pgtable.c 34.8 KB
Newer Older
1
/*
2
 *    Copyright IBM Corp. 2007, 2011
3 4 5 6 7 8
 *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
 */

#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
9
#include <linux/gfp.h>
10 11 12 13
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/smp.h>
#include <linux/spinlock.h>
14
#include <linux/rcupdate.h>
15
#include <linux/slab.h>
16
#include <linux/swapops.h>
17
#include <linux/sysctl.h>
18 19
#include <linux/ksm.h>
#include <linux/mman.h>
20 21 22 23 24

#include <asm/pgtable.h>
#include <asm/pgalloc.h>
#include <asm/tlb.h>
#include <asm/tlbflush.h>
M
Martin Schwidefsky 已提交
25
#include <asm/mmu_context.h>
26

27
unsigned long *crst_table_alloc(struct mm_struct *mm)
28
{
29
	struct page *page = alloc_pages(GFP_KERNEL, 2);
30 31 32 33 34 35

	if (!page)
		return NULL;
	return (unsigned long *) page_to_phys(page);
}

36 37
void crst_table_free(struct mm_struct *mm, unsigned long *table)
{
38
	free_pages((unsigned long) table, 2);
39 40
}

41 42 43 44
static void __crst_table_upgrade(void *arg)
{
	struct mm_struct *mm = arg;

45 46 47 48
	if (current->active_mm == mm) {
		clear_user_asce();
		set_user_asce(mm);
	}
49 50 51
	__tlb_flush_local();
}

M
Martin Schwidefsky 已提交
52 53 54 55
int crst_table_upgrade(struct mm_struct *mm, unsigned long limit)
{
	unsigned long *table, *pgd;
	unsigned long entry;
56
	int flush;
M
Martin Schwidefsky 已提交
57 58

	BUG_ON(limit > (1UL << 53));
59
	flush = 0;
M
Martin Schwidefsky 已提交
60
repeat:
61
	table = crst_table_alloc(mm);
M
Martin Schwidefsky 已提交
62 63
	if (!table)
		return -ENOMEM;
64
	spin_lock_bh(&mm->page_table_lock);
M
Martin Schwidefsky 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
	if (mm->context.asce_limit < limit) {
		pgd = (unsigned long *) mm->pgd;
		if (mm->context.asce_limit <= (1UL << 31)) {
			entry = _REGION3_ENTRY_EMPTY;
			mm->context.asce_limit = 1UL << 42;
			mm->context.asce_bits = _ASCE_TABLE_LENGTH |
						_ASCE_USER_BITS |
						_ASCE_TYPE_REGION3;
		} else {
			entry = _REGION2_ENTRY_EMPTY;
			mm->context.asce_limit = 1UL << 53;
			mm->context.asce_bits = _ASCE_TABLE_LENGTH |
						_ASCE_USER_BITS |
						_ASCE_TYPE_REGION2;
		}
		crst_table_init(table, entry);
		pgd_populate(mm, (pgd_t *) table, (pud_t *) pgd);
		mm->pgd = (pgd_t *) table;
83
		mm->task_size = mm->context.asce_limit;
M
Martin Schwidefsky 已提交
84
		table = NULL;
85
		flush = 1;
M
Martin Schwidefsky 已提交
86
	}
87
	spin_unlock_bh(&mm->page_table_lock);
M
Martin Schwidefsky 已提交
88 89 90 91
	if (table)
		crst_table_free(mm, table);
	if (mm->context.asce_limit < limit)
		goto repeat;
92 93
	if (flush)
		on_each_cpu(__crst_table_upgrade, mm, 0);
M
Martin Schwidefsky 已提交
94 95 96 97 98 99 100
	return 0;
}

void crst_table_downgrade(struct mm_struct *mm, unsigned long limit)
{
	pgd_t *pgd;

101
	if (current->active_mm == mm) {
102
		clear_user_asce();
103
		__tlb_flush_mm(mm);
104
	}
M
Martin Schwidefsky 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
	while (mm->context.asce_limit > limit) {
		pgd = mm->pgd;
		switch (pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) {
		case _REGION_ENTRY_TYPE_R2:
			mm->context.asce_limit = 1UL << 42;
			mm->context.asce_bits = _ASCE_TABLE_LENGTH |
						_ASCE_USER_BITS |
						_ASCE_TYPE_REGION3;
			break;
		case _REGION_ENTRY_TYPE_R3:
			mm->context.asce_limit = 1UL << 31;
			mm->context.asce_bits = _ASCE_TABLE_LENGTH |
						_ASCE_USER_BITS |
						_ASCE_TYPE_SEGMENT;
			break;
		default:
			BUG();
		}
		mm->pgd = (pgd_t *) (pgd_val(*pgd) & _REGION_ENTRY_ORIGIN);
124
		mm->task_size = mm->context.asce_limit;
M
Martin Schwidefsky 已提交
125 126
		crst_table_free(mm, (unsigned long *) pgd);
	}
127
	if (current->active_mm == mm)
128
		set_user_asce(mm);
M
Martin Schwidefsky 已提交
129 130
}

131 132 133 134 135
#ifdef CONFIG_PGSTE

/**
 * gmap_alloc - allocate a guest address space
 * @mm: pointer to the parent mm_struct
136
 * @limit: maximum address of the gmap address space
137 138 139
 *
 * Returns a guest address space structure.
 */
140
struct gmap *gmap_alloc(struct mm_struct *mm, unsigned long limit)
141
{
142 143 144
	struct gmap *gmap;
	struct page *page;
	unsigned long *table;
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
	unsigned long etype, atype;

	if (limit < (1UL << 31)) {
		limit = (1UL << 31) - 1;
		atype = _ASCE_TYPE_SEGMENT;
		etype = _SEGMENT_ENTRY_EMPTY;
	} else if (limit < (1UL << 42)) {
		limit = (1UL << 42) - 1;
		atype = _ASCE_TYPE_REGION3;
		etype = _REGION3_ENTRY_EMPTY;
	} else if (limit < (1UL << 53)) {
		limit = (1UL << 53) - 1;
		atype = _ASCE_TYPE_REGION2;
		etype = _REGION2_ENTRY_EMPTY;
	} else {
		limit = -1UL;
		atype = _ASCE_TYPE_REGION1;
		etype = _REGION1_ENTRY_EMPTY;
	}
164 165 166 167
	gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL);
	if (!gmap)
		goto out;
	INIT_LIST_HEAD(&gmap->crst_list);
168 169 170
	INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL);
	INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC);
	spin_lock_init(&gmap->guest_table_lock);
171
	gmap->mm = mm;
172
	page = alloc_pages(GFP_KERNEL, 2);
173 174
	if (!page)
		goto out_free;
175
	page->index = 0;
176 177
	list_add(&page->lru, &gmap->crst_list);
	table = (unsigned long *) page_to_phys(page);
178
	crst_table_init(table, etype);
179
	gmap->table = table;
180 181 182
	gmap->asce = atype | _ASCE_TABLE_LENGTH |
		_ASCE_USER_BITS | __pa(table);
	gmap->asce_end = limit;
183
	down_write(&mm->mmap_sem);
184
	list_add(&gmap->list, &mm->context.gmap_list);
185
	up_write(&mm->mmap_sem);
186 187 188 189 190 191
	return gmap;

out_free:
	kfree(gmap);
out:
	return NULL;
192
}
193
EXPORT_SYMBOL_GPL(gmap_alloc);
194

195 196 197
static void gmap_flush_tlb(struct gmap *gmap)
{
	if (MACHINE_HAS_IDTE)
198
		__tlb_flush_asce(gmap->mm, gmap->asce);
199 200 201 202
	else
		__tlb_flush_global();
}

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
static void gmap_radix_tree_free(struct radix_tree_root *root)
{
	struct radix_tree_iter iter;
	unsigned long indices[16];
	unsigned long index;
	void **slot;
	int i, nr;

	/* A radix tree is freed by deleting all of its entries */
	index = 0;
	do {
		nr = 0;
		radix_tree_for_each_slot(slot, root, &iter, index) {
			indices[nr] = iter.index;
			if (++nr == 16)
				break;
		}
		for (i = 0; i < nr; i++) {
			index = indices[i];
			radix_tree_delete(root, index);
		}
	} while (nr > 0);
}

227 228 229
/**
 * gmap_free - free a guest address space
 * @gmap: pointer to the guest address space structure
230
 */
231 232 233 234 235 236
void gmap_free(struct gmap *gmap)
{
	struct page *page, *next;

	/* Flush tlb. */
	if (MACHINE_HAS_IDTE)
237
		__tlb_flush_asce(gmap->mm, gmap->asce);
238 239 240 241
	else
		__tlb_flush_global();

	/* Free all segment & region tables. */
242
	list_for_each_entry_safe(page, next, &gmap->crst_list, lru)
243
		__free_pages(page, 2);
244 245 246
	gmap_radix_tree_free(&gmap->guest_to_host);
	gmap_radix_tree_free(&gmap->host_to_guest);
	down_write(&gmap->mm->mmap_sem);
247
	list_del(&gmap->list);
248
	up_write(&gmap->mm->mmap_sem);
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
	kfree(gmap);
}
EXPORT_SYMBOL_GPL(gmap_free);

/**
 * gmap_enable - switch primary space to the guest address space
 * @gmap: pointer to the guest address space structure
 */
void gmap_enable(struct gmap *gmap)
{
	S390_lowcore.gmap = (unsigned long) gmap;
}
EXPORT_SYMBOL_GPL(gmap_enable);

/**
 * gmap_disable - switch back to the standard primary address space
 * @gmap: pointer to the guest address space structure
 */
void gmap_disable(struct gmap *gmap)
{
	S390_lowcore.gmap = 0UL;
}
EXPORT_SYMBOL_GPL(gmap_disable);

273 274 275
/*
 * gmap_alloc_table is assumed to be called with mmap_sem held
 */
276 277
static int gmap_alloc_table(struct gmap *gmap, unsigned long *table,
			    unsigned long init, unsigned long gaddr)
278 279 280 281
{
	struct page *page;
	unsigned long *new;

282
	/* since we dont free the gmap table until gmap_free we can unlock */
283
	page = alloc_pages(GFP_KERNEL, 2);
284 285 286 287
	if (!page)
		return -ENOMEM;
	new = (unsigned long *) page_to_phys(page);
	crst_table_init(new, init);
288
	spin_lock(&gmap->mm->page_table_lock);
289
	if (*table & _REGION_ENTRY_INVALID) {
290 291 292
		list_add(&page->lru, &gmap->crst_list);
		*table = (unsigned long) new | _REGION_ENTRY_LENGTH |
			(*table & _REGION_ENTRY_TYPE_MASK);
293 294 295 296 297
		page->index = gaddr;
		page = NULL;
	}
	spin_unlock(&gmap->mm->page_table_lock);
	if (page)
298
		__free_pages(page, 2);
299 300 301
	return 0;
}

302 303 304 305 306 307 308 309 310
/**
 * __gmap_segment_gaddr - find virtual address from segment pointer
 * @entry: pointer to a segment table entry in the guest address space
 *
 * Returns the virtual address in the guest address space for the segment
 */
static unsigned long __gmap_segment_gaddr(unsigned long *entry)
{
	struct page *page;
311
	unsigned long offset, mask;
312 313 314

	offset = (unsigned long) entry / sizeof(unsigned long);
	offset = (offset & (PTRS_PER_PMD - 1)) * PMD_SIZE;
315 316
	mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
	page = virt_to_page((void *)((unsigned long) entry & mask));
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
	return page->index + offset;
}

/**
 * __gmap_unlink_by_vmaddr - unlink a single segment via a host address
 * @gmap: pointer to the guest address space structure
 * @vmaddr: address in the host process address space
 *
 * Returns 1 if a TLB flush is required
 */
static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr)
{
	unsigned long *entry;
	int flush = 0;

	spin_lock(&gmap->guest_table_lock);
	entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT);
	if (entry) {
		flush = (*entry != _SEGMENT_ENTRY_INVALID);
		*entry = _SEGMENT_ENTRY_INVALID;
	}
	spin_unlock(&gmap->guest_table_lock);
	return flush;
}

/**
 * __gmap_unmap_by_gaddr - unmap a single segment via a guest address
 * @gmap: pointer to the guest address space structure
 * @gaddr: address in the guest address space
 *
 * Returns 1 if a TLB flush is required
 */
static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr)
{
	unsigned long vmaddr;

	vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host,
						   gaddr >> PMD_SHIFT);
	return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0;
}

358 359 360
/**
 * gmap_unmap_segment - unmap segment from the guest address space
 * @gmap: pointer to the guest address space structure
361
 * @to: address in the guest address space
362 363
 * @len: length of the memory area to unmap
 *
364
 * Returns 0 if the unmap succeeded, -EINVAL if not.
365 366 367 368 369 370 371 372 373 374 375 376
 */
int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len)
{
	unsigned long off;
	int flush;

	if ((to | len) & (PMD_SIZE - 1))
		return -EINVAL;
	if (len == 0 || to + len < to)
		return -EINVAL;

	flush = 0;
377 378 379 380
	down_write(&gmap->mm->mmap_sem);
	for (off = 0; off < len; off += PMD_SIZE)
		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
	up_write(&gmap->mm->mmap_sem);
381 382 383 384 385 386 387 388 389 390 391
	if (flush)
		gmap_flush_tlb(gmap);
	return 0;
}
EXPORT_SYMBOL_GPL(gmap_unmap_segment);

/**
 * gmap_mmap_segment - map a segment to the guest address space
 * @gmap: pointer to the guest address space structure
 * @from: source address in the parent address space
 * @to: target address in the guest address space
392
 * @len: length of the memory area to map
393
 *
394
 * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not.
395 396 397 398 399 400 401 402 403
 */
int gmap_map_segment(struct gmap *gmap, unsigned long from,
		     unsigned long to, unsigned long len)
{
	unsigned long off;
	int flush;

	if ((from | to | len) & (PMD_SIZE - 1))
		return -EINVAL;
404
	if (len == 0 || from + len < from || to + len < to ||
405
	    from + len - 1 > TASK_MAX_SIZE || to + len - 1 > gmap->asce_end)
406 407 408
		return -EINVAL;

	flush = 0;
409
	down_write(&gmap->mm->mmap_sem);
410
	for (off = 0; off < len; off += PMD_SIZE) {
411 412 413 414 415 416 417
		/* Remove old translation */
		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
		/* Store new translation */
		if (radix_tree_insert(&gmap->guest_to_host,
				      (to + off) >> PMD_SHIFT,
				      (void *) from + off))
			break;
418
	}
419
	up_write(&gmap->mm->mmap_sem);
420 421
	if (flush)
		gmap_flush_tlb(gmap);
422 423
	if (off >= len)
		return 0;
424 425 426 427 428
	gmap_unmap_segment(gmap, to, len);
	return -ENOMEM;
}
EXPORT_SYMBOL_GPL(gmap_map_segment);

429 430 431
/**
 * __gmap_translate - translate a guest address to a user space address
 * @gmap: pointer to guest mapping meta data structure
432
 * @gaddr: guest address
433 434 435 436 437 438 439
 *
 * Returns user space address which corresponds to the guest address or
 * -EFAULT if no such mapping exists.
 * This function does not establish potentially missing page table entries.
 * The mmap_sem of the mm that belongs to the address space must be held
 * when this function gets called.
 */
440
unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr)
441
{
442
	unsigned long vmaddr;
443

444 445 446
	vmaddr = (unsigned long)
		radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT);
	return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT;
447 448 449 450 451 452
}
EXPORT_SYMBOL_GPL(__gmap_translate);

/**
 * gmap_translate - translate a guest address to a user space address
 * @gmap: pointer to guest mapping meta data structure
453
 * @gaddr: guest address
454 455 456 457 458
 *
 * Returns user space address which corresponds to the guest address or
 * -EFAULT if no such mapping exists.
 * This function does not establish potentially missing page table entries.
 */
459
unsigned long gmap_translate(struct gmap *gmap, unsigned long gaddr)
460 461 462 463
{
	unsigned long rc;

	down_read(&gmap->mm->mmap_sem);
464
	rc = __gmap_translate(gmap, gaddr);
465 466 467 468 469
	up_read(&gmap->mm->mmap_sem);
	return rc;
}
EXPORT_SYMBOL_GPL(gmap_translate);

470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
/**
 * gmap_unlink - disconnect a page table from the gmap shadow tables
 * @gmap: pointer to guest mapping meta data structure
 * @table: pointer to the host page table
 * @vmaddr: vm address associated with the host page table
 */
static void gmap_unlink(struct mm_struct *mm, unsigned long *table,
			unsigned long vmaddr)
{
	struct gmap *gmap;
	int flush;

	list_for_each_entry(gmap, &mm->context.gmap_list, list) {
		flush = __gmap_unlink_by_vmaddr(gmap, vmaddr);
		if (flush)
			gmap_flush_tlb(gmap);
	}
}

/**
 * gmap_link - set up shadow page tables to connect a host to a guest address
 * @gmap: pointer to guest mapping meta data structure
 * @gaddr: guest address
 * @vmaddr: vm address
 *
 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
 * if the vm address is already mapped to a different guest segment.
 * The mmap_sem of the mm that belongs to the address space must be held
 * when this function gets called.
 */
int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr)
501
{
502
	struct mm_struct *mm;
503 504
	unsigned long *table;
	spinlock_t *ptl;
505 506 507
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
508
	int rc;
509

510
	/* Create higher level tables in the gmap page table */
511 512 513 514 515
	table = gmap->table;
	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) {
		table += (gaddr >> 53) & 0x7ff;
		if ((*table & _REGION_ENTRY_INVALID) &&
		    gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY,
516
				     gaddr & 0xffe0000000000000UL))
517 518 519 520 521 522 523
			return -ENOMEM;
		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
	}
	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) {
		table += (gaddr >> 42) & 0x7ff;
		if ((*table & _REGION_ENTRY_INVALID) &&
		    gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY,
524
				     gaddr & 0xfffffc0000000000UL))
525 526 527 528 529 530 531
			return -ENOMEM;
		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
	}
	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) {
		table += (gaddr >> 31) & 0x7ff;
		if ((*table & _REGION_ENTRY_INVALID) &&
		    gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY,
532
				     gaddr & 0xffffffff80000000UL))
533 534 535 536
			return -ENOMEM;
		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
	}
	table += (gaddr >> 20) & 0x7ff;
537 538 539 540 541 542 543 544
	/* Walk the parent mm page table */
	mm = gmap->mm;
	pgd = pgd_offset(mm, vmaddr);
	VM_BUG_ON(pgd_none(*pgd));
	pud = pud_offset(pgd, vmaddr);
	VM_BUG_ON(pud_none(*pud));
	pmd = pmd_offset(pud, vmaddr);
	VM_BUG_ON(pmd_none(*pmd));
545 546 547
	/* large pmds cannot yet be handled */
	if (pmd_large(*pmd))
		return -EFAULT;
548
	/* Link gmap segment table entry location to page table. */
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
	rc = radix_tree_preload(GFP_KERNEL);
	if (rc)
		return rc;
	ptl = pmd_lock(mm, pmd);
	spin_lock(&gmap->guest_table_lock);
	if (*table == _SEGMENT_ENTRY_INVALID) {
		rc = radix_tree_insert(&gmap->host_to_guest,
				       vmaddr >> PMD_SHIFT, table);
		if (!rc)
			*table = pmd_val(*pmd);
	} else
		rc = 0;
	spin_unlock(&gmap->guest_table_lock);
	spin_unlock(ptl);
	radix_tree_preload_end();
	return rc;
565 566
}

567 568 569 570 571 572 573 574
/**
 * gmap_fault - resolve a fault on a guest address
 * @gmap: pointer to guest mapping meta data structure
 * @gaddr: guest address
 * @fault_flags: flags to pass down to handle_mm_fault()
 *
 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
 * if the vm address is already mapped to a different guest segment.
575
 */
576 577
int gmap_fault(struct gmap *gmap, unsigned long gaddr,
	       unsigned int fault_flags)
578
{
579
	unsigned long vmaddr;
580 581
	int rc;

582
	down_read(&gmap->mm->mmap_sem);
583 584 585 586 587 588 589 590 591 592 593
	vmaddr = __gmap_translate(gmap, gaddr);
	if (IS_ERR_VALUE(vmaddr)) {
		rc = vmaddr;
		goto out_up;
	}
	if (fixup_user_fault(current, gmap->mm, vmaddr, fault_flags)) {
		rc = -EFAULT;
		goto out_up;
	}
	rc = __gmap_link(gmap, gaddr, vmaddr);
out_up:
594 595
	up_read(&gmap->mm->mmap_sem);
	return rc;
596 597 598
}
EXPORT_SYMBOL_GPL(gmap_fault);

599 600 601 602 603 604 605
static void gmap_zap_swap_entry(swp_entry_t entry, struct mm_struct *mm)
{
	if (!non_swap_entry(entry))
		dec_mm_counter(mm, MM_SWAPENTS);
	else if (is_migration_entry(entry)) {
		struct page *page = migration_entry_to_page(entry);

606
		dec_mm_counter(mm, mm_counter(page));
607 608 609 610
	}
	free_swap_and_cache(entry);
}

611 612
/*
 * this function is assumed to be called with mmap_sem held
613
 */
614
void __gmap_zap(struct gmap *gmap, unsigned long gaddr)
615
{
616 617
	unsigned long vmaddr, ptev, pgstev;
	pte_t *ptep, pte;
618 619 620
	spinlock_t *ptl;
	pgste_t pgste;

621 622 623 624 625 626 627 628
	/* Find the vm address for the guest address */
	vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host,
						   gaddr >> PMD_SHIFT);
	if (!vmaddr)
		return;
	vmaddr |= gaddr & ~PMD_MASK;
	/* Get pointer to the page table entry */
	ptep = get_locked_pte(gmap->mm, vmaddr, &ptl);
629 630 631 632 633 634 635 636 637 638 639
	if (unlikely(!ptep))
		return;
	pte = *ptep;
	if (!pte_swap(pte))
		goto out_pte;
	/* Zap unused and logically-zero pages */
	pgste = pgste_get_lock(ptep);
	pgstev = pgste_val(pgste);
	ptev = pte_val(pte);
	if (((pgstev & _PGSTE_GPS_USAGE_MASK) == _PGSTE_GPS_USAGE_UNUSED) ||
	    ((pgstev & _PGSTE_GPS_ZERO) && (ptev & _PAGE_INVALID))) {
640 641
		gmap_zap_swap_entry(pte_to_swp_entry(pte), gmap->mm);
		pte_clear(gmap->mm, vmaddr, ptep);
642 643 644
	}
	pgste_set_unlock(ptep, pgste);
out_pte:
645
	pte_unmap_unlock(ptep, ptl);
646 647 648
}
EXPORT_SYMBOL_GPL(__gmap_zap);

649
void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to)
650
{
651
	unsigned long gaddr, vmaddr, size;
652 653 654
	struct vm_area_struct *vma;

	down_read(&gmap->mm->mmap_sem);
655 656 657 658 659 660 661
	for (gaddr = from; gaddr < to;
	     gaddr = (gaddr + PMD_SIZE) & PMD_MASK) {
		/* Find the vm address for the guest address */
		vmaddr = (unsigned long)
			radix_tree_lookup(&gmap->guest_to_host,
					  gaddr >> PMD_SHIFT);
		if (!vmaddr)
662
			continue;
663 664 665
		vmaddr |= gaddr & ~PMD_MASK;
		/* Find vma in the parent mm */
		vma = find_vma(gmap->mm, vmaddr);
666
		size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK));
667
		zap_page_range(vma, vmaddr, size, NULL);
668 669 670 671 672
	}
	up_read(&gmap->mm->mmap_sem);
}
EXPORT_SYMBOL_GPL(gmap_discard);

673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
static LIST_HEAD(gmap_notifier_list);
static DEFINE_SPINLOCK(gmap_notifier_lock);

/**
 * gmap_register_ipte_notifier - register a pte invalidation callback
 * @nb: pointer to the gmap notifier block
 */
void gmap_register_ipte_notifier(struct gmap_notifier *nb)
{
	spin_lock(&gmap_notifier_lock);
	list_add(&nb->list, &gmap_notifier_list);
	spin_unlock(&gmap_notifier_lock);
}
EXPORT_SYMBOL_GPL(gmap_register_ipte_notifier);

/**
 * gmap_unregister_ipte_notifier - remove a pte invalidation callback
 * @nb: pointer to the gmap notifier block
 */
void gmap_unregister_ipte_notifier(struct gmap_notifier *nb)
{
	spin_lock(&gmap_notifier_lock);
	list_del_init(&nb->list);
	spin_unlock(&gmap_notifier_lock);
}
EXPORT_SYMBOL_GPL(gmap_unregister_ipte_notifier);

/**
 * gmap_ipte_notify - mark a range of ptes for invalidation notification
 * @gmap: pointer to guest mapping meta data structure
703
 * @gaddr: virtual address in the guest address space
704 705 706 707 708 709 710
 * @len: size of area
 *
 * Returns 0 if for each page in the given range a gmap mapping exists and
 * the invalidation notification could be set. If the gmap mapping is missing
 * for one or more pages -EFAULT is returned. If no memory could be allocated
 * -ENOMEM is returned. This function establishes missing page table entries.
 */
711
int gmap_ipte_notify(struct gmap *gmap, unsigned long gaddr, unsigned long len)
712 713 714 715 716 717 718
{
	unsigned long addr;
	spinlock_t *ptl;
	pte_t *ptep, entry;
	pgste_t pgste;
	int rc = 0;

719
	if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK))
720 721 722 723
		return -EINVAL;
	down_read(&gmap->mm->mmap_sem);
	while (len) {
		/* Convert gmap address and connect the page tables */
724
		addr = __gmap_translate(gmap, gaddr);
725 726 727 728 729
		if (IS_ERR_VALUE(addr)) {
			rc = addr;
			break;
		}
		/* Get the page mapped */
730
		if (fixup_user_fault(current, gmap->mm, addr, FAULT_FLAG_WRITE)) {
731 732 733
			rc = -EFAULT;
			break;
		}
734 735 736
		rc = __gmap_link(gmap, gaddr, addr);
		if (rc)
			break;
737 738
		/* Walk the process page table, lock and get pte pointer */
		ptep = get_locked_pte(gmap->mm, addr, &ptl);
739
		VM_BUG_ON(!ptep);
740 741
		/* Set notification bit in the pgste of the pte */
		entry = *ptep;
742
		if ((pte_val(entry) & (_PAGE_INVALID | _PAGE_PROTECT)) == 0) {
743
			pgste = pgste_get_lock(ptep);
744
			pgste_val(pgste) |= PGSTE_IN_BIT;
745
			pgste_set_unlock(ptep, pgste);
746
			gaddr += PAGE_SIZE;
747 748
			len -= PAGE_SIZE;
		}
749
		pte_unmap_unlock(ptep, ptl);
750 751 752 753 754 755 756 757 758
	}
	up_read(&gmap->mm->mmap_sem);
	return rc;
}
EXPORT_SYMBOL_GPL(gmap_ipte_notify);

/**
 * gmap_do_ipte_notify - call all invalidation callbacks for a specific pte.
 * @mm: pointer to the process mm_struct
759
 * @addr: virtual address in the process address space
760 761 762 763 764
 * @pte: pointer to the page table entry
 *
 * This function is assumed to be called with the page table lock held
 * for the pte to notify.
 */
765
void gmap_do_ipte_notify(struct mm_struct *mm, unsigned long vmaddr, pte_t *pte)
766
{
767 768
	unsigned long offset, gaddr;
	unsigned long *table;
769
	struct gmap_notifier *nb;
770
	struct gmap *gmap;
771

772 773
	offset = ((unsigned long) pte) & (255 * sizeof(pte_t));
	offset = offset * (4096 / sizeof(pte_t));
774
	spin_lock(&gmap_notifier_lock);
775 776 777 778 779 780
	list_for_each_entry(gmap, &mm->context.gmap_list, list) {
		table = radix_tree_lookup(&gmap->host_to_guest,
					  vmaddr >> PMD_SHIFT);
		if (!table)
			continue;
		gaddr = __gmap_segment_gaddr(table) + offset;
781
		list_for_each_entry(nb, &gmap_notifier_list, list)
782
			nb->notifier_call(gmap, gaddr);
783 784 785
	}
	spin_unlock(&gmap_notifier_lock);
}
786
EXPORT_SYMBOL_GPL(gmap_do_ipte_notify);
787

788 789 790 791 792 793 794 795
int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
			  unsigned long key, bool nq)
{
	spinlock_t *ptl;
	pgste_t old, new;
	pte_t *ptep;

	down_read(&mm->mmap_sem);
796
retry:
797
	ptep = get_locked_pte(mm, addr, &ptl);
798 799 800 801
	if (unlikely(!ptep)) {
		up_read(&mm->mmap_sem);
		return -EFAULT;
	}
802 803
	if (!(pte_val(*ptep) & _PAGE_INVALID) &&
	     (pte_val(*ptep) & _PAGE_PROTECT)) {
804
		pte_unmap_unlock(ptep, ptl);
805 806 807
		if (fixup_user_fault(current, mm, addr, FAULT_FLAG_WRITE)) {
			up_read(&mm->mmap_sem);
			return -EFAULT;
808
		}
809 810
		goto retry;
	}
811 812 813 814 815 816 817

	new = old = pgste_get_lock(ptep);
	pgste_val(new) &= ~(PGSTE_GR_BIT | PGSTE_GC_BIT |
			    PGSTE_ACC_BITS | PGSTE_FP_BIT);
	pgste_val(new) |= (key & (_PAGE_CHANGED | _PAGE_REFERENCED)) << 48;
	pgste_val(new) |= (key & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
	if (!(pte_val(*ptep) & _PAGE_INVALID)) {
818
		unsigned long address, bits, skey;
819 820

		address = pte_val(*ptep) & PAGE_MASK;
821
		skey = (unsigned long) page_get_storage_key(address);
822
		bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
823
		skey = key & (_PAGE_ACC_BITS | _PAGE_FP_BIT);
824
		/* Set storage key ACC and FP */
825
		page_set_storage_key(address, skey, !nq);
826 827 828 829 830 831
		/* Merge host changed & referenced into pgste  */
		pgste_val(new) |= bits << 52;
	}
	/* changing the guest storage key is considered a change of the page */
	if ((pgste_val(new) ^ pgste_val(old)) &
	    (PGSTE_ACC_BITS | PGSTE_FP_BIT | PGSTE_GR_BIT | PGSTE_GC_BIT))
832
		pgste_val(new) |= PGSTE_UC_BIT;
833 834

	pgste_set_unlock(ptep, new);
835
	pte_unmap_unlock(ptep, ptl);
836 837 838 839 840
	up_read(&mm->mmap_sem);
	return 0;
}
EXPORT_SYMBOL(set_guest_storage_key);

841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
unsigned long get_guest_storage_key(struct mm_struct *mm, unsigned long addr)
{
	spinlock_t *ptl;
	pgste_t pgste;
	pte_t *ptep;
	uint64_t physaddr;
	unsigned long key = 0;

	down_read(&mm->mmap_sem);
	ptep = get_locked_pte(mm, addr, &ptl);
	if (unlikely(!ptep)) {
		up_read(&mm->mmap_sem);
		return -EFAULT;
	}
	pgste = pgste_get_lock(ptep);

	if (pte_val(*ptep) & _PAGE_INVALID) {
		key |= (pgste_val(pgste) & PGSTE_ACC_BITS) >> 56;
		key |= (pgste_val(pgste) & PGSTE_FP_BIT) >> 56;
		key |= (pgste_val(pgste) & PGSTE_GR_BIT) >> 48;
		key |= (pgste_val(pgste) & PGSTE_GC_BIT) >> 48;
	} else {
		physaddr = pte_val(*ptep) & PAGE_MASK;
		key = page_get_storage_key(physaddr);

		/* Reflect guest's logical view, not physical */
		if (pgste_val(pgste) & PGSTE_GR_BIT)
			key |= _PAGE_REFERENCED;
		if (pgste_val(pgste) & PGSTE_GC_BIT)
			key |= _PAGE_CHANGED;
	}

	pgste_set_unlock(ptep, pgste);
	pte_unmap_unlock(ptep, ptl);
	up_read(&mm->mmap_sem);
	return key;
}
EXPORT_SYMBOL(get_guest_storage_key);

880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
static int page_table_allocate_pgste_min = 0;
static int page_table_allocate_pgste_max = 1;
int page_table_allocate_pgste = 0;
EXPORT_SYMBOL(page_table_allocate_pgste);

static struct ctl_table page_table_sysctl[] = {
	{
		.procname	= "allocate_pgste",
		.data		= &page_table_allocate_pgste,
		.maxlen		= sizeof(int),
		.mode		= S_IRUGO | S_IWUSR,
		.proc_handler	= proc_dointvec,
		.extra1		= &page_table_allocate_pgste_min,
		.extra2		= &page_table_allocate_pgste_max,
	},
	{ }
};

static struct ctl_table page_table_sysctl_dir[] = {
	{
		.procname	= "vm",
		.maxlen		= 0,
		.mode		= 0555,
		.child		= page_table_sysctl,
	},
	{ }
};

static int __init page_table_register_sysctl(void)
{
	return register_sysctl_table(page_table_sysctl_dir) ? 0 : -ENOMEM;
}
__initcall(page_table_register_sysctl);

914 915
#else /* CONFIG_PGSTE */

916 917
static inline void gmap_unlink(struct mm_struct *mm, unsigned long *table,
			unsigned long vmaddr)
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
{
}

#endif /* CONFIG_PGSTE */

static inline unsigned int atomic_xor_bits(atomic_t *v, unsigned int bits)
{
	unsigned int old, new;

	do {
		old = atomic_read(v);
		new = old ^ bits;
	} while (atomic_cmpxchg(v, old, new) != old);
	return new;
}

/*
 * page table entry allocation/free routines.
 */
937
unsigned long *page_table_alloc(struct mm_struct *mm)
938
{
939 940
	unsigned long *table;
	struct page *page;
941
	unsigned int mask, bit;
942

943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
	/* Try to get a fragment of a 4K page as a 2K page table */
	if (!mm_alloc_pgste(mm)) {
		table = NULL;
		spin_lock_bh(&mm->context.list_lock);
		if (!list_empty(&mm->context.pgtable_list)) {
			page = list_first_entry(&mm->context.pgtable_list,
						struct page, lru);
			mask = atomic_read(&page->_mapcount);
			mask = (mask | (mask >> 4)) & 3;
			if (mask != 3) {
				table = (unsigned long *) page_to_phys(page);
				bit = mask & 1;		/* =1 -> second 2K */
				if (bit)
					table += PTRS_PER_PTE;
				atomic_xor_bits(&page->_mapcount, 1U << bit);
				list_del(&page->lru);
			}
960
		}
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
		spin_unlock_bh(&mm->context.list_lock);
		if (table)
			return table;
	}
	/* Allocate a fresh page */
	page = alloc_page(GFP_KERNEL|__GFP_REPEAT);
	if (!page)
		return NULL;
	if (!pgtable_page_ctor(page)) {
		__free_page(page);
		return NULL;
	}
	/* Initialize page table */
	table = (unsigned long *) page_to_phys(page);
	if (mm_alloc_pgste(mm)) {
		/* Return 4K page table with PGSTEs */
		atomic_set(&page->_mapcount, 3);
		clear_table(table, _PAGE_INVALID, PAGE_SIZE/2);
		clear_table(table + PTRS_PER_PTE, 0, PAGE_SIZE/2);
	} else {
		/* Return the first 2K fragment of the page */
982
		atomic_set(&page->_mapcount, 1);
983
		clear_table(table, _PAGE_INVALID, PAGE_SIZE);
984
		spin_lock_bh(&mm->context.list_lock);
985
		list_add(&page->lru, &mm->context.pgtable_list);
986
		spin_unlock_bh(&mm->context.list_lock);
987 988 989 990
	}
	return table;
}

991
void page_table_free(struct mm_struct *mm, unsigned long *table)
992 993
{
	struct page *page;
994
	unsigned int bit, mask;
995

996
	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
	if (!mm_alloc_pgste(mm)) {
		/* Free 2K page table fragment of a 4K page */
		bit = (__pa(table) & ~PAGE_MASK)/(PTRS_PER_PTE*sizeof(pte_t));
		spin_lock_bh(&mm->context.list_lock);
		mask = atomic_xor_bits(&page->_mapcount, 1U << bit);
		if (mask & 3)
			list_add(&page->lru, &mm->context.pgtable_list);
		else
			list_del(&page->lru);
		spin_unlock_bh(&mm->context.list_lock);
		if (mask != 0)
			return;
1009
	}
1010

1011 1012 1013
	pgtable_page_dtor(page);
	atomic_set(&page->_mapcount, -1);
	__free_page(page);
1014
}
1015

1016 1017
void page_table_free_rcu(struct mmu_gather *tlb, unsigned long *table,
			 unsigned long vmaddr)
1018
{
1019
	struct mm_struct *mm;
1020
	struct page *page;
1021
	unsigned int bit, mask;
1022

1023
	mm = tlb->mm;
1024
	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
1025
	if (mm_alloc_pgste(mm)) {
1026
		gmap_unlink(mm, table, vmaddr);
1027
		table = (unsigned long *) (__pa(table) | 3);
1028 1029
		tlb_remove_table(tlb, table);
		return;
1030
	}
1031
	bit = (__pa(table) & ~PAGE_MASK) / (PTRS_PER_PTE*sizeof(pte_t));
1032
	spin_lock_bh(&mm->context.list_lock);
1033 1034
	mask = atomic_xor_bits(&page->_mapcount, 0x11U << bit);
	if (mask & 3)
1035
		list_add_tail(&page->lru, &mm->context.pgtable_list);
1036 1037
	else
		list_del(&page->lru);
1038
	spin_unlock_bh(&mm->context.list_lock);
1039
	table = (unsigned long *) (__pa(table) | (1U << bit));
1040 1041 1042
	tlb_remove_table(tlb, table);
}

1043
static void __tlb_remove_table(void *_table)
1044
{
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
	unsigned int mask = (unsigned long) _table & 3;
	void *table = (void *)((unsigned long) _table ^ mask);
	struct page *page = pfn_to_page(__pa(table) >> PAGE_SHIFT);

	switch (mask) {
	case 0:		/* pmd or pud */
		free_pages((unsigned long) table, 2);
		break;
	case 1:		/* lower 2K of a 4K page table */
	case 2:		/* higher 2K of a 4K page table */
		if (atomic_xor_bits(&page->_mapcount, mask << 4) != 0)
			break;
		/* fallthrough */
	case 3:		/* 4K page table with pgstes */
		pgtable_page_dtor(page);
		atomic_set(&page->_mapcount, -1);
		__free_page(page);
		break;
	}
1064 1065
}

1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
static void tlb_remove_table_smp_sync(void *arg)
{
	/* Simply deliver the interrupt */
}

static void tlb_remove_table_one(void *table)
{
	/*
	 * This isn't an RCU grace period and hence the page-tables cannot be
	 * assumed to be actually RCU-freed.
	 *
	 * It is however sufficient for software page-table walkers that rely
	 * on IRQ disabling. See the comment near struct mmu_table_batch.
	 */
	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
	__tlb_remove_table(table);
}

static void tlb_remove_table_rcu(struct rcu_head *head)
{
	struct mmu_table_batch *batch;
	int i;

	batch = container_of(head, struct mmu_table_batch, rcu);

	for (i = 0; i < batch->nr; i++)
		__tlb_remove_table(batch->tables[i]);

	free_page((unsigned long)batch);
}

void tlb_table_flush(struct mmu_gather *tlb)
{
	struct mmu_table_batch **batch = &tlb->batch;

	if (*batch) {
		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
		*batch = NULL;
	}
}

void tlb_remove_table(struct mmu_gather *tlb, void *table)
{
	struct mmu_table_batch **batch = &tlb->batch;

1111
	tlb->mm->context.flush_mm = 1;
1112 1113 1114 1115
	if (*batch == NULL) {
		*batch = (struct mmu_table_batch *)
			__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
		if (*batch == NULL) {
1116
			__tlb_flush_mm_lazy(tlb->mm);
1117 1118 1119 1120 1121 1122 1123
			tlb_remove_table_one(table);
			return;
		}
		(*batch)->nr = 0;
	}
	(*batch)->tables[(*batch)->nr++] = table;
	if ((*batch)->nr == MAX_TABLE_BATCH)
1124
		tlb_flush_mmu(tlb);
1125
}
1126

1127
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1128
static inline void thp_split_vma(struct vm_area_struct *vma)
1129 1130 1131
{
	unsigned long addr;

1132 1133
	for (addr = vma->vm_start; addr < vma->vm_end; addr += PAGE_SIZE)
		follow_page(vma, addr, FOLL_SPLIT);
1134 1135
}

1136
static inline void thp_split_mm(struct mm_struct *mm)
1137
{
1138
	struct vm_area_struct *vma;
1139

1140
	for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) {
1141 1142 1143 1144
		thp_split_vma(vma);
		vma->vm_flags &= ~VM_HUGEPAGE;
		vma->vm_flags |= VM_NOHUGEPAGE;
	}
1145 1146 1147 1148 1149
	mm->def_flags |= VM_NOHUGEPAGE;
}
#else
static inline void thp_split_mm(struct mm_struct *mm)
{
1150 1151 1152
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

1153 1154 1155 1156 1157
/*
 * switch on pgstes for its userspace process (for kvm)
 */
int s390_enable_sie(void)
{
1158
	struct mm_struct *mm = current->mm;
1159

1160
	/* Do we have pgstes? if yes, we are done */
1161
	if (mm_has_pgste(mm))
1162
		return 0;
1163 1164 1165
	/* Fail if the page tables are 2K */
	if (!mm_alloc_pgste(mm))
		return -EINVAL;
1166
	down_write(&mm->mmap_sem);
1167
	mm->context.has_pgste = 1;
1168 1169
	/* split thp mappings and disable thp for future mappings */
	thp_split_mm(mm);
1170
	up_write(&mm->mmap_sem);
1171
	return 0;
1172 1173
}
EXPORT_SYMBOL_GPL(s390_enable_sie);
1174

1175 1176 1177 1178
/*
 * Enable storage key handling from now on and initialize the storage
 * keys with the default key.
 */
1179 1180 1181 1182 1183 1184 1185
static int __s390_enable_skey(pte_t *pte, unsigned long addr,
			      unsigned long next, struct mm_walk *walk)
{
	unsigned long ptev;
	pgste_t pgste;

	pgste = pgste_get_lock(pte);
1186 1187 1188 1189 1190 1191 1192 1193 1194
	/*
	 * Remove all zero page mappings,
	 * after establishing a policy to forbid zero page mappings
	 * following faults for that page will get fresh anonymous pages
	 */
	if (is_zero_pfn(pte_pfn(*pte))) {
		ptep_flush_direct(walk->mm, addr, pte);
		pte_val(*pte) = _PAGE_INVALID;
	}
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
	/* Clear storage key */
	pgste_val(pgste) &= ~(PGSTE_ACC_BITS | PGSTE_FP_BIT |
			      PGSTE_GR_BIT | PGSTE_GC_BIT);
	ptev = pte_val(*pte);
	if (!(ptev & _PAGE_INVALID) && (ptev & _PAGE_WRITE))
		page_set_storage_key(ptev & PAGE_MASK, PAGE_DEFAULT_KEY, 1);
	pgste_set_unlock(pte, pgste);
	return 0;
}

1205
int s390_enable_skey(void)
1206
{
1207 1208
	struct mm_walk walk = { .pte_entry = __s390_enable_skey };
	struct mm_struct *mm = current->mm;
1209 1210
	struct vm_area_struct *vma;
	int rc = 0;
1211 1212 1213 1214

	down_write(&mm->mmap_sem);
	if (mm_use_skey(mm))
		goto out_up;
1215 1216

	mm->context.use_skey = 1;
1217 1218 1219 1220 1221 1222 1223 1224 1225
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		if (ksm_madvise(vma, vma->vm_start, vma->vm_end,
				MADV_UNMERGEABLE, &vma->vm_flags)) {
			mm->context.use_skey = 0;
			rc = -ENOMEM;
			goto out_up;
		}
	}
	mm->def_flags &= ~VM_MERGEABLE;
1226

1227 1228 1229 1230 1231
	walk.mm = mm;
	walk_page_range(0, TASK_SIZE, &walk);

out_up:
	up_write(&mm->mmap_sem);
1232
	return rc;
1233 1234 1235
}
EXPORT_SYMBOL_GPL(s390_enable_skey);

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
/*
 * Reset CMMA state, make all pages stable again.
 */
static int __s390_reset_cmma(pte_t *pte, unsigned long addr,
			     unsigned long next, struct mm_walk *walk)
{
	pgste_t pgste;

	pgste = pgste_get_lock(pte);
	pgste_val(pgste) &= ~_PGSTE_GPS_USAGE_MASK;
	pgste_set_unlock(pte, pgste);
	return 0;
}

void s390_reset_cmma(struct mm_struct *mm)
{
	struct mm_walk walk = { .pte_entry = __s390_reset_cmma };

	down_write(&mm->mmap_sem);
	walk.mm = mm;
	walk_page_range(0, TASK_SIZE, &walk);
	up_write(&mm->mmap_sem);
}
EXPORT_SYMBOL_GPL(s390_reset_cmma);

1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
/*
 * Test and reset if a guest page is dirty
 */
bool gmap_test_and_clear_dirty(unsigned long address, struct gmap *gmap)
{
	pte_t *pte;
	spinlock_t *ptl;
	bool dirty = false;

	pte = get_locked_pte(gmap->mm, address, &ptl);
	if (unlikely(!pte))
		return false;

	if (ptep_test_and_clear_user_dirty(gmap->mm, address, pte))
		dirty = true;

	spin_unlock(ptl);
	return dirty;
}
EXPORT_SYMBOL_GPL(gmap_test_and_clear_dirty);

1282
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
int pmdp_clear_flush_young(struct vm_area_struct *vma, unsigned long address,
			   pmd_t *pmdp)
{
	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
	/* No need to flush TLB
	 * On s390 reference bits are in storage key and never in TLB */
	return pmdp_test_and_clear_young(vma, address, pmdp);
}

int pmdp_set_access_flags(struct vm_area_struct *vma,
			  unsigned long address, pmd_t *pmdp,
			  pmd_t entry, int dirty)
{
	VM_BUG_ON(address & ~HPAGE_PMD_MASK);

1298 1299 1300
	entry = pmd_mkyoung(entry);
	if (dirty)
		entry = pmd_mkdirty(entry);
1301 1302 1303 1304 1305 1306 1307
	if (pmd_same(*pmdp, entry))
		return 0;
	pmdp_invalidate(vma, address, pmdp);
	set_pmd_at(vma->vm_mm, address, pmdp, entry);
	return 1;
}

1308 1309
void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
				pgtable_t pgtable)
1310 1311 1312
{
	struct list_head *lh = (struct list_head *) pgtable;

1313
	assert_spin_locked(pmd_lockptr(mm, pmdp));
1314 1315

	/* FIFO */
1316
	if (!pmd_huge_pte(mm, pmdp))
1317 1318
		INIT_LIST_HEAD(lh);
	else
1319 1320
		list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
	pmd_huge_pte(mm, pmdp) = pgtable;
1321 1322
}

1323
pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
1324 1325 1326 1327 1328
{
	struct list_head *lh;
	pgtable_t pgtable;
	pte_t *ptep;

1329
	assert_spin_locked(pmd_lockptr(mm, pmdp));
1330 1331

	/* FIFO */
1332
	pgtable = pmd_huge_pte(mm, pmdp);
1333 1334
	lh = (struct list_head *) pgtable;
	if (list_empty(lh))
1335
		pmd_huge_pte(mm, pmdp) = NULL;
1336
	else {
1337
		pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
1338 1339 1340
		list_del(lh);
	}
	ptep = (pte_t *) pgtable;
1341
	pte_val(*ptep) = _PAGE_INVALID;
1342
	ptep++;
1343
	pte_val(*ptep) = _PAGE_INVALID;
1344 1345
	return pgtable;
}
1346
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */