236

1237 1238
	ret = xhci_configure_endpoint(xhci, udev, NULL,
			false, false);
1239 1240 1241 1242 1243 1244
	if (ret) {
		/* Callee should call reset_bandwidth() */
		return ret;
	}

	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
1245 1246
	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
			LAST_CTX_TO_EP_NUM(slot_ctx->dev_info));
1247

1248
	xhci_zero_in_ctx(xhci, virt_dev);
1249 1250
	/* Free any old rings */
	for (i = 1; i < 31; ++i) {
1251 1252 1253 1254
		if (virt_dev->eps[i].new_ring) {
			xhci_ring_free(xhci, virt_dev->eps[i].ring);
			virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
			virt_dev->eps[i].new_ring = NULL;
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
		}
	}

	return ret;
}

void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
{
	struct xhci_hcd *xhci;
	struct xhci_virt_device	*virt_dev;
	int i, ret;

	ret = xhci_check_args(hcd, udev, NULL, 0, __func__);
	if (ret <= 0)
		return;
	xhci = hcd_to_xhci(hcd);

	if (!xhci->devs || !xhci->devs[udev->slot_id]) {
		xhci_warn(xhci, "xHCI %s called with unaddressed device\n",
				__func__);
		return;
	}
1277
	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1278 1279 1280
	virt_dev = xhci->devs[udev->slot_id];
	/* Free any rings allocated for added endpoints */
	for (i = 0; i < 31; ++i) {
1281 1282 1283
		if (virt_dev->eps[i].new_ring) {
			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
			virt_dev->eps[i].new_ring = NULL;
1284 1285
		}
	}
1286
	xhci_zero_in_ctx(xhci, virt_dev);
1287 1288
}

1289
static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
1290 1291 1292
		struct xhci_container_ctx *in_ctx,
		struct xhci_container_ctx *out_ctx,
		u32 add_flags, u32 drop_flags)
1293 1294
{
	struct xhci_input_control_ctx *ctrl_ctx;
1295
	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1296 1297
	ctrl_ctx->add_flags = add_flags;
	ctrl_ctx->drop_flags = drop_flags;
1298
	xhci_slot_copy(xhci, in_ctx, out_ctx);
1299 1300
	ctrl_ctx->add_flags |= SLOT_FLAG;

1301 1302
	xhci_dbg(xhci, "Input Context:\n");
	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
1303 1304
}

1305 1306 1307 1308 1309 1310 1311 1312 1313
void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
		unsigned int slot_id, unsigned int ep_index,
		struct xhci_dequeue_state *deq_state)
{
	struct xhci_container_ctx *in_ctx;
	struct xhci_ep_ctx *ep_ctx;
	u32 added_ctxs;
	dma_addr_t addr;

1314 1315
	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
			xhci->devs[slot_id]->out_ctx, ep_index);
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
	in_ctx = xhci->devs[slot_id]->in_ctx;
	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
			deq_state->new_deq_ptr);
	if (addr == 0) {
		xhci_warn(xhci, "WARN Cannot submit config ep after "
				"reset ep command\n");
		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
				deq_state->new_deq_seg,
				deq_state->new_deq_ptr);
		return;
	}
	ep_ctx->deq = addr | deq_state->new_cycle_state;

	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
1331 1332
	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
			xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
1333 1334
}

1335
void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
1336
		struct usb_device *udev, unsigned int ep_index)
1337 1338
{
	struct xhci_dequeue_state deq_state;
1339
	struct xhci_virt_ep *ep;
1340 1341

	xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
1342
	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
1343 1344 1345 1346
	/* We need to move the HW's dequeue pointer past this TD,
	 * or it will attempt to resend it on the next doorbell ring.
	 */
	xhci_find_new_dequeue_state(xhci, udev->slot_id,
1347
			ep_index, ep->stopped_td,
1348
			&deq_state);
1349

1350 1351 1352 1353 1354
	/* HW with the reset endpoint quirk will use the saved dequeue state to
	 * issue a configure endpoint command later.
	 */
	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
		xhci_dbg(xhci, "Queueing new dequeue state\n");
1355
		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
				ep_index, &deq_state);
	} else {
		/* Better hope no one uses the input context between now and the
		 * reset endpoint completion!
		 */
		xhci_dbg(xhci, "Setting up input context for "
				"configure endpoint command\n");
		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
				ep_index, &deq_state);
	}
1366 1367
}

1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
/* Deal with stalled endpoints.  The core should have sent the control message
 * to clear the halt condition.  However, we need to make the xHCI hardware
 * reset its sequence number, since a device will expect a sequence number of
 * zero after the halt condition is cleared.
 * Context: in_interrupt
 */
void xhci_endpoint_reset(struct usb_hcd *hcd,
		struct usb_host_endpoint *ep)
{
	struct xhci_hcd *xhci;
	struct usb_device *udev;
	unsigned int ep_index;
	unsigned long flags;
	int ret;
1382
	struct xhci_virt_ep *virt_ep;
1383 1384 1385 1386 1387 1388 1389 1390 1391

	xhci = hcd_to_xhci(hcd);
	udev = (struct usb_device *) ep->hcpriv;
	/* Called with a root hub endpoint (or an endpoint that wasn't added
	 * with xhci_add_endpoint()
	 */
	if (!ep->hcpriv)
		return;
	ep_index = xhci_get_endpoint_index(&ep->desc);
1392 1393
	virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
	if (!virt_ep->stopped_td) {
1394 1395 1396 1397
		xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
				ep->desc.bEndpointAddress);
		return;
	}
1398 1399 1400 1401
	if (usb_endpoint_xfer_control(&ep->desc)) {
		xhci_dbg(xhci, "Control endpoint stall already handled.\n");
		return;
	}
1402 1403 1404 1405

	xhci_dbg(xhci, "Queueing reset endpoint command\n");
	spin_lock_irqsave(&xhci->lock, flags);
	ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
1406 1407 1408 1409 1410
	/*
	 * Can't change the ring dequeue pointer until it's transitioned to the
	 * stopped state, which is only upon a successful reset endpoint
	 * command.  Better hope that last command worked!
	 */
1411
	if (!ret) {
1412 1413
		xhci_cleanup_stalled_ring(xhci, udev, ep_index);
		kfree(virt_ep->stopped_td);
1414 1415 1416 1417 1418 1419 1420 1421
		xhci_ring_cmd_db(xhci);
	}
	spin_unlock_irqrestore(&xhci->lock, flags);

	if (ret)
		xhci_warn(xhci, "FIXME allocate a new ring segment\n");
}

1422 1423 1424 1425 1426 1427 1428 1429 1430
/*
 * At this point, the struct usb_device is about to go away, the device has
 * disconnected, and all traffic has been stopped and the endpoints have been
 * disabled.  Free any HC data structures associated with that device.
 */
void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
{
	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
	unsigned long flags;
1431
	u32 state;
1432 1433 1434 1435 1436

	if (udev->slot_id == 0)
		return;

	spin_lock_irqsave(&xhci->lock, flags);
1437 1438 1439 1440 1441 1442 1443 1444
	/* Don't disable the slot if the host controller is dead. */
	state = xhci_readl(xhci, &xhci->op_regs->status);
	if (state == 0xffffffff) {
		xhci_free_virt_device(xhci, udev->slot_id);
		spin_unlock_irqrestore(&xhci->lock, flags);
		return;
	}

1445
	if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
1446 1447 1448 1449
		spin_unlock_irqrestore(&xhci->lock, flags);
		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
		return;
	}
1450
	xhci_ring_cmd_db(xhci);
1451 1452 1453
	spin_unlock_irqrestore(&xhci->lock, flags);
	/*
	 * Event command completion handler will free any data structures
1454
	 * associated with the slot.  XXX Can free sleep?
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
	 */
}

/*
 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
 * timed out, or allocating memory failed.  Returns 1 on success.
 */
int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
{
	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
	unsigned long flags;
	int timeleft;
	int ret;

	spin_lock_irqsave(&xhci->lock, flags);
1470
	ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
1471 1472 1473 1474 1475
	if (ret) {
		spin_unlock_irqrestore(&xhci->lock, flags);
		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
		return 0;
	}
1476
	xhci_ring_cmd_db(xhci);
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
	spin_unlock_irqrestore(&xhci->lock, flags);

	/* XXX: how much time for xHC slot assignment? */
	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
			USB_CTRL_SET_TIMEOUT);
	if (timeleft <= 0) {
		xhci_warn(xhci, "%s while waiting for a slot\n",
				timeleft == 0 ? "Timeout" : "Signal");
		/* FIXME cancel the enable slot request */
		return 0;
	}

	if (!xhci->slot_id) {
		xhci_err(xhci, "Error while assigning device slot ID\n");
		return 0;
	}
1493
	/* xhci_alloc_virt_device() does not touch rings; no need to lock */
1494 1495 1496
	if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_KERNEL)) {
		/* Disable slot, if we can do it without mem alloc */
		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
1497
		spin_lock_irqsave(&xhci->lock, flags);
1498 1499
		if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
			xhci_ring_cmd_db(xhci);
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
		spin_unlock_irqrestore(&xhci->lock, flags);
		return 0;
	}
	udev->slot_id = xhci->slot_id;
	/* Is this a LS or FS device under a HS hub? */
	/* Hub or peripherial? */
	return 1;
}

/*
 * Issue an Address Device command (which will issue a SetAddress request to
 * the device).
 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
 * we should only issue and wait on one address command at the same time.
 *
 * We add one to the device address issued by the hardware because the USB core
 * uses address 1 for the root hubs (even though they're not really devices).
 */
int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
{
	unsigned long flags;
	int timeleft;
	struct xhci_virt_device *virt_dev;
	int ret = 0;
	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1525 1526
	struct xhci_slot_ctx *slot_ctx;
	struct xhci_input_control_ctx *ctrl_ctx;
1527
	u64 temp_64;
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539

	if (!udev->slot_id) {
		xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
		return -EINVAL;
	}

	virt_dev = xhci->devs[udev->slot_id];

	/* If this is a Set Address to an unconfigured device, setup ep 0 */
	if (!udev->config)
		xhci_setup_addressable_virt_dev(xhci, udev);
	/* Otherwise, assume the core has the device configured how it wants */
1540
	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
1541
	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
1542

1543
	spin_lock_irqsave(&xhci->lock, flags);
1544 1545
	ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
					udev->slot_id);
1546 1547 1548 1549 1550
	if (ret) {
		spin_unlock_irqrestore(&xhci->lock, flags);
		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
		return ret;
	}
1551
	xhci_ring_cmd_db(xhci);
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
	spin_unlock_irqrestore(&xhci->lock, flags);

	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
			USB_CTRL_SET_TIMEOUT);
	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
	 * the SetAddress() "recovery interval" required by USB and aborting the
	 * command on a timeout.
	 */
	if (timeleft <= 0) {
		xhci_warn(xhci, "%s while waiting for a slot\n",
				timeleft == 0 ? "Timeout" : "Signal");
		/* FIXME cancel the address device command */
		return -ETIME;
	}

	switch (virt_dev->cmd_status) {
	case COMP_CTX_STATE:
	case COMP_EBADSLT:
		xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
				udev->slot_id);
		ret = -EINVAL;
		break;
	case COMP_TX_ERR:
		dev_warn(&udev->dev, "Device not responding to set address.\n");
		ret = -EPROTO;
		break;
	case COMP_SUCCESS:
		xhci_dbg(xhci, "Successful Address Device command\n");
		break;
	default:
		xhci_err(xhci, "ERROR: unexpected command completion "
				"code 0x%x.\n", virt_dev->cmd_status);
1585
		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
1586
		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
1587 1588 1589 1590 1591 1592
		ret = -EINVAL;
		break;
	}
	if (ret) {
		return ret;
	}
1593 1594 1595
	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
	xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
	xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
1596
			udev->slot_id,
1597 1598 1599
			&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
			(unsigned long long)
				xhci->dcbaa->dev_context_ptrs[udev->slot_id]);
1600
	xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
1601
			(unsigned long long)virt_dev->out_ctx->dma);
1602
	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
1603
	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
1604
	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
1605
	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
1606 1607 1608 1609
	/*
	 * USB core uses address 1 for the roothubs, so we add one to the
	 * address given back to us by the HC.
	 */
1610 1611
	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
	udev->devnum = (slot_ctx->dev_state & DEV_ADDR_MASK) + 1;
1612
	/* Zero the input context control for later use */
1613 1614 1615
	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
	ctrl_ctx->add_flags = 0;
	ctrl_ctx->drop_flags = 0;
1616 1617 1618 1619 1620 1621 1622 1623

	xhci_dbg(xhci, "Device address = %d\n", udev->devnum);
	/* XXX Meh, not sure if anyone else but choose_address uses this. */
	set_bit(udev->devnum, udev->bus->devmap.devicemap);

	return 0;
}

S
Sarah Sharp 已提交
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
/* Once a hub descriptor is fetched for a device, we need to update the xHC's
 * internal data structures for the device.
 */
int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
			struct usb_tt *tt, gfp_t mem_flags)
{
	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
	struct xhci_virt_device *vdev;
	struct xhci_command *config_cmd;
	struct xhci_input_control_ctx *ctrl_ctx;
	struct xhci_slot_ctx *slot_ctx;
	unsigned long flags;
	unsigned think_time;
	int ret;

	/* Ignore root hubs */
	if (!hdev->parent)
		return 0;

	vdev = xhci->devs[hdev->slot_id];
	if (!vdev) {
		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
		return -EINVAL;
	}
	config_cmd = xhci_alloc_command(xhci, true, mem_flags);
	if (!config_cmd) {
		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
		return -ENOMEM;
	}

	spin_lock_irqsave(&xhci->lock, flags);
	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
	ctrl_ctx->add_flags |= SLOT_FLAG;
	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
	slot_ctx->dev_info |= DEV_HUB;
	if (tt->multi)
		slot_ctx->dev_info |= DEV_MTT;
	if (xhci->hci_version > 0x95) {
		xhci_dbg(xhci, "xHCI version %x needs hub "
				"TT think time and number of ports\n",
				(unsigned int) xhci->hci_version);
		slot_ctx->dev_info2 |= XHCI_MAX_PORTS(hdev->maxchild);
		/* Set TT think time - convert from ns to FS bit times.
		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
		 */
		think_time = tt->think_time;
		if (think_time != 0)
			think_time = (think_time / 666) - 1;
		slot_ctx->tt_info |= TT_THINK_TIME(think_time);
	} else {
		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
				"TT think time or number of ports\n",
				(unsigned int) xhci->hci_version);
	}
	slot_ctx->dev_state = 0;
	spin_unlock_irqrestore(&xhci->lock, flags);

	xhci_dbg(xhci, "Set up %s for hub device.\n",
			(xhci->hci_version > 0x95) ?
			"configure endpoint" : "evaluate context");
	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);

	/* Issue and wait for the configure endpoint or
	 * evaluate context command.
	 */
	if (xhci->hci_version > 0x95)
		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
				false, false);
	else
		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
				true, false);

	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);

	xhci_free_command(xhci, config_cmd);
	return ret;
}

1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
int xhci_get_frame(struct usb_hcd *hcd)
{
	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
	/* EHCI mods by the periodic size.  Why? */
	return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
}

MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_LICENSE("GPL");

static int __init xhci_hcd_init(void)
{
#ifdef CONFIG_PCI
	int retval = 0;

	retval = xhci_register_pci();

	if (retval < 0) {
		printk(KERN_DEBUG "Problem registering PCI driver.");
		return retval;
	}
#endif
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
	/*
	 * Check the compiler generated sizes of structures that must be laid
	 * out in specific ways for hardware access.
	 */
	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
	/* xhci_device_control has eight fields, and also
	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
	 */
	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
	return 0;
}
module_init(xhci_hcd_init);

static void __exit xhci_hcd_cleanup(void)
{
#ifdef CONFIG_PCI
	xhci_unregister_pci();
#endif
}
module_exit(xhci_hcd_cleanup);