coresight-etm3x.c 47.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2011-2012, The Linux Foundation. All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 and
 * only version 2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/device.h>
#include <linux/io.h>
#include <linux/err.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/sysfs.h>
#include <linux/stat.h>
26
#include <linux/pm_runtime.h>
27 28 29 30 31 32
#include <linux/cpu.h>
#include <linux/of.h>
#include <linux/coresight.h>
#include <linux/amba/bus.h>
#include <linux/seq_file.h>
#include <linux/uaccess.h>
33
#include <linux/clk.h>
34 35 36 37 38
#include <asm/sections.h>

#include "coresight-etm.h"

static int boot_enable;
39
module_param_named(boot_enable, boot_enable, int, S_IRUGO);
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164

/* The number of ETM/PTM currently registered */
static int etm_count;
static struct etm_drvdata *etmdrvdata[NR_CPUS];

/*
 * Memory mapped writes to clear os lock are not supported on some processors
 * and OS lock must be unlocked before any memory mapped access on such
 * processors, otherwise memory mapped reads/writes will be invalid.
 */
static void etm_os_unlock(void *info)
{
	struct etm_drvdata *drvdata = (struct etm_drvdata *)info;
	/* Writing any value to ETMOSLAR unlocks the trace registers */
	etm_writel(drvdata, 0x0, ETMOSLAR);
	isb();
}

static void etm_set_pwrdwn(struct etm_drvdata *drvdata)
{
	u32 etmcr;

	/* Ensure pending cp14 accesses complete before setting pwrdwn */
	mb();
	isb();
	etmcr = etm_readl(drvdata, ETMCR);
	etmcr |= ETMCR_PWD_DWN;
	etm_writel(drvdata, etmcr, ETMCR);
}

static void etm_clr_pwrdwn(struct etm_drvdata *drvdata)
{
	u32 etmcr;

	etmcr = etm_readl(drvdata, ETMCR);
	etmcr &= ~ETMCR_PWD_DWN;
	etm_writel(drvdata, etmcr, ETMCR);
	/* Ensure pwrup completes before subsequent cp14 accesses */
	mb();
	isb();
}

static void etm_set_pwrup(struct etm_drvdata *drvdata)
{
	u32 etmpdcr;

	etmpdcr = readl_relaxed(drvdata->base + ETMPDCR);
	etmpdcr |= ETMPDCR_PWD_UP;
	writel_relaxed(etmpdcr, drvdata->base + ETMPDCR);
	/* Ensure pwrup completes before subsequent cp14 accesses */
	mb();
	isb();
}

static void etm_clr_pwrup(struct etm_drvdata *drvdata)
{
	u32 etmpdcr;

	/* Ensure pending cp14 accesses complete before clearing pwrup */
	mb();
	isb();
	etmpdcr = readl_relaxed(drvdata->base + ETMPDCR);
	etmpdcr &= ~ETMPDCR_PWD_UP;
	writel_relaxed(etmpdcr, drvdata->base + ETMPDCR);
}

/**
 * coresight_timeout_etm - loop until a bit has changed to a specific state.
 * @drvdata: etm's private data structure.
 * @offset: address of a register, starting from @addr.
 * @position: the position of the bit of interest.
 * @value: the value the bit should have.
 *
 * Basically the same as @coresight_timeout except for the register access
 * method where we have to account for CP14 configurations.

 * Return: 0 as soon as the bit has taken the desired state or -EAGAIN if
 * TIMEOUT_US has elapsed, which ever happens first.
 */

static int coresight_timeout_etm(struct etm_drvdata *drvdata, u32 offset,
				  int position, int value)
{
	int i;
	u32 val;

	for (i = TIMEOUT_US; i > 0; i--) {
		val = etm_readl(drvdata, offset);
		/* Waiting on the bit to go from 0 to 1 */
		if (value) {
			if (val & BIT(position))
				return 0;
		/* Waiting on the bit to go from 1 to 0 */
		} else {
			if (!(val & BIT(position)))
				return 0;
		}

		/*
		 * Delay is arbitrary - the specification doesn't say how long
		 * we are expected to wait.  Extra check required to make sure
		 * we don't wait needlessly on the last iteration.
		 */
		if (i - 1)
			udelay(1);
	}

	return -EAGAIN;
}


static void etm_set_prog(struct etm_drvdata *drvdata)
{
	u32 etmcr;

	etmcr = etm_readl(drvdata, ETMCR);
	etmcr |= ETMCR_ETM_PRG;
	etm_writel(drvdata, etmcr, ETMCR);
	/*
	 * Recommended by spec for cp14 accesses to ensure etmcr write is
	 * complete before polling etmsr
	 */
	isb();
	if (coresight_timeout_etm(drvdata, ETMSR, ETMSR_PROG_BIT, 1)) {
		dev_err(drvdata->dev,
165 166
			"%s: timeout observed when probing at offset %#x\n",
			__func__, ETMSR);
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
	}
}

static void etm_clr_prog(struct etm_drvdata *drvdata)
{
	u32 etmcr;

	etmcr = etm_readl(drvdata, ETMCR);
	etmcr &= ~ETMCR_ETM_PRG;
	etm_writel(drvdata, etmcr, ETMCR);
	/*
	 * Recommended by spec for cp14 accesses to ensure etmcr write is
	 * complete before polling etmsr
	 */
	isb();
	if (coresight_timeout_etm(drvdata, ETMSR, ETMSR_PROG_BIT, 0)) {
		dev_err(drvdata->dev,
184 185
			"%s: timeout observed when probing at offset %#x\n",
			__func__, ETMSR);
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
	}
}

static void etm_set_default(struct etm_drvdata *drvdata)
{
	int i;

	drvdata->trigger_event = ETM_DEFAULT_EVENT_VAL;
	drvdata->enable_event = ETM_HARD_WIRE_RES_A;

	drvdata->seq_12_event = ETM_DEFAULT_EVENT_VAL;
	drvdata->seq_21_event = ETM_DEFAULT_EVENT_VAL;
	drvdata->seq_23_event = ETM_DEFAULT_EVENT_VAL;
	drvdata->seq_31_event = ETM_DEFAULT_EVENT_VAL;
	drvdata->seq_32_event = ETM_DEFAULT_EVENT_VAL;
	drvdata->seq_13_event = ETM_DEFAULT_EVENT_VAL;
	drvdata->timestamp_event = ETM_DEFAULT_EVENT_VAL;

	for (i = 0; i < drvdata->nr_cntr; i++) {
		drvdata->cntr_rld_val[i] = 0x0;
		drvdata->cntr_event[i] = ETM_DEFAULT_EVENT_VAL;
		drvdata->cntr_rld_event[i] = ETM_DEFAULT_EVENT_VAL;
		drvdata->cntr_val[i] = 0x0;
	}

	drvdata->seq_curr_state = 0x0;
	drvdata->ctxid_idx = 0x0;
213
	for (i = 0; i < drvdata->nr_ctxid_cmp; i++) {
214
		drvdata->ctxid_pid[i] = 0x0;
215 216 217
		drvdata->ctxid_vpid[i] = 0x0;
	}

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
	drvdata->ctxid_mask = 0x0;
}

static void etm_enable_hw(void *info)
{
	int i;
	u32 etmcr;
	struct etm_drvdata *drvdata = info;

	CS_UNLOCK(drvdata->base);

	/* Turn engine on */
	etm_clr_pwrdwn(drvdata);
	/* Apply power to trace registers */
	etm_set_pwrup(drvdata);
	/* Make sure all registers are accessible */
	etm_os_unlock(drvdata);

	etm_set_prog(drvdata);

	etmcr = etm_readl(drvdata, ETMCR);
	etmcr &= (ETMCR_PWD_DWN | ETMCR_ETM_PRG);
	etmcr |= drvdata->port_size;
	etm_writel(drvdata, drvdata->ctrl | etmcr, ETMCR);
	etm_writel(drvdata, drvdata->trigger_event, ETMTRIGGER);
	etm_writel(drvdata, drvdata->startstop_ctrl, ETMTSSCR);
	etm_writel(drvdata, drvdata->enable_event, ETMTEEVR);
	etm_writel(drvdata, drvdata->enable_ctrl1, ETMTECR1);
	etm_writel(drvdata, drvdata->fifofull_level, ETMFFLR);
	for (i = 0; i < drvdata->nr_addr_cmp; i++) {
		etm_writel(drvdata, drvdata->addr_val[i], ETMACVRn(i));
		etm_writel(drvdata, drvdata->addr_acctype[i], ETMACTRn(i));
	}
	for (i = 0; i < drvdata->nr_cntr; i++) {
		etm_writel(drvdata, drvdata->cntr_rld_val[i], ETMCNTRLDVRn(i));
		etm_writel(drvdata, drvdata->cntr_event[i], ETMCNTENRn(i));
		etm_writel(drvdata, drvdata->cntr_rld_event[i],
			   ETMCNTRLDEVRn(i));
		etm_writel(drvdata, drvdata->cntr_val[i], ETMCNTVRn(i));
	}
	etm_writel(drvdata, drvdata->seq_12_event, ETMSQ12EVR);
	etm_writel(drvdata, drvdata->seq_21_event, ETMSQ21EVR);
	etm_writel(drvdata, drvdata->seq_23_event, ETMSQ23EVR);
	etm_writel(drvdata, drvdata->seq_31_event, ETMSQ31EVR);
	etm_writel(drvdata, drvdata->seq_32_event, ETMSQ32EVR);
	etm_writel(drvdata, drvdata->seq_13_event, ETMSQ13EVR);
	etm_writel(drvdata, drvdata->seq_curr_state, ETMSQR);
	for (i = 0; i < drvdata->nr_ext_out; i++)
		etm_writel(drvdata, ETM_DEFAULT_EVENT_VAL, ETMEXTOUTEVRn(i));
	for (i = 0; i < drvdata->nr_ctxid_cmp; i++)
268
		etm_writel(drvdata, drvdata->ctxid_pid[i], ETMCIDCVRn(i));
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
	etm_writel(drvdata, drvdata->ctxid_mask, ETMCIDCMR);
	etm_writel(drvdata, drvdata->sync_freq, ETMSYNCFR);
	/* No external input selected */
	etm_writel(drvdata, 0x0, ETMEXTINSELR);
	etm_writel(drvdata, drvdata->timestamp_event, ETMTSEVR);
	/* No auxiliary control selected */
	etm_writel(drvdata, 0x0, ETMAUXCR);
	etm_writel(drvdata, drvdata->traceid, ETMTRACEIDR);
	/* No VMID comparator value selected */
	etm_writel(drvdata, 0x0, ETMVMIDCVR);

	/* Ensures trace output is enabled from this ETM */
	etm_writel(drvdata, drvdata->ctrl | ETMCR_ETM_EN | etmcr, ETMCR);

	etm_clr_prog(drvdata);
	CS_LOCK(drvdata->base);

	dev_dbg(drvdata->dev, "cpu: %d enable smp call done\n", drvdata->cpu);
}

289 290 291 292 293 294 295
static int etm_cpu_id(struct coresight_device *csdev)
{
	struct etm_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);

	return drvdata->cpu;
}

296 297 298 299 300 301 302 303
static int etm_trace_id(struct coresight_device *csdev)
{
	struct etm_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
	unsigned long flags;
	int trace_id = -1;

	if (!drvdata->enable)
		return drvdata->traceid;
304
	pm_runtime_get_sync(csdev->dev.parent);
305 306 307 308 309 310 311 312

	spin_lock_irqsave(&drvdata->spinlock, flags);

	CS_UNLOCK(drvdata->base);
	trace_id = (etm_readl(drvdata, ETMTRACEIDR) & ETM_TRACEID_MASK);
	CS_LOCK(drvdata->base);

	spin_unlock_irqrestore(&drvdata->spinlock, flags);
313 314
	pm_runtime_put(csdev->dev.parent);

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
	return trace_id;
}

static int etm_enable(struct coresight_device *csdev)
{
	struct etm_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
	int ret;

	spin_lock(&drvdata->spinlock);

	/*
	 * Configure the ETM only if the CPU is online.  If it isn't online
	 * hw configuration will take place when 'CPU_STARTING' is received
	 * in @etm_cpu_callback.
	 */
	if (cpu_online(drvdata->cpu)) {
		ret = smp_call_function_single(drvdata->cpu,
					       etm_enable_hw, drvdata, 1);
		if (ret)
			goto err;
	}

	drvdata->enable = true;
	drvdata->sticky_enable = true;

	spin_unlock(&drvdata->spinlock);

	dev_info(drvdata->dev, "ETM tracing enabled\n");
	return 0;
err:
	spin_unlock(&drvdata->spinlock);
	return ret;
}

static void etm_disable_hw(void *info)
{
	int i;
	struct etm_drvdata *drvdata = info;

	CS_UNLOCK(drvdata->base);
	etm_set_prog(drvdata);

	/* Program trace enable to low by using always false event */
	etm_writel(drvdata, ETM_HARD_WIRE_RES_A | ETM_EVENT_NOT_A, ETMTEEVR);

	/* Read back sequencer and counters for post trace analysis */
	drvdata->seq_curr_state = (etm_readl(drvdata, ETMSQR) & ETM_SQR_MASK);

	for (i = 0; i < drvdata->nr_cntr; i++)
		drvdata->cntr_val[i] = etm_readl(drvdata, ETMCNTVRn(i));

	etm_set_pwrdwn(drvdata);
	CS_LOCK(drvdata->base);

	dev_dbg(drvdata->dev, "cpu: %d disable smp call done\n", drvdata->cpu);
}

static void etm_disable(struct coresight_device *csdev)
{
	struct etm_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);

	/*
	 * Taking hotplug lock here protects from clocks getting disabled
	 * with tracing being left on (crash scenario) if user disable occurs
	 * after cpu online mask indicates the cpu is offline but before the
	 * DYING hotplug callback is serviced by the ETM driver.
	 */
	get_online_cpus();
	spin_lock(&drvdata->spinlock);

	/*
	 * Executing etm_disable_hw on the cpu whose ETM is being disabled
	 * ensures that register writes occur when cpu is powered.
	 */
	smp_call_function_single(drvdata->cpu, etm_disable_hw, drvdata, 1);
	drvdata->enable = false;

	spin_unlock(&drvdata->spinlock);
	put_online_cpus();

	dev_info(drvdata->dev, "ETM tracing disabled\n");
}

static const struct coresight_ops_source etm_source_ops = {
399
	.cpu_id		= etm_cpu_id,
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
	.trace_id	= etm_trace_id,
	.enable		= etm_enable,
	.disable	= etm_disable,
};

static const struct coresight_ops etm_cs_ops = {
	.source_ops	= &etm_source_ops,
};

static ssize_t nr_addr_cmp_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	val = drvdata->nr_addr_cmp;
	return sprintf(buf, "%#lx\n", val);
}
static DEVICE_ATTR_RO(nr_addr_cmp);

static ssize_t nr_cntr_show(struct device *dev,
			    struct device_attribute *attr, char *buf)
{	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	val = drvdata->nr_cntr;
	return sprintf(buf, "%#lx\n", val);
}
static DEVICE_ATTR_RO(nr_cntr);

static ssize_t nr_ctxid_cmp_show(struct device *dev,
				 struct device_attribute *attr, char *buf)
{
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	val = drvdata->nr_ctxid_cmp;
	return sprintf(buf, "%#lx\n", val);
}
static DEVICE_ATTR_RO(nr_ctxid_cmp);

static ssize_t etmsr_show(struct device *dev,
			  struct device_attribute *attr, char *buf)
{
	unsigned long flags, val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

447
	pm_runtime_get_sync(drvdata->dev);
448 449 450 451 452 453 454
	spin_lock_irqsave(&drvdata->spinlock, flags);
	CS_UNLOCK(drvdata->base);

	val = etm_readl(drvdata, ETMSR);

	CS_LOCK(drvdata->base);
	spin_unlock_irqrestore(&drvdata->spinlock, flags);
455
	pm_runtime_put(drvdata->dev);
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532

	return sprintf(buf, "%#lx\n", val);
}
static DEVICE_ATTR_RO(etmsr);

static ssize_t reset_store(struct device *dev,
			   struct device_attribute *attr,
			   const char *buf, size_t size)
{
	int i, ret;
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	ret = kstrtoul(buf, 16, &val);
	if (ret)
		return ret;

	if (val) {
		spin_lock(&drvdata->spinlock);
		drvdata->mode = ETM_MODE_EXCLUDE;
		drvdata->ctrl = 0x0;
		drvdata->trigger_event = ETM_DEFAULT_EVENT_VAL;
		drvdata->startstop_ctrl = 0x0;
		drvdata->addr_idx = 0x0;
		for (i = 0; i < drvdata->nr_addr_cmp; i++) {
			drvdata->addr_val[i] = 0x0;
			drvdata->addr_acctype[i] = 0x0;
			drvdata->addr_type[i] = ETM_ADDR_TYPE_NONE;
		}
		drvdata->cntr_idx = 0x0;

		etm_set_default(drvdata);
		spin_unlock(&drvdata->spinlock);
	}

	return size;
}
static DEVICE_ATTR_WO(reset);

static ssize_t mode_show(struct device *dev,
			 struct device_attribute *attr, char *buf)
{
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	val = drvdata->mode;
	return sprintf(buf, "%#lx\n", val);
}

static ssize_t mode_store(struct device *dev,
			  struct device_attribute *attr,
			  const char *buf, size_t size)
{
	int ret;
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	ret = kstrtoul(buf, 16, &val);
	if (ret)
		return ret;

	spin_lock(&drvdata->spinlock);
	drvdata->mode = val & ETM_MODE_ALL;

	if (drvdata->mode & ETM_MODE_EXCLUDE)
		drvdata->enable_ctrl1 |= ETMTECR1_INC_EXC;
	else
		drvdata->enable_ctrl1 &= ~ETMTECR1_INC_EXC;

	if (drvdata->mode & ETM_MODE_CYCACC)
		drvdata->ctrl |= ETMCR_CYC_ACC;
	else
		drvdata->ctrl &= ~ETMCR_CYC_ACC;

	if (drvdata->mode & ETM_MODE_STALL) {
		if (!(drvdata->etmccr & ETMCCR_FIFOFULL)) {
			dev_warn(drvdata->dev, "stall mode not supported\n");
533 534
			ret = -EINVAL;
			goto err_unlock;
535 536 537 538 539 540 541 542
		}
		drvdata->ctrl |= ETMCR_STALL_MODE;
	 } else
		drvdata->ctrl &= ~ETMCR_STALL_MODE;

	if (drvdata->mode & ETM_MODE_TIMESTAMP) {
		if (!(drvdata->etmccer & ETMCCER_TIMESTAMP)) {
			dev_warn(drvdata->dev, "timestamp not supported\n");
543 544
			ret = -EINVAL;
			goto err_unlock;
545 546 547 548 549 550 551 552 553 554 555 556
		}
		drvdata->ctrl |= ETMCR_TIMESTAMP_EN;
	} else
		drvdata->ctrl &= ~ETMCR_TIMESTAMP_EN;

	if (drvdata->mode & ETM_MODE_CTXID)
		drvdata->ctrl |= ETMCR_CTXID_SIZE;
	else
		drvdata->ctrl &= ~ETMCR_CTXID_SIZE;
	spin_unlock(&drvdata->spinlock);

	return size;
557 558 559 560

err_unlock:
	spin_unlock(&drvdata->spinlock);
	return ret;
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
}
static DEVICE_ATTR_RW(mode);

static ssize_t trigger_event_show(struct device *dev,
				  struct device_attribute *attr, char *buf)
{
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	val = drvdata->trigger_event;
	return sprintf(buf, "%#lx\n", val);
}

static ssize_t trigger_event_store(struct device *dev,
				   struct device_attribute *attr,
				   const char *buf, size_t size)
{
	int ret;
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	ret = kstrtoul(buf, 16, &val);
	if (ret)
		return ret;

	drvdata->trigger_event = val & ETM_EVENT_MASK;

	return size;
}
static DEVICE_ATTR_RW(trigger_event);

static ssize_t enable_event_show(struct device *dev,
				 struct device_attribute *attr, char *buf)
{
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	val = drvdata->enable_event;
	return sprintf(buf, "%#lx\n", val);
}

static ssize_t enable_event_store(struct device *dev,
				  struct device_attribute *attr,
				  const char *buf, size_t size)
{
	int ret;
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	ret = kstrtoul(buf, 16, &val);
	if (ret)
		return ret;

	drvdata->enable_event = val & ETM_EVENT_MASK;

	return size;
}
static DEVICE_ATTR_RW(enable_event);

static ssize_t fifofull_level_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	val = drvdata->fifofull_level;
	return sprintf(buf, "%#lx\n", val);
}

static ssize_t fifofull_level_store(struct device *dev,
				    struct device_attribute *attr,
				    const char *buf, size_t size)
{
	int ret;
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	ret = kstrtoul(buf, 16, &val);
	if (ret)
		return ret;

	drvdata->fifofull_level = val;

	return size;
}
static DEVICE_ATTR_RW(fifofull_level);

static ssize_t addr_idx_show(struct device *dev,
			     struct device_attribute *attr, char *buf)
{
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	val = drvdata->addr_idx;
	return sprintf(buf, "%#lx\n", val);
}

static ssize_t addr_idx_store(struct device *dev,
			      struct device_attribute *attr,
			      const char *buf, size_t size)
{
	int ret;
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	ret = kstrtoul(buf, 16, &val);
	if (ret)
		return ret;

	if (val >= drvdata->nr_addr_cmp)
		return -EINVAL;

	/*
	 * Use spinlock to ensure index doesn't change while it gets
	 * dereferenced multiple times within a spinlock block elsewhere.
	 */
	spin_lock(&drvdata->spinlock);
	drvdata->addr_idx = val;
	spin_unlock(&drvdata->spinlock);

	return size;
}
static DEVICE_ATTR_RW(addr_idx);

static ssize_t addr_single_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
	u8 idx;
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	spin_lock(&drvdata->spinlock);
	idx = drvdata->addr_idx;
	if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
	      drvdata->addr_type[idx] == ETM_ADDR_TYPE_SINGLE)) {
		spin_unlock(&drvdata->spinlock);
		return -EINVAL;
	}

	val = drvdata->addr_val[idx];
	spin_unlock(&drvdata->spinlock);

	return sprintf(buf, "%#lx\n", val);
}

static ssize_t addr_single_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t size)
{
	u8 idx;
	int ret;
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	ret = kstrtoul(buf, 16, &val);
	if (ret)
		return ret;

	spin_lock(&drvdata->spinlock);
	idx = drvdata->addr_idx;
	if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
	      drvdata->addr_type[idx] == ETM_ADDR_TYPE_SINGLE)) {
		spin_unlock(&drvdata->spinlock);
		return -EINVAL;
	}

	drvdata->addr_val[idx] = val;
	drvdata->addr_type[idx] = ETM_ADDR_TYPE_SINGLE;
	spin_unlock(&drvdata->spinlock);

	return size;
}
static DEVICE_ATTR_RW(addr_single);

static ssize_t addr_range_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	u8 idx;
	unsigned long val1, val2;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	spin_lock(&drvdata->spinlock);
	idx = drvdata->addr_idx;
	if (idx % 2 != 0) {
		spin_unlock(&drvdata->spinlock);
		return -EPERM;
	}
	if (!((drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE &&
	       drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_NONE) ||
	      (drvdata->addr_type[idx] == ETM_ADDR_TYPE_RANGE &&
	       drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_RANGE))) {
		spin_unlock(&drvdata->spinlock);
		return -EPERM;
	}

	val1 = drvdata->addr_val[idx];
	val2 = drvdata->addr_val[idx + 1];
	spin_unlock(&drvdata->spinlock);

	return sprintf(buf, "%#lx %#lx\n", val1, val2);
}

static ssize_t addr_range_store(struct device *dev,
			      struct device_attribute *attr,
			      const char *buf, size_t size)
{
	u8 idx;
	unsigned long val1, val2;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	if (sscanf(buf, "%lx %lx", &val1, &val2) != 2)
		return -EINVAL;
	/* Lower address comparator cannot have a higher address value */
	if (val1 > val2)
		return -EINVAL;

	spin_lock(&drvdata->spinlock);
	idx = drvdata->addr_idx;
	if (idx % 2 != 0) {
		spin_unlock(&drvdata->spinlock);
		return -EPERM;
	}
	if (!((drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE &&
	       drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_NONE) ||
	      (drvdata->addr_type[idx] == ETM_ADDR_TYPE_RANGE &&
	       drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_RANGE))) {
		spin_unlock(&drvdata->spinlock);
		return -EPERM;
	}

	drvdata->addr_val[idx] = val1;
	drvdata->addr_type[idx] = ETM_ADDR_TYPE_RANGE;
	drvdata->addr_val[idx + 1] = val2;
	drvdata->addr_type[idx + 1] = ETM_ADDR_TYPE_RANGE;
	drvdata->enable_ctrl1 |= (1 << (idx/2));
	spin_unlock(&drvdata->spinlock);

	return size;
}
static DEVICE_ATTR_RW(addr_range);

static ssize_t addr_start_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	u8 idx;
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	spin_lock(&drvdata->spinlock);
	idx = drvdata->addr_idx;
	if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
	      drvdata->addr_type[idx] == ETM_ADDR_TYPE_START)) {
		spin_unlock(&drvdata->spinlock);
		return -EPERM;
	}

	val = drvdata->addr_val[idx];
	spin_unlock(&drvdata->spinlock);

	return sprintf(buf, "%#lx\n", val);
}

static ssize_t addr_start_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t size)
{
	u8 idx;
	int ret;
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	ret = kstrtoul(buf, 16, &val);
	if (ret)
		return ret;

	spin_lock(&drvdata->spinlock);
	idx = drvdata->addr_idx;
	if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
	      drvdata->addr_type[idx] == ETM_ADDR_TYPE_START)) {
		spin_unlock(&drvdata->spinlock);
		return -EPERM;
	}

	drvdata->addr_val[idx] = val;
	drvdata->addr_type[idx] = ETM_ADDR_TYPE_START;
	drvdata->startstop_ctrl |= (1 << idx);
	drvdata->enable_ctrl1 |= BIT(25);
	spin_unlock(&drvdata->spinlock);

	return size;
}
static DEVICE_ATTR_RW(addr_start);

static ssize_t addr_stop_show(struct device *dev,
			      struct device_attribute *attr, char *buf)
{
	u8 idx;
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	spin_lock(&drvdata->spinlock);
	idx = drvdata->addr_idx;
	if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
	      drvdata->addr_type[idx] == ETM_ADDR_TYPE_STOP)) {
		spin_unlock(&drvdata->spinlock);
		return -EPERM;
	}

	val = drvdata->addr_val[idx];
	spin_unlock(&drvdata->spinlock);

	return sprintf(buf, "%#lx\n", val);
}

static ssize_t addr_stop_store(struct device *dev,
			       struct device_attribute *attr,
			       const char *buf, size_t size)
{
	u8 idx;
	int ret;
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	ret = kstrtoul(buf, 16, &val);
	if (ret)
		return ret;

	spin_lock(&drvdata->spinlock);
	idx = drvdata->addr_idx;
	if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
	      drvdata->addr_type[idx] == ETM_ADDR_TYPE_STOP)) {
		spin_unlock(&drvdata->spinlock);
		return -EPERM;
	}

	drvdata->addr_val[idx] = val;
	drvdata->addr_type[idx] = ETM_ADDR_TYPE_STOP;
	drvdata->startstop_ctrl |= (1 << (idx + 16));
	drvdata->enable_ctrl1 |= ETMTECR1_START_STOP;
	spin_unlock(&drvdata->spinlock);

	return size;
}
static DEVICE_ATTR_RW(addr_stop);

static ssize_t addr_acctype_show(struct device *dev,
				 struct device_attribute *attr, char *buf)
{
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	spin_lock(&drvdata->spinlock);
	val = drvdata->addr_acctype[drvdata->addr_idx];
	spin_unlock(&drvdata->spinlock);

	return sprintf(buf, "%#lx\n", val);
}

static ssize_t addr_acctype_store(struct device *dev,
				  struct device_attribute *attr,
				  const char *buf, size_t size)
{
	int ret;
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	ret = kstrtoul(buf, 16, &val);
	if (ret)
		return ret;

	spin_lock(&drvdata->spinlock);
	drvdata->addr_acctype[drvdata->addr_idx] = val;
	spin_unlock(&drvdata->spinlock);

	return size;
}
static DEVICE_ATTR_RW(addr_acctype);

static ssize_t cntr_idx_show(struct device *dev,
			     struct device_attribute *attr, char *buf)
{
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	val = drvdata->cntr_idx;
	return sprintf(buf, "%#lx\n", val);
}

static ssize_t cntr_idx_store(struct device *dev,
			      struct device_attribute *attr,
			      const char *buf, size_t size)
{
	int ret;
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	ret = kstrtoul(buf, 16, &val);
	if (ret)
		return ret;

	if (val >= drvdata->nr_cntr)
		return -EINVAL;
	/*
	 * Use spinlock to ensure index doesn't change while it gets
	 * dereferenced multiple times within a spinlock block elsewhere.
	 */
	spin_lock(&drvdata->spinlock);
	drvdata->cntr_idx = val;
	spin_unlock(&drvdata->spinlock);

	return size;
}
static DEVICE_ATTR_RW(cntr_idx);

static ssize_t cntr_rld_val_show(struct device *dev,
				 struct device_attribute *attr, char *buf)
{
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	spin_lock(&drvdata->spinlock);
	val = drvdata->cntr_rld_val[drvdata->cntr_idx];
	spin_unlock(&drvdata->spinlock);

	return sprintf(buf, "%#lx\n", val);
}

static ssize_t cntr_rld_val_store(struct device *dev,
				  struct device_attribute *attr,
				  const char *buf, size_t size)
{
	int ret;
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	ret = kstrtoul(buf, 16, &val);
	if (ret)
		return ret;

	spin_lock(&drvdata->spinlock);
	drvdata->cntr_rld_val[drvdata->cntr_idx] = val;
	spin_unlock(&drvdata->spinlock);

	return size;
}
static DEVICE_ATTR_RW(cntr_rld_val);

static ssize_t cntr_event_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	spin_lock(&drvdata->spinlock);
	val = drvdata->cntr_event[drvdata->cntr_idx];
	spin_unlock(&drvdata->spinlock);

	return sprintf(buf, "%#lx\n", val);
}

static ssize_t cntr_event_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t size)
{
	int ret;
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	ret = kstrtoul(buf, 16, &val);
	if (ret)
		return ret;

	spin_lock(&drvdata->spinlock);
	drvdata->cntr_event[drvdata->cntr_idx] = val & ETM_EVENT_MASK;
	spin_unlock(&drvdata->spinlock);

	return size;
}
static DEVICE_ATTR_RW(cntr_event);

static ssize_t cntr_rld_event_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	spin_lock(&drvdata->spinlock);
	val = drvdata->cntr_rld_event[drvdata->cntr_idx];
	spin_unlock(&drvdata->spinlock);

	return sprintf(buf, "%#lx\n", val);
}

static ssize_t cntr_rld_event_store(struct device *dev,
				    struct device_attribute *attr,
				    const char *buf, size_t size)
{
	int ret;
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	ret = kstrtoul(buf, 16, &val);
	if (ret)
		return ret;

	spin_lock(&drvdata->spinlock);
	drvdata->cntr_rld_event[drvdata->cntr_idx] = val & ETM_EVENT_MASK;
	spin_unlock(&drvdata->spinlock);

	return size;
}
static DEVICE_ATTR_RW(cntr_rld_event);

static ssize_t cntr_val_show(struct device *dev,
			     struct device_attribute *attr, char *buf)
{
	int i, ret = 0;
	u32 val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	if (!drvdata->enable) {
		spin_lock(&drvdata->spinlock);
		for (i = 0; i < drvdata->nr_cntr; i++)
			ret += sprintf(buf, "counter %d: %x\n",
				       i, drvdata->cntr_val[i]);
		spin_unlock(&drvdata->spinlock);
		return ret;
	}

	for (i = 0; i < drvdata->nr_cntr; i++) {
		val = etm_readl(drvdata, ETMCNTVRn(i));
		ret += sprintf(buf, "counter %d: %x\n", i, val);
	}

	return ret;
}

static ssize_t cntr_val_store(struct device *dev,
			      struct device_attribute *attr,
			      const char *buf, size_t size)
{
	int ret;
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	ret = kstrtoul(buf, 16, &val);
	if (ret)
		return ret;

	spin_lock(&drvdata->spinlock);
	drvdata->cntr_val[drvdata->cntr_idx] = val;
	spin_unlock(&drvdata->spinlock);

	return size;
}
static DEVICE_ATTR_RW(cntr_val);

static ssize_t seq_12_event_show(struct device *dev,
				 struct device_attribute *attr, char *buf)
{
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	val = drvdata->seq_12_event;
	return sprintf(buf, "%#lx\n", val);
}

static ssize_t seq_12_event_store(struct device *dev,
				  struct device_attribute *attr,
				  const char *buf, size_t size)
{
	int ret;
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	ret = kstrtoul(buf, 16, &val);
	if (ret)
		return ret;

	drvdata->seq_12_event = val & ETM_EVENT_MASK;
	return size;
}
static DEVICE_ATTR_RW(seq_12_event);

static ssize_t seq_21_event_show(struct device *dev,
				 struct device_attribute *attr, char *buf)
{
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	val = drvdata->seq_21_event;
	return sprintf(buf, "%#lx\n", val);
}

static ssize_t seq_21_event_store(struct device *dev,
				  struct device_attribute *attr,
				  const char *buf, size_t size)
{
	int ret;
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	ret = kstrtoul(buf, 16, &val);
	if (ret)
		return ret;

	drvdata->seq_21_event = val & ETM_EVENT_MASK;
	return size;
}
static DEVICE_ATTR_RW(seq_21_event);

static ssize_t seq_23_event_show(struct device *dev,
				 struct device_attribute *attr, char *buf)
{
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	val = drvdata->seq_23_event;
	return sprintf(buf, "%#lx\n", val);
}

static ssize_t seq_23_event_store(struct device *dev,
				  struct device_attribute *attr,
				  const char *buf, size_t size)
{
	int ret;
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	ret = kstrtoul(buf, 16, &val);
	if (ret)
		return ret;

	drvdata->seq_23_event = val & ETM_EVENT_MASK;
	return size;
}
static DEVICE_ATTR_RW(seq_23_event);

static ssize_t seq_31_event_show(struct device *dev,
				 struct device_attribute *attr, char *buf)
{
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	val = drvdata->seq_31_event;
	return sprintf(buf, "%#lx\n", val);
}

static ssize_t seq_31_event_store(struct device *dev,
				  struct device_attribute *attr,
				  const char *buf, size_t size)
{
	int ret;
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	ret = kstrtoul(buf, 16, &val);
	if (ret)
		return ret;

	drvdata->seq_31_event = val & ETM_EVENT_MASK;
	return size;
}
static DEVICE_ATTR_RW(seq_31_event);

static ssize_t seq_32_event_show(struct device *dev,
				 struct device_attribute *attr, char *buf)
{
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	val = drvdata->seq_32_event;
	return sprintf(buf, "%#lx\n", val);
}

static ssize_t seq_32_event_store(struct device *dev,
				  struct device_attribute *attr,
				  const char *buf, size_t size)
{
	int ret;
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	ret = kstrtoul(buf, 16, &val);
	if (ret)
		return ret;

	drvdata->seq_32_event = val & ETM_EVENT_MASK;
	return size;
}
static DEVICE_ATTR_RW(seq_32_event);

static ssize_t seq_13_event_show(struct device *dev,
				 struct device_attribute *attr, char *buf)
{
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	val = drvdata->seq_13_event;
	return sprintf(buf, "%#lx\n", val);
}

static ssize_t seq_13_event_store(struct device *dev,
				  struct device_attribute *attr,
				  const char *buf, size_t size)
{
	int ret;
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	ret = kstrtoul(buf, 16, &val);
	if (ret)
		return ret;

	drvdata->seq_13_event = val & ETM_EVENT_MASK;
	return size;
}
static DEVICE_ATTR_RW(seq_13_event);

static ssize_t seq_curr_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	unsigned long val, flags;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	if (!drvdata->enable) {
		val = drvdata->seq_curr_state;
		goto out;
	}

1291
	pm_runtime_get_sync(drvdata->dev);
1292 1293 1294 1295 1296 1297 1298
	spin_lock_irqsave(&drvdata->spinlock, flags);

	CS_UNLOCK(drvdata->base);
	val = (etm_readl(drvdata, ETMSQR) & ETM_SQR_MASK);
	CS_LOCK(drvdata->base);

	spin_unlock_irqrestore(&drvdata->spinlock, flags);
1299
	pm_runtime_put(drvdata->dev);
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
out:
	return sprintf(buf, "%#lx\n", val);
}

static ssize_t seq_curr_state_store(struct device *dev,
				    struct device_attribute *attr,
				    const char *buf, size_t size)
{
	int ret;
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	ret = kstrtoul(buf, 16, &val);
	if (ret)
		return ret;

	if (val > ETM_SEQ_STATE_MAX_VAL)
		return -EINVAL;

	drvdata->seq_curr_state = val;

	return size;
}
static DEVICE_ATTR_RW(seq_curr_state);

static ssize_t ctxid_idx_show(struct device *dev,
			      struct device_attribute *attr, char *buf)
{
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	val = drvdata->ctxid_idx;
	return sprintf(buf, "%#lx\n", val);
}

static ssize_t ctxid_idx_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t size)
{
	int ret;
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	ret = kstrtoul(buf, 16, &val);
	if (ret)
		return ret;

	if (val >= drvdata->nr_ctxid_cmp)
		return -EINVAL;

	/*
	 * Use spinlock to ensure index doesn't change while it gets
	 * dereferenced multiple times within a spinlock block elsewhere.
	 */
	spin_lock(&drvdata->spinlock);
	drvdata->ctxid_idx = val;
	spin_unlock(&drvdata->spinlock);

	return size;
}
static DEVICE_ATTR_RW(ctxid_idx);

1362
static ssize_t ctxid_pid_show(struct device *dev,
1363 1364 1365 1366 1367 1368
			      struct device_attribute *attr, char *buf)
{
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	spin_lock(&drvdata->spinlock);
1369
	val = drvdata->ctxid_vpid[drvdata->ctxid_idx];
1370 1371 1372 1373 1374
	spin_unlock(&drvdata->spinlock);

	return sprintf(buf, "%#lx\n", val);
}

1375
static ssize_t ctxid_pid_store(struct device *dev,
1376 1377 1378 1379
			       struct device_attribute *attr,
			       const char *buf, size_t size)
{
	int ret;
1380
	unsigned long vpid, pid;
1381 1382
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

1383
	ret = kstrtoul(buf, 16, &vpid);
1384 1385 1386
	if (ret)
		return ret;

1387 1388
	pid = coresight_vpid_to_pid(vpid);

1389
	spin_lock(&drvdata->spinlock);
1390 1391
	drvdata->ctxid_pid[drvdata->ctxid_idx] = pid;
	drvdata->ctxid_vpid[drvdata->ctxid_idx] = vpid;
1392 1393 1394 1395
	spin_unlock(&drvdata->spinlock);

	return size;
}
1396
static DEVICE_ATTR_RW(ctxid_pid);
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478

static ssize_t ctxid_mask_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	val = drvdata->ctxid_mask;
	return sprintf(buf, "%#lx\n", val);
}

static ssize_t ctxid_mask_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t size)
{
	int ret;
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	ret = kstrtoul(buf, 16, &val);
	if (ret)
		return ret;

	drvdata->ctxid_mask = val;
	return size;
}
static DEVICE_ATTR_RW(ctxid_mask);

static ssize_t sync_freq_show(struct device *dev,
			      struct device_attribute *attr, char *buf)
{
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	val = drvdata->sync_freq;
	return sprintf(buf, "%#lx\n", val);
}

static ssize_t sync_freq_store(struct device *dev,
			       struct device_attribute *attr,
			       const char *buf, size_t size)
{
	int ret;
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	ret = kstrtoul(buf, 16, &val);
	if (ret)
		return ret;

	drvdata->sync_freq = val & ETM_SYNC_MASK;
	return size;
}
static DEVICE_ATTR_RW(sync_freq);

static ssize_t timestamp_event_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	val = drvdata->timestamp_event;
	return sprintf(buf, "%#lx\n", val);
}

static ssize_t timestamp_event_store(struct device *dev,
				     struct device_attribute *attr,
				     const char *buf, size_t size)
{
	int ret;
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	ret = kstrtoul(buf, 16, &val);
	if (ret)
		return ret;

	drvdata->timestamp_event = val & ETM_EVENT_MASK;
	return size;
}
static DEVICE_ATTR_RW(timestamp_event);

1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
static ssize_t cpu_show(struct device *dev,
			struct device_attribute *attr, char *buf)
{
	int val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	val = drvdata->cpu;
	return scnprintf(buf, PAGE_SIZE, "%d\n", val);

}
static DEVICE_ATTR_RO(cpu);

1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
static ssize_t traceid_show(struct device *dev,
			    struct device_attribute *attr, char *buf)
{
	unsigned long val, flags;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	if (!drvdata->enable) {
		val = drvdata->traceid;
		goto out;
	}

1502
	pm_runtime_get_sync(drvdata->dev);
1503 1504 1505 1506 1507 1508 1509
	spin_lock_irqsave(&drvdata->spinlock, flags);
	CS_UNLOCK(drvdata->base);

	val = (etm_readl(drvdata, ETMTRACEIDR) & ETM_TRACEID_MASK);

	CS_LOCK(drvdata->base);
	spin_unlock_irqrestore(&drvdata->spinlock, flags);
1510
	pm_runtime_put(drvdata->dev);
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
out:
	return sprintf(buf, "%#lx\n", val);
}

static ssize_t traceid_store(struct device *dev,
			     struct device_attribute *attr,
			     const char *buf, size_t size)
{
	int ret;
	unsigned long val;
	struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);

	ret = kstrtoul(buf, 16, &val);
	if (ret)
		return ret;

	drvdata->traceid = val & ETM_TRACEID_MASK;
	return size;
}
static DEVICE_ATTR_RW(traceid);

static struct attribute *coresight_etm_attrs[] = {
	&dev_attr_nr_addr_cmp.attr,
	&dev_attr_nr_cntr.attr,
	&dev_attr_nr_ctxid_cmp.attr,
	&dev_attr_etmsr.attr,
	&dev_attr_reset.attr,
	&dev_attr_mode.attr,
	&dev_attr_trigger_event.attr,
	&dev_attr_enable_event.attr,
	&dev_attr_fifofull_level.attr,
	&dev_attr_addr_idx.attr,
	&dev_attr_addr_single.attr,
	&dev_attr_addr_range.attr,
	&dev_attr_addr_start.attr,
	&dev_attr_addr_stop.attr,
	&dev_attr_addr_acctype.attr,
	&dev_attr_cntr_idx.attr,
	&dev_attr_cntr_rld_val.attr,
	&dev_attr_cntr_event.attr,
	&dev_attr_cntr_rld_event.attr,
	&dev_attr_cntr_val.attr,
	&dev_attr_seq_12_event.attr,
	&dev_attr_seq_21_event.attr,
	&dev_attr_seq_23_event.attr,
	&dev_attr_seq_31_event.attr,
	&dev_attr_seq_32_event.attr,
	&dev_attr_seq_13_event.attr,
	&dev_attr_seq_curr_state.attr,
	&dev_attr_ctxid_idx.attr,
1561
	&dev_attr_ctxid_pid.attr,
1562 1563 1564 1565
	&dev_attr_ctxid_mask.attr,
	&dev_attr_sync_freq.attr,
	&dev_attr_timestamp_event.attr,
	&dev_attr_traceid.attr,
1566
	&dev_attr_cpu.attr,
1567 1568
	NULL,
};
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619

#define coresight_simple_func(name, offset)                             \
static ssize_t name##_show(struct device *_dev,                         \
			   struct device_attribute *attr, char *buf)    \
{                                                                       \
	struct etm_drvdata *drvdata = dev_get_drvdata(_dev->parent);    \
	return scnprintf(buf, PAGE_SIZE, "0x%x\n",                      \
			 readl_relaxed(drvdata->base + offset));        \
}                                                                       \
DEVICE_ATTR_RO(name)

coresight_simple_func(etmccr, ETMCCR);
coresight_simple_func(etmccer, ETMCCER);
coresight_simple_func(etmscr, ETMSCR);
coresight_simple_func(etmidr, ETMIDR);
coresight_simple_func(etmcr, ETMCR);
coresight_simple_func(etmtraceidr, ETMTRACEIDR);
coresight_simple_func(etmteevr, ETMTEEVR);
coresight_simple_func(etmtssvr, ETMTSSCR);
coresight_simple_func(etmtecr1, ETMTECR1);
coresight_simple_func(etmtecr2, ETMTECR2);

static struct attribute *coresight_etm_mgmt_attrs[] = {
	&dev_attr_etmccr.attr,
	&dev_attr_etmccer.attr,
	&dev_attr_etmscr.attr,
	&dev_attr_etmidr.attr,
	&dev_attr_etmcr.attr,
	&dev_attr_etmtraceidr.attr,
	&dev_attr_etmteevr.attr,
	&dev_attr_etmtssvr.attr,
	&dev_attr_etmtecr1.attr,
	&dev_attr_etmtecr2.attr,
	NULL,
};

static const struct attribute_group coresight_etm_group = {
	.attrs = coresight_etm_attrs,
};


static const struct attribute_group coresight_etm_mgmt_group = {
	.attrs = coresight_etm_mgmt_attrs,
	.name = "mgmt",
};

static const struct attribute_group *coresight_etm_groups[] = {
	&coresight_etm_group,
	&coresight_etm_mgmt_group,
	NULL,
};
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723

static int etm_cpu_callback(struct notifier_block *nfb, unsigned long action,
			    void *hcpu)
{
	unsigned int cpu = (unsigned long)hcpu;

	if (!etmdrvdata[cpu])
		goto out;

	switch (action & (~CPU_TASKS_FROZEN)) {
	case CPU_STARTING:
		spin_lock(&etmdrvdata[cpu]->spinlock);
		if (!etmdrvdata[cpu]->os_unlock) {
			etm_os_unlock(etmdrvdata[cpu]);
			etmdrvdata[cpu]->os_unlock = true;
		}

		if (etmdrvdata[cpu]->enable)
			etm_enable_hw(etmdrvdata[cpu]);
		spin_unlock(&etmdrvdata[cpu]->spinlock);
		break;

	case CPU_ONLINE:
		if (etmdrvdata[cpu]->boot_enable &&
		    !etmdrvdata[cpu]->sticky_enable)
			coresight_enable(etmdrvdata[cpu]->csdev);
		break;

	case CPU_DYING:
		spin_lock(&etmdrvdata[cpu]->spinlock);
		if (etmdrvdata[cpu]->enable)
			etm_disable_hw(etmdrvdata[cpu]);
		spin_unlock(&etmdrvdata[cpu]->spinlock);
		break;
	}
out:
	return NOTIFY_OK;
}

static struct notifier_block etm_cpu_notifier = {
	.notifier_call = etm_cpu_callback,
};

static bool etm_arch_supported(u8 arch)
{
	switch (arch) {
	case ETM_ARCH_V3_3:
		break;
	case ETM_ARCH_V3_5:
		break;
	case PFT_ARCH_V1_0:
		break;
	case PFT_ARCH_V1_1:
		break;
	default:
		return false;
	}
	return true;
}

static void etm_init_arch_data(void *info)
{
	u32 etmidr;
	u32 etmccr;
	struct etm_drvdata *drvdata = info;

	CS_UNLOCK(drvdata->base);

	/* First dummy read */
	(void)etm_readl(drvdata, ETMPDSR);
	/* Provide power to ETM: ETMPDCR[3] == 1 */
	etm_set_pwrup(drvdata);
	/*
	 * Clear power down bit since when this bit is set writes to
	 * certain registers might be ignored.
	 */
	etm_clr_pwrdwn(drvdata);
	/*
	 * Set prog bit. It will be set from reset but this is included to
	 * ensure it is set
	 */
	etm_set_prog(drvdata);

	/* Find all capabilities */
	etmidr = etm_readl(drvdata, ETMIDR);
	drvdata->arch = BMVAL(etmidr, 4, 11);
	drvdata->port_size = etm_readl(drvdata, ETMCR) & PORT_SIZE_MASK;

	drvdata->etmccer = etm_readl(drvdata, ETMCCER);
	etmccr = etm_readl(drvdata, ETMCCR);
	drvdata->etmccr = etmccr;
	drvdata->nr_addr_cmp = BMVAL(etmccr, 0, 3) * 2;
	drvdata->nr_cntr = BMVAL(etmccr, 13, 15);
	drvdata->nr_ext_inp = BMVAL(etmccr, 17, 19);
	drvdata->nr_ext_out = BMVAL(etmccr, 20, 22);
	drvdata->nr_ctxid_cmp = BMVAL(etmccr, 24, 25);

	etm_set_pwrdwn(drvdata);
	etm_clr_pwrup(drvdata);
	CS_LOCK(drvdata->base);
}

static void etm_init_default_data(struct etm_drvdata *drvdata)
{
1724 1725 1726 1727 1728
	/*
	 * A trace ID of value 0 is invalid, so let's start at some
	 * random value that fits in 7 bits and will be just as good.
	 */
	static int etm3x_traceid = 0x10;
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797

	u32 flags = (1 << 0 | /* instruction execute*/
		     3 << 3 | /* ARM instruction */
		     0 << 5 | /* No data value comparison */
		     0 << 7 | /* No exact mach */
		     0 << 8 | /* Ignore context ID */
		     0 << 10); /* Security ignored */

	/*
	 * Initial configuration only - guarantees sources handled by
	 * this driver have a unique ID at startup time but not between
	 * all other types of sources.  For that we lean on the core
	 * framework.
	 */
	drvdata->traceid = etm3x_traceid++;
	drvdata->ctrl = (ETMCR_CYC_ACC | ETMCR_TIMESTAMP_EN);
	drvdata->enable_ctrl1 = ETMTECR1_ADDR_COMP_1;
	if (drvdata->nr_addr_cmp >= 2) {
		drvdata->addr_val[0] = (u32) _stext;
		drvdata->addr_val[1] = (u32) _etext;
		drvdata->addr_acctype[0] = flags;
		drvdata->addr_acctype[1] = flags;
		drvdata->addr_type[0] = ETM_ADDR_TYPE_RANGE;
		drvdata->addr_type[1] = ETM_ADDR_TYPE_RANGE;
	}

	etm_set_default(drvdata);
}

static int etm_probe(struct amba_device *adev, const struct amba_id *id)
{
	int ret;
	void __iomem *base;
	struct device *dev = &adev->dev;
	struct coresight_platform_data *pdata = NULL;
	struct etm_drvdata *drvdata;
	struct resource *res = &adev->res;
	struct coresight_desc *desc;
	struct device_node *np = adev->dev.of_node;

	desc = devm_kzalloc(dev, sizeof(*desc), GFP_KERNEL);
	if (!desc)
		return -ENOMEM;

	drvdata = devm_kzalloc(dev, sizeof(*drvdata), GFP_KERNEL);
	if (!drvdata)
		return -ENOMEM;

	if (np) {
		pdata = of_get_coresight_platform_data(dev, np);
		if (IS_ERR(pdata))
			return PTR_ERR(pdata);

		adev->dev.platform_data = pdata;
		drvdata->use_cp14 = of_property_read_bool(np, "arm,cp14");
	}

	drvdata->dev = &adev->dev;
	dev_set_drvdata(dev, drvdata);

	/* Validity for the resource is already checked by the AMBA core */
	base = devm_ioremap_resource(dev, res);
	if (IS_ERR(base))
		return PTR_ERR(base);

	drvdata->base = base;

	spin_lock_init(&drvdata->spinlock);

1798 1799 1800 1801 1802 1803 1804
	drvdata->atclk = devm_clk_get(&adev->dev, "atclk"); /* optional */
	if (!IS_ERR(drvdata->atclk)) {
		ret = clk_prepare_enable(drvdata->atclk);
		if (ret)
			return ret;
	}

1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
	drvdata->cpu = pdata ? pdata->cpu : 0;

	get_online_cpus();
	etmdrvdata[drvdata->cpu] = drvdata;

	if (!smp_call_function_single(drvdata->cpu, etm_os_unlock, drvdata, 1))
		drvdata->os_unlock = true;

	if (smp_call_function_single(drvdata->cpu,
				     etm_init_arch_data,  drvdata, 1))
		dev_err(dev, "ETM arch init failed\n");

	if (!etm_count++)
		register_hotcpu_notifier(&etm_cpu_notifier);

	put_online_cpus();

	if (etm_arch_supported(drvdata->arch) == false) {
		ret = -EINVAL;
		goto err_arch_supported;
	}
	etm_init_default_data(drvdata);

	desc->type = CORESIGHT_DEV_TYPE_SOURCE;
	desc->subtype.source_subtype = CORESIGHT_DEV_SUBTYPE_SOURCE_PROC;
	desc->ops = &etm_cs_ops;
	desc->pdata = pdata;
	desc->dev = dev;
	desc->groups = coresight_etm_groups;
	drvdata->csdev = coresight_register(desc);
	if (IS_ERR(drvdata->csdev)) {
		ret = PTR_ERR(drvdata->csdev);
		goto err_arch_supported;
	}

1840
	pm_runtime_put(&adev->dev);
1841
	dev_info(dev, "%s initialized\n", (char *)id->data);
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855

	if (boot_enable) {
		coresight_enable(drvdata->csdev);
		drvdata->boot_enable = true;
	}

	return 0;

err_arch_supported:
	if (--etm_count == 0)
		unregister_hotcpu_notifier(&etm_cpu_notifier);
	return ret;
}

1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
#ifdef CONFIG_PM
static int etm_runtime_suspend(struct device *dev)
{
	struct etm_drvdata *drvdata = dev_get_drvdata(dev);

	if (drvdata && !IS_ERR(drvdata->atclk))
		clk_disable_unprepare(drvdata->atclk);

	return 0;
}

static int etm_runtime_resume(struct device *dev)
{
	struct etm_drvdata *drvdata = dev_get_drvdata(dev);

	if (drvdata && !IS_ERR(drvdata->atclk))
		clk_prepare_enable(drvdata->atclk);

	return 0;
}
#endif

static const struct dev_pm_ops etm_dev_pm_ops = {
	SET_RUNTIME_PM_OPS(etm_runtime_suspend, etm_runtime_resume, NULL)
};

1882 1883 1884 1885
static struct amba_id etm_ids[] = {
	{	/* ETM 3.3 */
		.id	= 0x0003b921,
		.mask	= 0x0003ffff,
1886
		.data	= "ETM 3.3",
1887 1888 1889 1890
	},
	{	/* ETM 3.5 */
		.id	= 0x0003b956,
		.mask	= 0x0003ffff,
1891
		.data	= "ETM 3.5",
1892 1893 1894 1895
	},
	{	/* PTM 1.0 */
		.id	= 0x0003b950,
		.mask	= 0x0003ffff,
1896
		.data	= "PTM 1.0",
1897 1898 1899 1900
	},
	{	/* PTM 1.1 */
		.id	= 0x0003b95f,
		.mask	= 0x0003ffff,
1901
		.data	= "PTM 1.1",
1902
	},
1903 1904 1905 1906 1907
	{	/* PTM 1.1 Qualcomm */
		.id	= 0x0003006f,
		.mask	= 0x0003ffff,
		.data	= "PTM 1.1",
	},
1908 1909 1910 1911 1912 1913 1914
	{ 0, 0},
};

static struct amba_driver etm_driver = {
	.drv = {
		.name	= "coresight-etm3x",
		.owner	= THIS_MODULE,
1915
		.pm	= &etm_dev_pm_ops,
1916
		.suppress_bind_attrs = true,
1917 1918 1919 1920 1921
	},
	.probe		= etm_probe,
	.id_table	= etm_ids,
};

1922
module_amba_driver(etm_driver);
1923 1924 1925

MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("CoreSight Program Flow Trace driver");