intel_cdclk.c 71.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Copyright © 2006-2017 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */

24
#include "intel_atomic.h"
25
#include "intel_cdclk.h"
26
#include "intel_display_types.h"
27
#include "intel_sideband.h"
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

/**
 * DOC: CDCLK / RAWCLK
 *
 * The display engine uses several different clocks to do its work. There
 * are two main clocks involved that aren't directly related to the actual
 * pixel clock or any symbol/bit clock of the actual output port. These
 * are the core display clock (CDCLK) and RAWCLK.
 *
 * CDCLK clocks most of the display pipe logic, and thus its frequency
 * must be high enough to support the rate at which pixels are flowing
 * through the pipes. Downscaling must also be accounted as that increases
 * the effective pixel rate.
 *
 * On several platforms the CDCLK frequency can be changed dynamically
 * to minimize power consumption for a given display configuration.
 * Typically changes to the CDCLK frequency require all the display pipes
 * to be shut down while the frequency is being changed.
 *
 * On SKL+ the DMC will toggle the CDCLK off/on during DC5/6 entry/exit.
 * DMC will not change the active CDCLK frequency however, so that part
 * will still be performed by the driver directly.
 *
 * RAWCLK is a fixed frequency clock, often used by various auxiliary
 * blocks such as AUX CH or backlight PWM. Hence the only thing we
 * really need to know about RAWCLK is its frequency so that various
 * dividers can be programmed correctly.
 */

57 58
static void fixed_133mhz_get_cdclk(struct drm_i915_private *dev_priv,
				   struct intel_cdclk_state *cdclk_state)
59
{
60
	cdclk_state->cdclk = 133333;
61 62
}

63 64
static void fixed_200mhz_get_cdclk(struct drm_i915_private *dev_priv,
				   struct intel_cdclk_state *cdclk_state)
65
{
66
	cdclk_state->cdclk = 200000;
67 68
}

69 70
static void fixed_266mhz_get_cdclk(struct drm_i915_private *dev_priv,
				   struct intel_cdclk_state *cdclk_state)
71
{
72
	cdclk_state->cdclk = 266667;
73 74
}

75 76
static void fixed_333mhz_get_cdclk(struct drm_i915_private *dev_priv,
				   struct intel_cdclk_state *cdclk_state)
77
{
78
	cdclk_state->cdclk = 333333;
79 80
}

81 82
static void fixed_400mhz_get_cdclk(struct drm_i915_private *dev_priv,
				   struct intel_cdclk_state *cdclk_state)
83
{
84
	cdclk_state->cdclk = 400000;
85 86
}

87 88
static void fixed_450mhz_get_cdclk(struct drm_i915_private *dev_priv,
				   struct intel_cdclk_state *cdclk_state)
89
{
90
	cdclk_state->cdclk = 450000;
91 92
}

93 94
static void i85x_get_cdclk(struct drm_i915_private *dev_priv,
			   struct intel_cdclk_state *cdclk_state)
95 96 97 98 99 100 101 102 103
{
	struct pci_dev *pdev = dev_priv->drm.pdev;
	u16 hpllcc = 0;

	/*
	 * 852GM/852GMV only supports 133 MHz and the HPLLCC
	 * encoding is different :(
	 * FIXME is this the right way to detect 852GM/852GMV?
	 */
104 105 106 107
	if (pdev->revision == 0x1) {
		cdclk_state->cdclk = 133333;
		return;
	}
108 109 110 111 112 113 114 115 116 117 118

	pci_bus_read_config_word(pdev->bus,
				 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);

	/* Assume that the hardware is in the high speed state.  This
	 * should be the default.
	 */
	switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
	case GC_CLOCK_133_200:
	case GC_CLOCK_133_200_2:
	case GC_CLOCK_100_200:
119 120
		cdclk_state->cdclk = 200000;
		break;
121
	case GC_CLOCK_166_250:
122 123
		cdclk_state->cdclk = 250000;
		break;
124
	case GC_CLOCK_100_133:
125 126
		cdclk_state->cdclk = 133333;
		break;
127 128 129
	case GC_CLOCK_133_266:
	case GC_CLOCK_133_266_2:
	case GC_CLOCK_166_266:
130 131
		cdclk_state->cdclk = 266667;
		break;
132 133 134
	}
}

135 136
static void i915gm_get_cdclk(struct drm_i915_private *dev_priv,
			     struct intel_cdclk_state *cdclk_state)
137 138 139 140 141 142
{
	struct pci_dev *pdev = dev_priv->drm.pdev;
	u16 gcfgc = 0;

	pci_read_config_word(pdev, GCFGC, &gcfgc);

143 144 145 146
	if (gcfgc & GC_LOW_FREQUENCY_ENABLE) {
		cdclk_state->cdclk = 133333;
		return;
	}
147 148 149

	switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
	case GC_DISPLAY_CLOCK_333_320_MHZ:
150 151
		cdclk_state->cdclk = 333333;
		break;
152 153
	default:
	case GC_DISPLAY_CLOCK_190_200_MHZ:
154 155
		cdclk_state->cdclk = 190000;
		break;
156 157 158
	}
}

159 160
static void i945gm_get_cdclk(struct drm_i915_private *dev_priv,
			     struct intel_cdclk_state *cdclk_state)
161 162 163 164 165 166
{
	struct pci_dev *pdev = dev_priv->drm.pdev;
	u16 gcfgc = 0;

	pci_read_config_word(pdev, GCFGC, &gcfgc);

167 168 169 170
	if (gcfgc & GC_LOW_FREQUENCY_ENABLE) {
		cdclk_state->cdclk = 133333;
		return;
	}
171 172 173

	switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
	case GC_DISPLAY_CLOCK_333_320_MHZ:
174 175
		cdclk_state->cdclk = 320000;
		break;
176 177
	default:
	case GC_DISPLAY_CLOCK_190_200_MHZ:
178 179
		cdclk_state->cdclk = 200000;
		break;
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
	}
}

static unsigned int intel_hpll_vco(struct drm_i915_private *dev_priv)
{
	static const unsigned int blb_vco[8] = {
		[0] = 3200000,
		[1] = 4000000,
		[2] = 5333333,
		[3] = 4800000,
		[4] = 6400000,
	};
	static const unsigned int pnv_vco[8] = {
		[0] = 3200000,
		[1] = 4000000,
		[2] = 5333333,
		[3] = 4800000,
		[4] = 2666667,
	};
	static const unsigned int cl_vco[8] = {
		[0] = 3200000,
		[1] = 4000000,
		[2] = 5333333,
		[3] = 6400000,
		[4] = 3333333,
		[5] = 3566667,
		[6] = 4266667,
	};
	static const unsigned int elk_vco[8] = {
		[0] = 3200000,
		[1] = 4000000,
		[2] = 5333333,
		[3] = 4800000,
	};
	static const unsigned int ctg_vco[8] = {
		[0] = 3200000,
		[1] = 4000000,
		[2] = 5333333,
		[3] = 6400000,
		[4] = 2666667,
		[5] = 4266667,
	};
	const unsigned int *vco_table;
	unsigned int vco;
224
	u8 tmp = 0;
225 226 227 228

	/* FIXME other chipsets? */
	if (IS_GM45(dev_priv))
		vco_table = ctg_vco;
229
	else if (IS_G45(dev_priv))
230 231 232 233 234 235 236 237 238 239
		vco_table = elk_vco;
	else if (IS_I965GM(dev_priv))
		vco_table = cl_vco;
	else if (IS_PINEVIEW(dev_priv))
		vco_table = pnv_vco;
	else if (IS_G33(dev_priv))
		vco_table = blb_vco;
	else
		return 0;

240 241
	tmp = I915_READ(IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv) ?
			HPLLVCO_MOBILE : HPLLVCO);
242 243 244 245 246 247 248 249 250 251

	vco = vco_table[tmp & 0x7];
	if (vco == 0)
		DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
	else
		DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);

	return vco;
}

252 253
static void g33_get_cdclk(struct drm_i915_private *dev_priv,
			  struct intel_cdclk_state *cdclk_state)
254 255
{
	struct pci_dev *pdev = dev_priv->drm.pdev;
256 257 258 259 260
	static const u8 div_3200[] = { 12, 10,  8,  7, 5, 16 };
	static const u8 div_4000[] = { 14, 12, 10,  8, 6, 20 };
	static const u8 div_4800[] = { 20, 14, 12, 10, 8, 24 };
	static const u8 div_5333[] = { 20, 16, 12, 12, 8, 28 };
	const u8 *div_table;
261
	unsigned int cdclk_sel;
262
	u16 tmp = 0;
263

264 265
	cdclk_state->vco = intel_hpll_vco(dev_priv);

266 267 268 269 270 271 272
	pci_read_config_word(pdev, GCFGC, &tmp);

	cdclk_sel = (tmp >> 4) & 0x7;

	if (cdclk_sel >= ARRAY_SIZE(div_3200))
		goto fail;

273
	switch (cdclk_state->vco) {
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
	case 3200000:
		div_table = div_3200;
		break;
	case 4000000:
		div_table = div_4000;
		break;
	case 4800000:
		div_table = div_4800;
		break;
	case 5333333:
		div_table = div_5333;
		break;
	default:
		goto fail;
	}

290 291 292
	cdclk_state->cdclk = DIV_ROUND_CLOSEST(cdclk_state->vco,
					       div_table[cdclk_sel]);
	return;
293 294 295

fail:
	DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n",
296 297
		  cdclk_state->vco, tmp);
	cdclk_state->cdclk = 190476;
298 299
}

300 301
static void pnv_get_cdclk(struct drm_i915_private *dev_priv,
			  struct intel_cdclk_state *cdclk_state)
302 303 304 305 306 307 308 309
{
	struct pci_dev *pdev = dev_priv->drm.pdev;
	u16 gcfgc = 0;

	pci_read_config_word(pdev, GCFGC, &gcfgc);

	switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
	case GC_DISPLAY_CLOCK_267_MHZ_PNV:
310 311
		cdclk_state->cdclk = 266667;
		break;
312
	case GC_DISPLAY_CLOCK_333_MHZ_PNV:
313 314
		cdclk_state->cdclk = 333333;
		break;
315
	case GC_DISPLAY_CLOCK_444_MHZ_PNV:
316 317
		cdclk_state->cdclk = 444444;
		break;
318
	case GC_DISPLAY_CLOCK_200_MHZ_PNV:
319 320
		cdclk_state->cdclk = 200000;
		break;
321 322
	default:
		DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
323
		/* fall through */
324
	case GC_DISPLAY_CLOCK_133_MHZ_PNV:
325 326
		cdclk_state->cdclk = 133333;
		break;
327
	case GC_DISPLAY_CLOCK_167_MHZ_PNV:
328 329
		cdclk_state->cdclk = 166667;
		break;
330 331 332
	}
}

333 334
static void i965gm_get_cdclk(struct drm_i915_private *dev_priv,
			     struct intel_cdclk_state *cdclk_state)
335 336
{
	struct pci_dev *pdev = dev_priv->drm.pdev;
337 338 339 340
	static const u8 div_3200[] = { 16, 10,  8 };
	static const u8 div_4000[] = { 20, 12, 10 };
	static const u8 div_5333[] = { 24, 16, 14 };
	const u8 *div_table;
341
	unsigned int cdclk_sel;
342
	u16 tmp = 0;
343

344 345
	cdclk_state->vco = intel_hpll_vco(dev_priv);

346 347 348 349 350 351 352
	pci_read_config_word(pdev, GCFGC, &tmp);

	cdclk_sel = ((tmp >> 8) & 0x1f) - 1;

	if (cdclk_sel >= ARRAY_SIZE(div_3200))
		goto fail;

353
	switch (cdclk_state->vco) {
354 355 356 357 358 359 360 361 362 363 364 365 366
	case 3200000:
		div_table = div_3200;
		break;
	case 4000000:
		div_table = div_4000;
		break;
	case 5333333:
		div_table = div_5333;
		break;
	default:
		goto fail;
	}

367 368 369
	cdclk_state->cdclk = DIV_ROUND_CLOSEST(cdclk_state->vco,
					       div_table[cdclk_sel]);
	return;
370 371 372

fail:
	DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n",
373 374
		  cdclk_state->vco, tmp);
	cdclk_state->cdclk = 200000;
375 376
}

377 378
static void gm45_get_cdclk(struct drm_i915_private *dev_priv,
			   struct intel_cdclk_state *cdclk_state)
379 380
{
	struct pci_dev *pdev = dev_priv->drm.pdev;
381
	unsigned int cdclk_sel;
382
	u16 tmp = 0;
383

384 385
	cdclk_state->vco = intel_hpll_vco(dev_priv);

386 387 388 389
	pci_read_config_word(pdev, GCFGC, &tmp);

	cdclk_sel = (tmp >> 12) & 0x1;

390
	switch (cdclk_state->vco) {
391 392 393
	case 2666667:
	case 4000000:
	case 5333333:
394 395
		cdclk_state->cdclk = cdclk_sel ? 333333 : 222222;
		break;
396
	case 3200000:
397 398
		cdclk_state->cdclk = cdclk_sel ? 320000 : 228571;
		break;
399 400
	default:
		DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n",
401 402 403
			  cdclk_state->vco, tmp);
		cdclk_state->cdclk = 222222;
		break;
404 405 406
	}
}

407 408
static void hsw_get_cdclk(struct drm_i915_private *dev_priv,
			  struct intel_cdclk_state *cdclk_state)
409
{
410 411
	u32 lcpll = I915_READ(LCPLL_CTL);
	u32 freq = lcpll & LCPLL_CLK_FREQ_MASK;
412 413

	if (lcpll & LCPLL_CD_SOURCE_FCLK)
414
		cdclk_state->cdclk = 800000;
415
	else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
416
		cdclk_state->cdclk = 450000;
417
	else if (freq == LCPLL_CLK_FREQ_450)
418
		cdclk_state->cdclk = 450000;
419
	else if (IS_HSW_ULT(dev_priv))
420
		cdclk_state->cdclk = 337500;
421
	else
422
		cdclk_state->cdclk = 540000;
423 424
}

425
static int vlv_calc_cdclk(struct drm_i915_private *dev_priv, int min_cdclk)
426 427 428 429 430 431 432 433 434
{
	int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ?
		333333 : 320000;

	/*
	 * We seem to get an unstable or solid color picture at 200MHz.
	 * Not sure what's wrong. For now use 200MHz only when all pipes
	 * are off.
	 */
435
	if (IS_VALLEYVIEW(dev_priv) && min_cdclk > freq_320)
436
		return 400000;
437
	else if (min_cdclk > 266667)
438
		return freq_320;
439
	else if (min_cdclk > 0)
440 441 442 443 444
		return 266667;
	else
		return 200000;
}

445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
static u8 vlv_calc_voltage_level(struct drm_i915_private *dev_priv, int cdclk)
{
	if (IS_VALLEYVIEW(dev_priv)) {
		if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
			return 2;
		else if (cdclk >= 266667)
			return 1;
		else
			return 0;
	} else {
		/*
		 * Specs are full of misinformation, but testing on actual
		 * hardware has shown that we just need to write the desired
		 * CCK divider into the Punit register.
		 */
		return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
	}
}

464 465
static void vlv_get_cdclk(struct drm_i915_private *dev_priv,
			  struct intel_cdclk_state *cdclk_state)
466
{
467 468
	u32 val;

469 470 471
	vlv_iosf_sb_get(dev_priv,
			BIT(VLV_IOSF_SB_CCK) | BIT(VLV_IOSF_SB_PUNIT));

472 473 474 475
	cdclk_state->vco = vlv_get_hpll_vco(dev_priv);
	cdclk_state->cdclk = vlv_get_cck_clock(dev_priv, "cdclk",
					       CCK_DISPLAY_CLOCK_CONTROL,
					       cdclk_state->vco);
476

477
	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
478 479 480

	vlv_iosf_sb_put(dev_priv,
			BIT(VLV_IOSF_SB_CCK) | BIT(VLV_IOSF_SB_PUNIT));
481 482 483 484 485 486 487

	if (IS_VALLEYVIEW(dev_priv))
		cdclk_state->voltage_level = (val & DSPFREQGUAR_MASK) >>
			DSPFREQGUAR_SHIFT;
	else
		cdclk_state->voltage_level = (val & DSPFREQGUAR_MASK_CHV) >>
			DSPFREQGUAR_SHIFT_CHV;
488 489 490 491 492 493 494 495 496 497 498
}

static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
{
	unsigned int credits, default_credits;

	if (IS_CHERRYVIEW(dev_priv))
		default_credits = PFI_CREDIT(12);
	else
		default_credits = PFI_CREDIT(8);

499
	if (dev_priv->cdclk.hw.cdclk >= dev_priv->czclk_freq) {
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
		/* CHV suggested value is 31 or 63 */
		if (IS_CHERRYVIEW(dev_priv))
			credits = PFI_CREDIT_63;
		else
			credits = PFI_CREDIT(15);
	} else {
		credits = default_credits;
	}

	/*
	 * WA - write default credits before re-programming
	 * FIXME: should we also set the resend bit here?
	 */
	I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
		   default_credits);

	I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
		   credits | PFI_CREDIT_RESEND);

	/*
	 * FIXME is this guaranteed to clear
	 * immediately or should we poll for it?
	 */
	WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
}

526
static void vlv_set_cdclk(struct drm_i915_private *dev_priv,
527 528
			  const struct intel_cdclk_state *cdclk_state,
			  enum pipe pipe)
529
{
530
	int cdclk = cdclk_state->cdclk;
531
	u32 val, cmd = cdclk_state->voltage_level;
532
	intel_wakeref_t wakeref;
533

534 535 536 537 538 539 540 541 542 543 544 545
	switch (cdclk) {
	case 400000:
	case 333333:
	case 320000:
	case 266667:
	case 200000:
		break;
	default:
		MISSING_CASE(cdclk);
		return;
	}

546 547 548
	/* There are cases where we can end up here with power domains
	 * off and a CDCLK frequency other than the minimum, like when
	 * issuing a modeset without actually changing any display after
549
	 * a system suspend.  So grab the display core domain, which covers
550 551
	 * the HW blocks needed for the following programming.
	 */
552
	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_DISPLAY_CORE);
553

554 555 556 557 558
	vlv_iosf_sb_get(dev_priv,
			BIT(VLV_IOSF_SB_CCK) |
			BIT(VLV_IOSF_SB_BUNIT) |
			BIT(VLV_IOSF_SB_PUNIT));

559
	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
560 561
	val &= ~DSPFREQGUAR_MASK;
	val |= (cmd << DSPFREQGUAR_SHIFT);
562 563
	vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM) &
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
		      DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
		     50)) {
		DRM_ERROR("timed out waiting for CDclk change\n");
	}

	if (cdclk == 400000) {
		u32 divider;

		divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1,
					    cdclk) - 1;

		/* adjust cdclk divider */
		val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
		val &= ~CCK_FREQUENCY_VALUES;
		val |= divider;
		vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);

		if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
			      CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
			     50))
			DRM_ERROR("timed out waiting for CDclk change\n");
	}

	/* adjust self-refresh exit latency value */
	val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
	val &= ~0x7f;

	/*
	 * For high bandwidth configs, we set a higher latency in the bunit
	 * so that the core display fetch happens in time to avoid underruns.
	 */
	if (cdclk == 400000)
		val |= 4500 / 250; /* 4.5 usec */
	else
		val |= 3000 / 250; /* 3.0 usec */
	vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);

601
	vlv_iosf_sb_put(dev_priv,
602 603 604
			BIT(VLV_IOSF_SB_CCK) |
			BIT(VLV_IOSF_SB_BUNIT) |
			BIT(VLV_IOSF_SB_PUNIT));
605 606

	intel_update_cdclk(dev_priv);
607 608

	vlv_program_pfi_credits(dev_priv);
609

610
	intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref);
611 612
}

613
static void chv_set_cdclk(struct drm_i915_private *dev_priv,
614 615
			  const struct intel_cdclk_state *cdclk_state,
			  enum pipe pipe)
616
{
617
	int cdclk = cdclk_state->cdclk;
618
	u32 val, cmd = cdclk_state->voltage_level;
619
	intel_wakeref_t wakeref;
620 621 622 623 624 625 626 627 628 629 630 631

	switch (cdclk) {
	case 333333:
	case 320000:
	case 266667:
	case 200000:
		break;
	default:
		MISSING_CASE(cdclk);
		return;
	}

632 633 634
	/* There are cases where we can end up here with power domains
	 * off and a CDCLK frequency other than the minimum, like when
	 * issuing a modeset without actually changing any display after
635
	 * a system suspend.  So grab the display core domain, which covers
636 637
	 * the HW blocks needed for the following programming.
	 */
638
	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_DISPLAY_CORE);
639

640
	vlv_punit_get(dev_priv);
641
	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
642 643
	val &= ~DSPFREQGUAR_MASK_CHV;
	val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
644 645
	vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM) &
646 647 648 649
		      DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
		     50)) {
		DRM_ERROR("timed out waiting for CDclk change\n");
	}
650 651

	vlv_punit_put(dev_priv);
652 653

	intel_update_cdclk(dev_priv);
654 655

	vlv_program_pfi_credits(dev_priv);
656

657
	intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref);
658 659
}

660
static int bdw_calc_cdclk(int min_cdclk)
661
{
662
	if (min_cdclk > 540000)
663
		return 675000;
664
	else if (min_cdclk > 450000)
665
		return 540000;
666
	else if (min_cdclk > 337500)
667 668 669 670 671
		return 450000;
	else
		return 337500;
}

672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
static u8 bdw_calc_voltage_level(int cdclk)
{
	switch (cdclk) {
	default:
	case 337500:
		return 2;
	case 450000:
		return 0;
	case 540000:
		return 1;
	case 675000:
		return 3;
	}
}

687 688
static void bdw_get_cdclk(struct drm_i915_private *dev_priv,
			  struct intel_cdclk_state *cdclk_state)
689
{
690 691
	u32 lcpll = I915_READ(LCPLL_CTL);
	u32 freq = lcpll & LCPLL_CLK_FREQ_MASK;
692 693

	if (lcpll & LCPLL_CD_SOURCE_FCLK)
694
		cdclk_state->cdclk = 800000;
695
	else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
696
		cdclk_state->cdclk = 450000;
697
	else if (freq == LCPLL_CLK_FREQ_450)
698
		cdclk_state->cdclk = 450000;
699
	else if (freq == LCPLL_CLK_FREQ_54O_BDW)
700
		cdclk_state->cdclk = 540000;
701
	else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
702
		cdclk_state->cdclk = 337500;
703
	else
704
		cdclk_state->cdclk = 675000;
705 706 707 708 709 710 711

	/*
	 * Can't read this out :( Let's assume it's
	 * at least what the CDCLK frequency requires.
	 */
	cdclk_state->voltage_level =
		bdw_calc_voltage_level(cdclk_state->cdclk);
712 713
}

714
static void bdw_set_cdclk(struct drm_i915_private *dev_priv,
715 716
			  const struct intel_cdclk_state *cdclk_state,
			  enum pipe pipe)
717
{
718
	int cdclk = cdclk_state->cdclk;
719
	u32 val;
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
	int ret;

	if (WARN((I915_READ(LCPLL_CTL) &
		  (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
		   LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
		   LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
		   LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
		 "trying to change cdclk frequency with cdclk not enabled\n"))
		return;

	ret = sandybridge_pcode_write(dev_priv,
				      BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
	if (ret) {
		DRM_ERROR("failed to inform pcode about cdclk change\n");
		return;
	}

	val = I915_READ(LCPLL_CTL);
	val |= LCPLL_CD_SOURCE_FCLK;
	I915_WRITE(LCPLL_CTL, val);

741 742 743 744
	/*
	 * According to the spec, it should be enough to poll for this 1 us.
	 * However, extensive testing shows that this can take longer.
	 */
745
	if (wait_for_us(I915_READ(LCPLL_CTL) &
746
			LCPLL_CD_SOURCE_FCLK_DONE, 100))
747 748 749 750 751 752
		DRM_ERROR("Switching to FCLK failed\n");

	val = I915_READ(LCPLL_CTL);
	val &= ~LCPLL_CLK_FREQ_MASK;

	switch (cdclk) {
753 754 755 756 757 758
	default:
		MISSING_CASE(cdclk);
		/* fall through */
	case 337500:
		val |= LCPLL_CLK_FREQ_337_5_BDW;
		break;
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
	case 450000:
		val |= LCPLL_CLK_FREQ_450;
		break;
	case 540000:
		val |= LCPLL_CLK_FREQ_54O_BDW;
		break;
	case 675000:
		val |= LCPLL_CLK_FREQ_675_BDW;
		break;
	}

	I915_WRITE(LCPLL_CTL, val);

	val = I915_READ(LCPLL_CTL);
	val &= ~LCPLL_CD_SOURCE_FCLK;
	I915_WRITE(LCPLL_CTL, val);

	if (wait_for_us((I915_READ(LCPLL_CTL) &
			LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
		DRM_ERROR("Switching back to LCPLL failed\n");

780 781
	sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
				cdclk_state->voltage_level);
782 783 784 785 786 787

	I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1);

	intel_update_cdclk(dev_priv);
}

788
static int skl_calc_cdclk(int min_cdclk, int vco)
789 790
{
	if (vco == 8640000) {
791
		if (min_cdclk > 540000)
792
			return 617143;
793
		else if (min_cdclk > 432000)
794
			return 540000;
795
		else if (min_cdclk > 308571)
796 797 798 799
			return 432000;
		else
			return 308571;
	} else {
800
		if (min_cdclk > 540000)
801
			return 675000;
802
		else if (min_cdclk > 450000)
803
			return 540000;
804
		else if (min_cdclk > 337500)
805 806 807 808 809 810
			return 450000;
		else
			return 337500;
	}
}

811 812
static u8 skl_calc_voltage_level(int cdclk)
{
813
	if (cdclk > 540000)
814
		return 3;
815 816 817 818 819 820
	else if (cdclk > 450000)
		return 2;
	else if (cdclk > 337500)
		return 1;
	else
		return 0;
821 822
}

823 824
static void skl_dpll0_update(struct drm_i915_private *dev_priv,
			     struct intel_cdclk_state *cdclk_state)
825 826 827
{
	u32 val;

828 829
	cdclk_state->ref = 24000;
	cdclk_state->vco = 0;
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850

	val = I915_READ(LCPLL1_CTL);
	if ((val & LCPLL_PLL_ENABLE) == 0)
		return;

	if (WARN_ON((val & LCPLL_PLL_LOCK) == 0))
		return;

	val = I915_READ(DPLL_CTRL1);

	if (WARN_ON((val & (DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) |
			    DPLL_CTRL1_SSC(SKL_DPLL0) |
			    DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) !=
		    DPLL_CTRL1_OVERRIDE(SKL_DPLL0)))
		return;

	switch (val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) {
	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0):
	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0):
	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0):
	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0):
851
		cdclk_state->vco = 8100000;
852 853 854
		break;
	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0):
	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0):
855
		cdclk_state->vco = 8640000;
856 857 858 859 860 861 862
		break;
	default:
		MISSING_CASE(val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
		break;
	}
}

863 864
static void skl_get_cdclk(struct drm_i915_private *dev_priv,
			  struct intel_cdclk_state *cdclk_state)
865 866 867
{
	u32 cdctl;

868
	skl_dpll0_update(dev_priv, cdclk_state);
869

870
	cdclk_state->cdclk = cdclk_state->bypass = cdclk_state->ref;
871 872

	if (cdclk_state->vco == 0)
873
		goto out;
874 875 876

	cdctl = I915_READ(CDCLK_CTL);

877
	if (cdclk_state->vco == 8640000) {
878 879
		switch (cdctl & CDCLK_FREQ_SEL_MASK) {
		case CDCLK_FREQ_450_432:
880 881
			cdclk_state->cdclk = 432000;
			break;
882
		case CDCLK_FREQ_337_308:
883 884
			cdclk_state->cdclk = 308571;
			break;
885
		case CDCLK_FREQ_540:
886 887
			cdclk_state->cdclk = 540000;
			break;
888
		case CDCLK_FREQ_675_617:
889 890
			cdclk_state->cdclk = 617143;
			break;
891 892
		default:
			MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
893
			break;
894 895 896 897
		}
	} else {
		switch (cdctl & CDCLK_FREQ_SEL_MASK) {
		case CDCLK_FREQ_450_432:
898 899
			cdclk_state->cdclk = 450000;
			break;
900
		case CDCLK_FREQ_337_308:
901 902
			cdclk_state->cdclk = 337500;
			break;
903
		case CDCLK_FREQ_540:
904 905
			cdclk_state->cdclk = 540000;
			break;
906
		case CDCLK_FREQ_675_617:
907 908
			cdclk_state->cdclk = 675000;
			break;
909 910
		default:
			MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
911
			break;
912 913
		}
	}
914 915 916 917 918 919 920 921

 out:
	/*
	 * Can't read this out :( Let's assume it's
	 * at least what the CDCLK frequency requires.
	 */
	cdclk_state->voltage_level =
		skl_calc_voltage_level(cdclk_state->cdclk);
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
}

/* convert from kHz to .1 fixpoint MHz with -1MHz offset */
static int skl_cdclk_decimal(int cdclk)
{
	return DIV_ROUND_CLOSEST(cdclk - 1000, 500);
}

static void skl_set_preferred_cdclk_vco(struct drm_i915_private *dev_priv,
					int vco)
{
	bool changed = dev_priv->skl_preferred_vco_freq != vco;

	dev_priv->skl_preferred_vco_freq = vco;

	if (changed)
		intel_update_max_cdclk(dev_priv);
}

static void skl_dpll0_enable(struct drm_i915_private *dev_priv, int vco)
{
	u32 val;

	WARN_ON(vco != 8100000 && vco != 8640000);

	/*
	 * We always enable DPLL0 with the lowest link rate possible, but still
	 * taking into account the VCO required to operate the eDP panel at the
	 * desired frequency. The usual DP link rates operate with a VCO of
	 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
	 * The modeset code is responsible for the selection of the exact link
	 * rate later on, with the constraint of choosing a frequency that
	 * works with vco.
	 */
	val = I915_READ(DPLL_CTRL1);

	val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
		 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
	val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
	if (vco == 8640000)
		val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
					    SKL_DPLL0);
	else
		val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
					    SKL_DPLL0);

	I915_WRITE(DPLL_CTRL1, val);
	POSTING_READ(DPLL_CTRL1);

	I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);

973
	if (intel_de_wait_for_set(dev_priv, LCPLL1_CTL, LCPLL_PLL_LOCK, 5))
974 975
		DRM_ERROR("DPLL0 not locked\n");

976
	dev_priv->cdclk.hw.vco = vco;
977 978 979 980 981 982 983 984

	/* We'll want to keep using the current vco from now on. */
	skl_set_preferred_cdclk_vco(dev_priv, vco);
}

static void skl_dpll0_disable(struct drm_i915_private *dev_priv)
{
	I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
985
	if (intel_de_wait_for_clear(dev_priv, LCPLL1_CTL, LCPLL_PLL_LOCK, 1))
986 987
		DRM_ERROR("Couldn't disable DPLL0\n");

988
	dev_priv->cdclk.hw.vco = 0;
989 990 991
}

static void skl_set_cdclk(struct drm_i915_private *dev_priv,
992 993
			  const struct intel_cdclk_state *cdclk_state,
			  enum pipe pipe)
994
{
995 996
	int cdclk = cdclk_state->cdclk;
	int vco = cdclk_state->vco;
997
	u32 freq_select, cdclk_ctl;
998 999
	int ret;

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
	/*
	 * Based on WA#1183 CDCLK rates 308 and 617MHz CDCLK rates are
	 * unsupported on SKL. In theory this should never happen since only
	 * the eDP1.4 2.16 and 4.32Gbps rates require it, but eDP1.4 is not
	 * supported on SKL either, see the above WA. WARN whenever trying to
	 * use the corresponding VCO freq as that always leads to using the
	 * minimum 308MHz CDCLK.
	 */
	WARN_ON_ONCE(IS_SKYLAKE(dev_priv) && vco == 8640000);

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
	ret = skl_pcode_request(dev_priv, SKL_PCODE_CDCLK_CONTROL,
				SKL_CDCLK_PREPARE_FOR_CHANGE,
				SKL_CDCLK_READY_FOR_CHANGE,
				SKL_CDCLK_READY_FOR_CHANGE, 3);
	if (ret) {
		DRM_ERROR("Failed to inform PCU about cdclk change (%d)\n",
			  ret);
		return;
	}

1020
	/* Choose frequency for this cdclk */
1021
	switch (cdclk) {
1022
	default:
1023
		WARN_ON(cdclk != dev_priv->cdclk.hw.bypass);
1024 1025 1026 1027 1028 1029
		WARN_ON(vco != 0);
		/* fall through */
	case 308571:
	case 337500:
		freq_select = CDCLK_FREQ_337_308;
		break;
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
	case 450000:
	case 432000:
		freq_select = CDCLK_FREQ_450_432;
		break;
	case 540000:
		freq_select = CDCLK_FREQ_540;
		break;
	case 617143:
	case 675000:
		freq_select = CDCLK_FREQ_675_617;
		break;
	}

1043 1044
	if (dev_priv->cdclk.hw.vco != 0 &&
	    dev_priv->cdclk.hw.vco != vco)
1045 1046
		skl_dpll0_disable(dev_priv);

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
	cdclk_ctl = I915_READ(CDCLK_CTL);

	if (dev_priv->cdclk.hw.vco != vco) {
		/* Wa Display #1183: skl,kbl,cfl */
		cdclk_ctl &= ~(CDCLK_FREQ_SEL_MASK | CDCLK_FREQ_DECIMAL_MASK);
		cdclk_ctl |= freq_select | skl_cdclk_decimal(cdclk);
		I915_WRITE(CDCLK_CTL, cdclk_ctl);
	}

	/* Wa Display #1183: skl,kbl,cfl */
	cdclk_ctl |= CDCLK_DIVMUX_CD_OVERRIDE;
	I915_WRITE(CDCLK_CTL, cdclk_ctl);
	POSTING_READ(CDCLK_CTL);

1061
	if (dev_priv->cdclk.hw.vco != vco)
1062 1063
		skl_dpll0_enable(dev_priv, vco);

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
	/* Wa Display #1183: skl,kbl,cfl */
	cdclk_ctl &= ~(CDCLK_FREQ_SEL_MASK | CDCLK_FREQ_DECIMAL_MASK);
	I915_WRITE(CDCLK_CTL, cdclk_ctl);

	cdclk_ctl |= freq_select | skl_cdclk_decimal(cdclk);
	I915_WRITE(CDCLK_CTL, cdclk_ctl);

	/* Wa Display #1183: skl,kbl,cfl */
	cdclk_ctl &= ~CDCLK_DIVMUX_CD_OVERRIDE;
	I915_WRITE(CDCLK_CTL, cdclk_ctl);
1074 1075 1076
	POSTING_READ(CDCLK_CTL);

	/* inform PCU of the change */
1077 1078
	sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL,
				cdclk_state->voltage_level);
1079 1080 1081 1082 1083 1084

	intel_update_cdclk(dev_priv);
}

static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
{
1085
	u32 cdctl, expected;
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095

	/*
	 * check if the pre-os initialized the display
	 * There is SWF18 scratchpad register defined which is set by the
	 * pre-os which can be used by the OS drivers to check the status
	 */
	if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
		goto sanitize;

	intel_update_cdclk(dev_priv);
1096 1097
	intel_dump_cdclk_state(&dev_priv->cdclk.hw, "Current CDCLK");

1098
	/* Is PLL enabled and locked ? */
1099
	if (dev_priv->cdclk.hw.vco == 0 ||
1100
	    dev_priv->cdclk.hw.cdclk == dev_priv->cdclk.hw.bypass)
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
		goto sanitize;

	/* DPLL okay; verify the cdclock
	 *
	 * Noticed in some instances that the freq selection is correct but
	 * decimal part is programmed wrong from BIOS where pre-os does not
	 * enable display. Verify the same as well.
	 */
	cdctl = I915_READ(CDCLK_CTL);
	expected = (cdctl & CDCLK_FREQ_SEL_MASK) |
1111
		skl_cdclk_decimal(dev_priv->cdclk.hw.cdclk);
1112 1113 1114 1115 1116 1117 1118 1119
	if (cdctl == expected)
		/* All well; nothing to sanitize */
		return;

sanitize:
	DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");

	/* force cdclk programming */
1120
	dev_priv->cdclk.hw.cdclk = 0;
1121
	/* force full PLL disable + enable */
1122
	dev_priv->cdclk.hw.vco = -1;
1123 1124
}

1125
static void skl_init_cdclk(struct drm_i915_private *dev_priv)
1126
{
1127
	struct intel_cdclk_state cdclk_state;
1128 1129 1130

	skl_sanitize_cdclk(dev_priv);

1131 1132
	if (dev_priv->cdclk.hw.cdclk != 0 &&
	    dev_priv->cdclk.hw.vco != 0) {
1133 1134 1135 1136 1137 1138
		/*
		 * Use the current vco as our initial
		 * guess as to what the preferred vco is.
		 */
		if (dev_priv->skl_preferred_vco_freq == 0)
			skl_set_preferred_cdclk_vco(dev_priv,
1139
						    dev_priv->cdclk.hw.vco);
1140 1141 1142
		return;
	}

1143 1144 1145 1146 1147 1148
	cdclk_state = dev_priv->cdclk.hw;

	cdclk_state.vco = dev_priv->skl_preferred_vco_freq;
	if (cdclk_state.vco == 0)
		cdclk_state.vco = 8100000;
	cdclk_state.cdclk = skl_calc_cdclk(0, cdclk_state.vco);
1149
	cdclk_state.voltage_level = skl_calc_voltage_level(cdclk_state.cdclk);
1150

1151
	skl_set_cdclk(dev_priv, &cdclk_state, INVALID_PIPE);
1152 1153
}

1154
static void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
1155
{
1156 1157
	struct intel_cdclk_state cdclk_state = dev_priv->cdclk.hw;

1158
	cdclk_state.cdclk = cdclk_state.bypass;
1159
	cdclk_state.vco = 0;
1160
	cdclk_state.voltage_level = skl_calc_voltage_level(cdclk_state.cdclk);
1161

1162
	skl_set_cdclk(dev_priv, &cdclk_state, INVALID_PIPE);
1163 1164
}

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
static const struct intel_cdclk_vals bxt_cdclk_table[] = {
	{ .refclk = 19200, .cdclk = 144000, .divider = 8, .ratio = 60 },
	{ .refclk = 19200, .cdclk = 288000, .divider = 4, .ratio = 60 },
	{ .refclk = 19200, .cdclk = 384000, .divider = 3, .ratio = 60 },
	{ .refclk = 19200, .cdclk = 576000, .divider = 2, .ratio = 60 },
	{ .refclk = 19200, .cdclk = 624000, .divider = 2, .ratio = 65 },
	{}
};

static const struct intel_cdclk_vals glk_cdclk_table[] = {
	{ .refclk = 19200, .cdclk =  79200, .divider = 8, .ratio = 33 },
	{ .refclk = 19200, .cdclk = 158400, .divider = 4, .ratio = 33 },
	{ .refclk = 19200, .cdclk = 316800, .divider = 2, .ratio = 33 },
	{}
};

static const struct intel_cdclk_vals cnl_cdclk_table[] = {
	{ .refclk = 19200, .cdclk = 168000, .divider = 4, .ratio = 35 },
	{ .refclk = 19200, .cdclk = 336000, .divider = 2, .ratio = 35 },
	{ .refclk = 19200, .cdclk = 528000, .divider = 2, .ratio = 55 },

	{ .refclk = 24000, .cdclk = 168000, .divider = 4, .ratio = 28 },
	{ .refclk = 24000, .cdclk = 336000, .divider = 2, .ratio = 28 },
	{ .refclk = 24000, .cdclk = 528000, .divider = 2, .ratio = 44 },
	{}
};

static const struct intel_cdclk_vals icl_cdclk_table[] = {
	{ .refclk = 19200, .cdclk = 172800, .divider = 2, .ratio = 18 },
	{ .refclk = 19200, .cdclk = 192000, .divider = 2, .ratio = 20 },
	{ .refclk = 19200, .cdclk = 307200, .divider = 2, .ratio = 32 },
	{ .refclk = 19200, .cdclk = 326400, .divider = 4, .ratio = 68 },
	{ .refclk = 19200, .cdclk = 556800, .divider = 2, .ratio = 58 },
	{ .refclk = 19200, .cdclk = 652800, .divider = 2, .ratio = 68 },

	{ .refclk = 24000, .cdclk = 180000, .divider = 2, .ratio = 15 },
	{ .refclk = 24000, .cdclk = 192000, .divider = 2, .ratio = 16 },
	{ .refclk = 24000, .cdclk = 312000, .divider = 2, .ratio = 26 },
	{ .refclk = 24000, .cdclk = 324000, .divider = 4, .ratio = 54 },
	{ .refclk = 24000, .cdclk = 552000, .divider = 2, .ratio = 46 },
	{ .refclk = 24000, .cdclk = 648000, .divider = 2, .ratio = 54 },

	{ .refclk = 38400, .cdclk = 172800, .divider = 2, .ratio =  9 },
	{ .refclk = 38400, .cdclk = 192000, .divider = 2, .ratio = 10 },
	{ .refclk = 38400, .cdclk = 307200, .divider = 2, .ratio = 16 },
	{ .refclk = 38400, .cdclk = 326400, .divider = 4, .ratio = 34 },
	{ .refclk = 38400, .cdclk = 556800, .divider = 2, .ratio = 29 },
	{ .refclk = 38400, .cdclk = 652800, .divider = 2, .ratio = 34 },
	{}
};

static int bxt_calc_cdclk(struct drm_i915_private *dev_priv, int min_cdclk)
{
	const struct intel_cdclk_vals *table = dev_priv->cdclk.table;
	int i;

	for (i = 0; table[i].refclk; i++)
		if (table[i].refclk == dev_priv->cdclk.hw.ref &&
		    table[i].cdclk >= min_cdclk)
			return table[i].cdclk;

	WARN(1, "Cannot satisfy minimum cdclk %d with refclk %u\n",
	     min_cdclk, dev_priv->cdclk.hw.ref);
	return 0;
1229 1230
}

1231
static int bxt_calc_cdclk_pll_vco(struct drm_i915_private *dev_priv, int cdclk)
1232
{
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
	const struct intel_cdclk_vals *table = dev_priv->cdclk.table;
	int i;

	if (cdclk == dev_priv->cdclk.hw.bypass)
		return 0;

	for (i = 0; table[i].refclk; i++)
		if (table[i].refclk == dev_priv->cdclk.hw.ref &&
		    table[i].cdclk == cdclk)
			return dev_priv->cdclk.hw.ref * table[i].ratio;

	WARN(1, "cdclk %d not valid for refclk %u\n",
	     cdclk, dev_priv->cdclk.hw.ref);
	return 0;
1247 1248
}

1249 1250 1251 1252 1253
static u8 bxt_calc_voltage_level(int cdclk)
{
	return DIV_ROUND_UP(cdclk, 25000);
}

1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
static u8 cnl_calc_voltage_level(int cdclk)
{
	if (cdclk > 336000)
		return 2;
	else if (cdclk > 168000)
		return 1;
	else
		return 0;
}

static u8 icl_calc_voltage_level(int cdclk)
{
	if (cdclk > 556800)
		return 2;
	else if (cdclk > 312000)
		return 1;
	else
		return 0;
}

static u8 ehl_calc_voltage_level(int cdclk)
{
	if (cdclk > 312000)
		return 2;
	else if (cdclk > 180000)
		return 1;
	else
		return 0;
}

static void cnl_readout_refclk(struct drm_i915_private *dev_priv,
			       struct intel_cdclk_state *cdclk_state)
1286
{
1287 1288 1289 1290 1291
	if (I915_READ(SKL_DSSM) & CNL_DSSM_CDCLK_PLL_REFCLK_24MHz)
		cdclk_state->ref = 24000;
	else
		cdclk_state->ref = 19200;
}
1292

1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
static void icl_readout_refclk(struct drm_i915_private *dev_priv,
			       struct intel_cdclk_state *cdclk_state)
{
	u32 dssm = I915_READ(SKL_DSSM) & ICL_DSSM_CDCLK_PLL_REFCLK_MASK;

	switch (dssm) {
	default:
		MISSING_CASE(dssm);
		/* fall through */
	case ICL_DSSM_CDCLK_PLL_REFCLK_24MHz:
		cdclk_state->ref = 24000;
		break;
	case ICL_DSSM_CDCLK_PLL_REFCLK_19_2MHz:
		cdclk_state->ref = 19200;
		break;
	case ICL_DSSM_CDCLK_PLL_REFCLK_38_4MHz:
		cdclk_state->ref = 38400;
		break;
	}
}

static void bxt_de_pll_readout(struct drm_i915_private *dev_priv,
			       struct intel_cdclk_state *cdclk_state)
{
	u32 val, ratio;

	if (INTEL_GEN(dev_priv) >= 11)
		icl_readout_refclk(dev_priv, cdclk_state);
	else if (IS_CANNONLAKE(dev_priv))
		cnl_readout_refclk(dev_priv, cdclk_state);
	else
		cdclk_state->ref = 19200;
1325 1326

	val = I915_READ(BXT_DE_PLL_ENABLE);
1327 1328 1329 1330 1331 1332 1333
	if ((val & BXT_DE_PLL_PLL_ENABLE) == 0 ||
	    (val & BXT_DE_PLL_LOCK) == 0) {
		/*
		 * CDCLK PLL is disabled, the VCO/ratio doesn't matter, but
		 * setting it to zero is a way to signal that.
		 */
		cdclk_state->vco = 0;
1334
		return;
1335
	}
1336

1337 1338 1339 1340 1341 1342 1343 1344
	/*
	 * CNL+ have the ratio directly in the PLL enable register, gen9lp had
	 * it in a separate PLL control register.
	 */
	if (INTEL_GEN(dev_priv) >= 10)
		ratio = val & CNL_CDCLK_PLL_RATIO_MASK;
	else
		ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
1345

1346
	cdclk_state->vco = ratio * cdclk_state->ref;
1347 1348
}

1349 1350
static void bxt_get_cdclk(struct drm_i915_private *dev_priv,
			  struct intel_cdclk_state *cdclk_state)
1351 1352
{
	u32 divider;
1353
	int div;
1354

1355 1356
	bxt_de_pll_readout(dev_priv, cdclk_state);

1357 1358 1359 1360 1361 1362
	if (INTEL_GEN(dev_priv) >= 12)
		cdclk_state->bypass = cdclk_state->ref / 2;
	else if (INTEL_GEN(dev_priv) >= 11)
		cdclk_state->bypass = 50000;
	else
		cdclk_state->bypass = cdclk_state->ref;
1363

1364 1365
	if (cdclk_state->vco == 0) {
		cdclk_state->cdclk = cdclk_state->bypass;
1366
		goto out;
1367
	}
1368 1369 1370 1371 1372 1373 1374 1375

	divider = I915_READ(CDCLK_CTL) & BXT_CDCLK_CD2X_DIV_SEL_MASK;

	switch (divider) {
	case BXT_CDCLK_CD2X_DIV_SEL_1:
		div = 2;
		break;
	case BXT_CDCLK_CD2X_DIV_SEL_1_5:
1376 1377
		WARN(IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10,
		     "Unsupported divider\n");
1378 1379 1380 1381 1382 1383
		div = 3;
		break;
	case BXT_CDCLK_CD2X_DIV_SEL_2:
		div = 4;
		break;
	case BXT_CDCLK_CD2X_DIV_SEL_4:
1384
		WARN(INTEL_GEN(dev_priv) >= 10, "Unsupported divider\n");
1385 1386 1387 1388
		div = 8;
		break;
	default:
		MISSING_CASE(divider);
1389
		return;
1390 1391
	}

1392
	cdclk_state->cdclk = DIV_ROUND_CLOSEST(cdclk_state->vco, div);
1393 1394 1395 1396 1397 1398

 out:
	/*
	 * Can't read this out :( Let's assume it's
	 * at least what the CDCLK frequency requires.
	 */
1399 1400
	cdclk_state->voltage_level =
		dev_priv->display.calc_voltage_level(cdclk_state->cdclk);
1401 1402 1403 1404 1405 1406 1407
}

static void bxt_de_pll_disable(struct drm_i915_private *dev_priv)
{
	I915_WRITE(BXT_DE_PLL_ENABLE, 0);

	/* Timeout 200us */
1408 1409
	if (intel_de_wait_for_clear(dev_priv,
				    BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1))
1410 1411
		DRM_ERROR("timeout waiting for DE PLL unlock\n");

1412
	dev_priv->cdclk.hw.vco = 0;
1413 1414 1415 1416
}

static void bxt_de_pll_enable(struct drm_i915_private *dev_priv, int vco)
{
1417
	int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->cdclk.hw.ref);
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
	u32 val;

	val = I915_READ(BXT_DE_PLL_CTL);
	val &= ~BXT_DE_PLL_RATIO_MASK;
	val |= BXT_DE_PLL_RATIO(ratio);
	I915_WRITE(BXT_DE_PLL_CTL, val);

	I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);

	/* Timeout 200us */
1428 1429
	if (intel_de_wait_for_set(dev_priv,
				  BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1))
1430 1431
		DRM_ERROR("timeout waiting for DE PLL lock\n");

1432
	dev_priv->cdclk.hw.vco = vco;
1433 1434
}

1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
static void cnl_cdclk_pll_disable(struct drm_i915_private *dev_priv)
{
	u32 val;

	val = I915_READ(BXT_DE_PLL_ENABLE);
	val &= ~BXT_DE_PLL_PLL_ENABLE;
	I915_WRITE(BXT_DE_PLL_ENABLE, val);

	/* Timeout 200us */
	if (wait_for((I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK) == 0, 1))
		DRM_ERROR("timeout waiting for CDCLK PLL unlock\n");

	dev_priv->cdclk.hw.vco = 0;
}

static void cnl_cdclk_pll_enable(struct drm_i915_private *dev_priv, int vco)
{
	int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->cdclk.hw.ref);
	u32 val;

	val = CNL_CDCLK_PLL_RATIO(ratio);
	I915_WRITE(BXT_DE_PLL_ENABLE, val);

	val |= BXT_DE_PLL_PLL_ENABLE;
	I915_WRITE(BXT_DE_PLL_ENABLE, val);

	/* Timeout 200us */
	if (wait_for((I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK) != 0, 1))
		DRM_ERROR("timeout waiting for CDCLK PLL lock\n");

	dev_priv->cdclk.hw.vco = vco;
}

1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
static u32 bxt_cdclk_cd2x_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
{
	if (INTEL_GEN(dev_priv) >= 12) {
		if (pipe == INVALID_PIPE)
			return TGL_CDCLK_CD2X_PIPE_NONE;
		else
			return TGL_CDCLK_CD2X_PIPE(pipe);
	} else if (INTEL_GEN(dev_priv) >= 11) {
		if (pipe == INVALID_PIPE)
			return ICL_CDCLK_CD2X_PIPE_NONE;
		else
			return ICL_CDCLK_CD2X_PIPE(pipe);
	} else {
		if (pipe == INVALID_PIPE)
			return BXT_CDCLK_CD2X_PIPE_NONE;
		else
			return BXT_CDCLK_CD2X_PIPE(pipe);
	}
}

1488
static void bxt_set_cdclk(struct drm_i915_private *dev_priv,
1489 1490
			  const struct intel_cdclk_state *cdclk_state,
			  enum pipe pipe)
1491
{
1492 1493
	int cdclk = cdclk_state->cdclk;
	int vco = cdclk_state->vco;
1494
	u32 val, divider;
1495
	int ret;
1496

1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
	/* Inform power controller of upcoming frequency change. */
	if (INTEL_GEN(dev_priv) >= 10)
		ret = skl_pcode_request(dev_priv, SKL_PCODE_CDCLK_CONTROL,
					SKL_CDCLK_PREPARE_FOR_CHANGE,
					SKL_CDCLK_READY_FOR_CHANGE,
					SKL_CDCLK_READY_FOR_CHANGE, 3);
	else
		/*
		 * BSpec requires us to wait up to 150usec, but that leads to
		 * timeouts; the 2ms used here is based on experiment.
		 */
		ret = sandybridge_pcode_write_timeout(dev_priv,
						      HSW_PCODE_DE_WRITE_FREQ_REQ,
						      0x80000000, 150, 2);

	if (ret) {
		DRM_ERROR("Failed to inform PCU about cdclk change (err %d, freq %d)\n",
			  ret, cdclk);
		return;
	}

1518 1519
	/* cdclk = vco / 2 / div{1,1.5,2,4} */
	switch (DIV_ROUND_CLOSEST(vco, cdclk)) {
1520
	default:
1521
		WARN_ON(cdclk != dev_priv->cdclk.hw.bypass);
1522 1523 1524 1525
		WARN_ON(vco != 0);
		/* fall through */
	case 2:
		divider = BXT_CDCLK_CD2X_DIV_SEL_1;
1526 1527
		break;
	case 3:
1528 1529
		WARN(IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10,
		     "Unsupported divider\n");
1530 1531
		divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
		break;
1532 1533
	case 4:
		divider = BXT_CDCLK_CD2X_DIV_SEL_2;
1534
		break;
1535
	case 8:
1536
		WARN(INTEL_GEN(dev_priv) >= 10, "Unsupported divider\n");
1537
		divider = BXT_CDCLK_CD2X_DIV_SEL_4;
1538 1539 1540
		break;
	}

1541 1542 1543 1544
	if (INTEL_GEN(dev_priv) >= 10) {
		if (dev_priv->cdclk.hw.vco != 0 &&
		    dev_priv->cdclk.hw.vco != vco)
			cnl_cdclk_pll_disable(dev_priv);
1545

1546 1547
		if (dev_priv->cdclk.hw.vco != vco)
			cnl_cdclk_pll_enable(dev_priv, vco);
1548

1549 1550 1551 1552 1553 1554 1555 1556
	} else {
		if (dev_priv->cdclk.hw.vco != 0 &&
		    dev_priv->cdclk.hw.vco != vco)
			bxt_de_pll_disable(dev_priv);

		if (dev_priv->cdclk.hw.vco != vco)
			bxt_de_pll_enable(dev_priv, vco);
	}
1557

1558 1559
	val = divider | skl_cdclk_decimal(cdclk) |
		bxt_cdclk_cd2x_pipe(dev_priv, pipe);
1560

1561 1562 1563 1564
	/*
	 * Disable SSA Precharge when CD clock frequency < 500 MHz,
	 * enable otherwise.
	 */
1565
	if (IS_GEN9_LP(dev_priv) && cdclk >= 500000)
1566 1567 1568
		val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
	I915_WRITE(CDCLK_CTL, val);

1569 1570 1571
	if (pipe != INVALID_PIPE)
		intel_wait_for_vblank(dev_priv, pipe);

1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
	if (INTEL_GEN(dev_priv) >= 10) {
		ret = sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL,
					      cdclk_state->voltage_level);
	} else {
		/*
		 * The timeout isn't specified, the 2ms used here is based on
		 * experiment.
		 * FIXME: Waiting for the request completion could be delayed
		 * until the next PCODE request based on BSpec.
		 */
		ret = sandybridge_pcode_write_timeout(dev_priv,
						      HSW_PCODE_DE_WRITE_FREQ_REQ,
						      cdclk_state->voltage_level,
						      150, 2);
	}

1588 1589 1590 1591 1592 1593 1594
	if (ret) {
		DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
			  ret, cdclk);
		return;
	}

	intel_update_cdclk(dev_priv);
1595 1596 1597 1598 1599 1600 1601

	if (INTEL_GEN(dev_priv) >= 10)
		/*
		 * Can't read out the voltage level :(
		 * Let's just assume everything is as expected.
		 */
		dev_priv->cdclk.hw.voltage_level = cdclk_state->voltage_level;
1602 1603 1604 1605 1606
}

static void bxt_sanitize_cdclk(struct drm_i915_private *dev_priv)
{
	u32 cdctl, expected;
1607
	int cdclk, vco;
1608 1609

	intel_update_cdclk(dev_priv);
1610
	intel_dump_cdclk_state(&dev_priv->cdclk.hw, "Current CDCLK");
1611

1612
	if (dev_priv->cdclk.hw.vco == 0 ||
1613
	    dev_priv->cdclk.hw.cdclk == dev_priv->cdclk.hw.bypass)
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
		goto sanitize;

	/* DPLL okay; verify the cdclock
	 *
	 * Some BIOS versions leave an incorrect decimal frequency value and
	 * set reserved MBZ bits in CDCLK_CTL at least during exiting from S4,
	 * so sanitize this register.
	 */
	cdctl = I915_READ(CDCLK_CTL);
	/*
	 * Let's ignore the pipe field, since BIOS could have configured the
	 * dividers both synching to an active pipe, or asynchronously
	 * (PIPE_NONE).
	 */
1628
	cdctl &= ~bxt_cdclk_cd2x_pipe(dev_priv, INVALID_PIPE);
1629

1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
	/* Make sure this is a legal cdclk value for the platform */
	cdclk = bxt_calc_cdclk(dev_priv, dev_priv->cdclk.hw.cdclk);
	if (cdclk != dev_priv->cdclk.hw.cdclk)
		goto sanitize;

	/* Make sure the VCO is correct for the cdclk */
	vco = bxt_calc_cdclk_pll_vco(dev_priv, cdclk);
	if (vco != dev_priv->cdclk.hw.vco)
		goto sanitize;

	expected = skl_cdclk_decimal(cdclk);

	/* Figure out what CD2X divider we should be using for this cdclk */
	switch (DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.vco,
				  dev_priv->cdclk.hw.cdclk)) {
	case 2:
		expected |= BXT_CDCLK_CD2X_DIV_SEL_1;
		break;
	case 3:
		expected |= BXT_CDCLK_CD2X_DIV_SEL_1_5;
		break;
	case 4:
		expected |= BXT_CDCLK_CD2X_DIV_SEL_2;
		break;
	case 8:
		expected |= BXT_CDCLK_CD2X_DIV_SEL_4;
		break;
	default:
		goto sanitize;
	}

1661 1662 1663 1664
	/*
	 * Disable SSA Precharge when CD clock frequency < 500 MHz,
	 * enable otherwise.
	 */
M
Matt Roper 已提交
1665
	if (IS_GEN9_LP(dev_priv) && dev_priv->cdclk.hw.cdclk >= 500000)
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
		expected |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;

	if (cdctl == expected)
		/* All well; nothing to sanitize */
		return;

sanitize:
	DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");

	/* force cdclk programming */
1676
	dev_priv->cdclk.hw.cdclk = 0;
1677 1678

	/* force full PLL disable + enable */
1679
	dev_priv->cdclk.hw.vco = -1;
1680 1681
}

1682
static void bxt_init_cdclk(struct drm_i915_private *dev_priv)
1683
{
1684
	struct intel_cdclk_state cdclk_state;
1685 1686 1687

	bxt_sanitize_cdclk(dev_priv);

1688 1689
	if (dev_priv->cdclk.hw.cdclk != 0 &&
	    dev_priv->cdclk.hw.vco != 0)
1690 1691
		return;

1692 1693
	cdclk_state = dev_priv->cdclk.hw;

1694 1695 1696 1697 1698
	/*
	 * FIXME:
	 * - The initial CDCLK needs to be read from VBT.
	 *   Need to make this change after VBT has changes for BXT.
	 */
1699 1700
	cdclk_state.cdclk = bxt_calc_cdclk(dev_priv, 0);
	cdclk_state.vco = bxt_calc_cdclk_pll_vco(dev_priv, cdclk_state.cdclk);
1701 1702
	cdclk_state.voltage_level =
		dev_priv->display.calc_voltage_level(cdclk_state.cdclk);
1703

1704
	bxt_set_cdclk(dev_priv, &cdclk_state, INVALID_PIPE);
1705 1706
}

1707
static void bxt_uninit_cdclk(struct drm_i915_private *dev_priv)
1708
{
1709 1710
	struct intel_cdclk_state cdclk_state = dev_priv->cdclk.hw;

1711
	cdclk_state.cdclk = cdclk_state.bypass;
1712
	cdclk_state.vco = 0;
1713 1714
	cdclk_state.voltage_level =
		dev_priv->display.calc_voltage_level(cdclk_state.cdclk);
1715

1716
	bxt_set_cdclk(dev_priv, &cdclk_state, INVALID_PIPE);
1717 1718
}

1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
/**
 * intel_cdclk_init - Initialize CDCLK
 * @i915: i915 device
 *
 * Initialize CDCLK. This consists mainly of initializing dev_priv->cdclk.hw and
 * sanitizing the state of the hardware if needed. This is generally done only
 * during the display core initialization sequence, after which the DMC will
 * take care of turning CDCLK off/on as needed.
 */
void intel_cdclk_init(struct drm_i915_private *i915)
{
1730 1731
	if (IS_GEN9_LP(i915) || INTEL_GEN(i915) >= 10)
		bxt_init_cdclk(i915);
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
	else if (IS_GEN9_BC(i915))
		skl_init_cdclk(i915);
}

/**
 * intel_cdclk_uninit - Uninitialize CDCLK
 * @i915: i915 device
 *
 * Uninitialize CDCLK. This is done only during the display core
 * uninitialization sequence.
 */
void intel_cdclk_uninit(struct drm_i915_private *i915)
{
1745 1746
	if (INTEL_GEN(i915) >= 10 || IS_GEN9_LP(i915))
		bxt_uninit_cdclk(i915);
1747 1748 1749 1750
	else if (IS_GEN9_BC(i915))
		skl_uninit_cdclk(i915);
}

1751
/**
1752
 * intel_cdclk_needs_modeset - Determine if two CDCLK states require a modeset on all pipes
1753 1754 1755 1756
 * @a: first CDCLK state
 * @b: second CDCLK state
 *
 * Returns:
1757
 * True if the CDCLK states require pipes to be off during reprogramming, false if not.
1758
 */
1759
bool intel_cdclk_needs_modeset(const struct intel_cdclk_state *a,
1760 1761
			       const struct intel_cdclk_state *b)
{
1762 1763 1764 1765 1766
	return a->cdclk != b->cdclk ||
		a->vco != b->vco ||
		a->ref != b->ref;
}

1767 1768
/**
 * intel_cdclk_needs_cd2x_update - Determine if two CDCLK states require a cd2x divider update
1769
 * @dev_priv: Not a CDCLK state, it's the drm_i915_private!
1770 1771 1772 1773 1774 1775
 * @a: first CDCLK state
 * @b: second CDCLK state
 *
 * Returns:
 * True if the CDCLK states require just a cd2x divider update, false if not.
 */
1776 1777 1778
static bool intel_cdclk_needs_cd2x_update(struct drm_i915_private *dev_priv,
					  const struct intel_cdclk_state *a,
					  const struct intel_cdclk_state *b)
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
{
	/* Older hw doesn't have the capability */
	if (INTEL_GEN(dev_priv) < 10 && !IS_GEN9_LP(dev_priv))
		return false;

	return a->cdclk != b->cdclk &&
		a->vco == b->vco &&
		a->ref == b->ref;
}

1789 1790 1791 1792 1793 1794 1795 1796
/**
 * intel_cdclk_changed - Determine if two CDCLK states are different
 * @a: first CDCLK state
 * @b: second CDCLK state
 *
 * Returns:
 * True if the CDCLK states don't match, false if they do.
 */
1797 1798
static bool intel_cdclk_changed(const struct intel_cdclk_state *a,
				const struct intel_cdclk_state *b)
1799 1800 1801
{
	return intel_cdclk_needs_modeset(a, b) ||
		a->voltage_level != b->voltage_level;
1802 1803
}

1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
/**
 * intel_cdclk_swap_state - make atomic CDCLK configuration effective
 * @state: atomic state
 *
 * This is the CDCLK version of drm_atomic_helper_swap_state() since the
 * helper does not handle driver-specific global state.
 *
 * Similarly to the atomic helpers this function does a complete swap,
 * i.e. it also puts the old state into @state. This is used by the commit
 * code to determine how CDCLK has changed (for instance did it increase or
 * decrease).
 */
void intel_cdclk_swap_state(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);

	swap(state->cdclk.logical, dev_priv->cdclk.logical);
	swap(state->cdclk.actual, dev_priv->cdclk.actual);
}

1824 1825 1826
void intel_dump_cdclk_state(const struct intel_cdclk_state *cdclk_state,
			    const char *context)
{
1827
	DRM_DEBUG_DRIVER("%s %d kHz, VCO %d kHz, ref %d kHz, bypass %d kHz, voltage level %d\n",
1828
			 context, cdclk_state->cdclk, cdclk_state->vco,
1829 1830
			 cdclk_state->ref, cdclk_state->bypass,
			 cdclk_state->voltage_level);
1831 1832
}

1833 1834 1835 1836
/**
 * intel_set_cdclk - Push the CDCLK state to the hardware
 * @dev_priv: i915 device
 * @cdclk_state: new CDCLK state
1837
 * @pipe: pipe with which to synchronize the update
1838 1839 1840 1841
 *
 * Program the hardware based on the passed in CDCLK state,
 * if necessary.
 */
1842 1843 1844
static void intel_set_cdclk(struct drm_i915_private *dev_priv,
			    const struct intel_cdclk_state *cdclk_state,
			    enum pipe pipe)
1845
{
1846
	if (!intel_cdclk_changed(&dev_priv->cdclk.hw, cdclk_state))
1847 1848 1849 1850 1851
		return;

	if (WARN_ON_ONCE(!dev_priv->display.set_cdclk))
		return;

1852
	intel_dump_cdclk_state(cdclk_state, "Changing CDCLK to");
1853

1854
	dev_priv->display.set_cdclk(dev_priv, cdclk_state, pipe);
1855 1856 1857 1858 1859 1860

	if (WARN(intel_cdclk_changed(&dev_priv->cdclk.hw, cdclk_state),
		 "cdclk state doesn't match!\n")) {
		intel_dump_cdclk_state(&dev_priv->cdclk.hw, "[hw state]");
		intel_dump_cdclk_state(cdclk_state, "[sw state]");
	}
1861 1862
}

1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
/**
 * intel_set_cdclk_pre_plane_update - Push the CDCLK state to the hardware
 * @dev_priv: i915 device
 * @old_state: old CDCLK state
 * @new_state: new CDCLK state
 * @pipe: pipe with which to synchronize the update
 *
 * Program the hardware before updating the HW plane state based on the passed
 * in CDCLK state, if necessary.
 */
void
intel_set_cdclk_pre_plane_update(struct drm_i915_private *dev_priv,
				 const struct intel_cdclk_state *old_state,
				 const struct intel_cdclk_state *new_state,
				 enum pipe pipe)
{
	if (pipe == INVALID_PIPE || old_state->cdclk <= new_state->cdclk)
		intel_set_cdclk(dev_priv, new_state, pipe);
}

/**
 * intel_set_cdclk_post_plane_update - Push the CDCLK state to the hardware
 * @dev_priv: i915 device
 * @old_state: old CDCLK state
 * @new_state: new CDCLK state
 * @pipe: pipe with which to synchronize the update
 *
 * Program the hardware after updating the HW plane state based on the passed
 * in CDCLK state, if necessary.
 */
void
intel_set_cdclk_post_plane_update(struct drm_i915_private *dev_priv,
				  const struct intel_cdclk_state *old_state,
				  const struct intel_cdclk_state *new_state,
				  enum pipe pipe)
{
	if (pipe != INVALID_PIPE && old_state->cdclk > new_state->cdclk)
		intel_set_cdclk(dev_priv, new_state, pipe);
}

1903
static int intel_pixel_rate_to_cdclk(const struct intel_crtc_state *crtc_state)
1904
{
1905 1906 1907
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	int pixel_rate = crtc_state->pixel_rate;

1908
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
1909
		return DIV_ROUND_UP(pixel_rate, 2);
1910
	else if (IS_GEN(dev_priv, 9) ||
1911 1912 1913 1914
		 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
		return pixel_rate;
	else if (IS_CHERRYVIEW(dev_priv))
		return DIV_ROUND_UP(pixel_rate * 100, 95);
1915 1916
	else if (crtc_state->double_wide)
		return DIV_ROUND_UP(pixel_rate * 100, 90 * 2);
1917 1918 1919 1920 1921
	else
		return DIV_ROUND_UP(pixel_rate * 100, 90);
}

int intel_crtc_compute_min_cdclk(const struct intel_crtc_state *crtc_state)
1922 1923 1924
{
	struct drm_i915_private *dev_priv =
		to_i915(crtc_state->base.crtc->dev);
1925 1926 1927 1928 1929
	int min_cdclk;

	if (!crtc_state->base.enable)
		return 0;

1930
	min_cdclk = intel_pixel_rate_to_cdclk(crtc_state);
1931 1932

	/* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
1933
	if (IS_BROADWELL(dev_priv) && hsw_crtc_state_ips_capable(crtc_state))
1934
		min_cdclk = DIV_ROUND_UP(min_cdclk * 100, 95);
1935

1936 1937 1938
	/* BSpec says "Do not use DisplayPort with CDCLK less than 432 MHz,
	 * audio enabled, port width x4, and link rate HBR2 (5.4 GHz), or else
	 * there may be audio corruption or screen corruption." This cdclk
1939
	 * restriction for GLK is 316.8 MHz.
1940 1941 1942 1943
	 */
	if (intel_crtc_has_dp_encoder(crtc_state) &&
	    crtc_state->has_audio &&
	    crtc_state->port_clock >= 540000 &&
1944
	    crtc_state->lane_count == 4) {
1945 1946 1947
		if (IS_CANNONLAKE(dev_priv) || IS_GEMINILAKE(dev_priv)) {
			/* Display WA #1145: glk,cnl */
			min_cdclk = max(316800, min_cdclk);
1948
		} else if (IS_GEN(dev_priv, 9) || IS_BROADWELL(dev_priv)) {
1949 1950 1951
			/* Display WA #1144: skl,bxt */
			min_cdclk = max(432000, min_cdclk);
		}
1952
	}
1953

1954 1955
	/*
	 * According to BSpec, "The CD clock frequency must be at least twice
1956 1957
	 * the frequency of the Azalia BCLK." and BCLK is 96 MHz by default.
	 */
1958
	if (crtc_state->has_audio && INTEL_GEN(dev_priv) >= 9)
1959
		min_cdclk = max(2 * 96000, min_cdclk);
1960

1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
	/*
	 * "For DP audio configuration, cdclk frequency shall be set to
	 *  meet the following requirements:
	 *  DP Link Frequency(MHz) | Cdclk frequency(MHz)
	 *  270                    | 320 or higher
	 *  162                    | 200 or higher"
	 */
	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
	    intel_crtc_has_dp_encoder(crtc_state) && crtc_state->has_audio)
		min_cdclk = max(crtc_state->port_clock, min_cdclk);

1972 1973 1974 1975 1976 1977 1978 1979
	/*
	 * On Valleyview some DSI panels lose (v|h)sync when the clock is lower
	 * than 320000KHz.
	 */
	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) &&
	    IS_VALLEYVIEW(dev_priv))
		min_cdclk = max(320000, min_cdclk);

1980 1981 1982 1983 1984 1985 1986 1987 1988
	/*
	 * On Geminilake once the CDCLK gets as low as 79200
	 * picture gets unstable, despite that values are
	 * correct for DSI PLL and DE PLL.
	 */
	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) &&
	    IS_GEMINILAKE(dev_priv))
		min_cdclk = max(158400, min_cdclk);

1989 1990 1991 1992 1993 1994
	if (min_cdclk > dev_priv->max_cdclk_freq) {
		DRM_DEBUG_KMS("required cdclk (%d kHz) exceeds max (%d kHz)\n",
			      min_cdclk, dev_priv->max_cdclk_freq);
		return -EINVAL;
	}

1995
	return min_cdclk;
1996 1997
}

1998
static int intel_compute_min_cdclk(struct intel_atomic_state *state)
1999
{
2000
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
2001
	struct intel_crtc *crtc;
2002
	struct intel_crtc_state *crtc_state;
2003
	int min_cdclk, i;
2004 2005
	enum pipe pipe;

2006 2007
	memcpy(state->min_cdclk, dev_priv->min_cdclk,
	       sizeof(state->min_cdclk));
2008

2009
	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
2010 2011
		int ret;

2012 2013 2014 2015
		min_cdclk = intel_crtc_compute_min_cdclk(crtc_state);
		if (min_cdclk < 0)
			return min_cdclk;

2016 2017 2018
		if (state->min_cdclk[i] == min_cdclk)
			continue;

2019
		state->min_cdclk[i] = min_cdclk;
2020 2021 2022 2023

		ret = intel_atomic_lock_global_state(state);
		if (ret)
			return ret;
2024
	}
2025

2026
	min_cdclk = state->cdclk.force_min_cdclk;
2027
	for_each_pipe(dev_priv, pipe)
2028
		min_cdclk = max(state->min_cdclk[pipe], min_cdclk);
2029

2030
	return min_cdclk;
2031 2032
}

2033
/*
2034 2035 2036 2037
 * Account for port clock min voltage level requirements.
 * This only really does something on CNL+ but can be
 * called on earlier platforms as well.
 *
2038 2039 2040 2041 2042 2043 2044 2045
 * Note that this functions assumes that 0 is
 * the lowest voltage value, and higher values
 * correspond to increasingly higher voltages.
 *
 * Should that relationship no longer hold on
 * future platforms this code will need to be
 * adjusted.
 */
2046
static int bxt_compute_min_voltage_level(struct intel_atomic_state *state)
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct intel_crtc *crtc;
	struct intel_crtc_state *crtc_state;
	u8 min_voltage_level;
	int i;
	enum pipe pipe;

	memcpy(state->min_voltage_level, dev_priv->min_voltage_level,
	       sizeof(state->min_voltage_level));

	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
2059 2060
		int ret;

2061
		if (crtc_state->base.enable)
2062
			min_voltage_level = crtc_state->min_voltage_level;
2063
		else
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
			min_voltage_level = 0;

		if (state->min_voltage_level[i] == min_voltage_level)
			continue;

		state->min_voltage_level[i] = min_voltage_level;

		ret = intel_atomic_lock_global_state(state);
		if (ret)
			return ret;
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
	}

	min_voltage_level = 0;
	for_each_pipe(dev_priv, pipe)
		min_voltage_level = max(state->min_voltage_level[pipe],
					min_voltage_level);

	return min_voltage_level;
}

2084
static int vlv_modeset_calc_cdclk(struct intel_atomic_state *state)
2085
{
2086
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
2087
	int min_cdclk, cdclk;
2088

2089 2090 2091
	min_cdclk = intel_compute_min_cdclk(state);
	if (min_cdclk < 0)
		return min_cdclk;
2092

2093
	cdclk = vlv_calc_cdclk(dev_priv, min_cdclk);
2094

2095 2096
	state->cdclk.logical.cdclk = cdclk;
	state->cdclk.logical.voltage_level =
2097
		vlv_calc_voltage_level(dev_priv, cdclk);
2098

2099
	if (!state->active_pipes) {
2100
		cdclk = vlv_calc_cdclk(dev_priv, state->cdclk.force_min_cdclk);
2101

2102 2103
		state->cdclk.actual.cdclk = cdclk;
		state->cdclk.actual.voltage_level =
2104
			vlv_calc_voltage_level(dev_priv, cdclk);
2105
	} else {
2106
		state->cdclk.actual = state->cdclk.logical;
2107
	}
2108 2109 2110 2111

	return 0;
}

2112
static int bdw_modeset_calc_cdclk(struct intel_atomic_state *state)
2113
{
2114 2115 2116 2117 2118
	int min_cdclk, cdclk;

	min_cdclk = intel_compute_min_cdclk(state);
	if (min_cdclk < 0)
		return min_cdclk;
2119 2120 2121 2122 2123

	/*
	 * FIXME should also account for plane ratio
	 * once 64bpp pixel formats are supported.
	 */
2124
	cdclk = bdw_calc_cdclk(min_cdclk);
2125

2126 2127
	state->cdclk.logical.cdclk = cdclk;
	state->cdclk.logical.voltage_level =
2128
		bdw_calc_voltage_level(cdclk);
2129

2130
	if (!state->active_pipes) {
2131
		cdclk = bdw_calc_cdclk(state->cdclk.force_min_cdclk);
2132

2133 2134
		state->cdclk.actual.cdclk = cdclk;
		state->cdclk.actual.voltage_level =
2135
			bdw_calc_voltage_level(cdclk);
2136
	} else {
2137
		state->cdclk.actual = state->cdclk.logical;
2138
	}
2139 2140 2141 2142

	return 0;
}

2143
static int skl_dpll0_vco(struct intel_atomic_state *state)
2144
{
2145
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
2146 2147 2148 2149
	struct intel_crtc *crtc;
	struct intel_crtc_state *crtc_state;
	int vco, i;

2150
	vco = state->cdclk.logical.vco;
2151 2152 2153
	if (!vco)
		vco = dev_priv->skl_preferred_vco_freq;

2154
	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
		if (!crtc_state->base.enable)
			continue;

		if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP))
			continue;

		/*
		 * DPLL0 VCO may need to be adjusted to get the correct
		 * clock for eDP. This will affect cdclk as well.
		 */
		switch (crtc_state->port_clock / 2) {
		case 108000:
		case 216000:
			vco = 8640000;
			break;
		default:
			vco = 8100000;
			break;
		}
	}

	return vco;
}

2179
static int skl_modeset_calc_cdclk(struct intel_atomic_state *state)
2180
{
2181 2182 2183 2184 2185
	int min_cdclk, cdclk, vco;

	min_cdclk = intel_compute_min_cdclk(state);
	if (min_cdclk < 0)
		return min_cdclk;
2186

2187
	vco = skl_dpll0_vco(state);
2188 2189 2190 2191 2192

	/*
	 * FIXME should also account for plane ratio
	 * once 64bpp pixel formats are supported.
	 */
2193
	cdclk = skl_calc_cdclk(min_cdclk, vco);
2194

2195 2196 2197
	state->cdclk.logical.vco = vco;
	state->cdclk.logical.cdclk = cdclk;
	state->cdclk.logical.voltage_level =
2198
		skl_calc_voltage_level(cdclk);
2199

2200
	if (!state->active_pipes) {
2201
		cdclk = skl_calc_cdclk(state->cdclk.force_min_cdclk, vco);
2202

2203 2204 2205
		state->cdclk.actual.vco = vco;
		state->cdclk.actual.cdclk = cdclk;
		state->cdclk.actual.voltage_level =
2206
			skl_calc_voltage_level(cdclk);
2207
	} else {
2208
		state->cdclk.actual = state->cdclk.logical;
2209
	}
2210 2211 2212 2213

	return 0;
}

2214
static int bxt_modeset_calc_cdclk(struct intel_atomic_state *state)
2215
{
2216
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
2217
	int min_cdclk, min_voltage_level, cdclk, vco;
2218 2219 2220 2221

	min_cdclk = intel_compute_min_cdclk(state);
	if (min_cdclk < 0)
		return min_cdclk;
2222

2223 2224 2225 2226
	min_voltage_level = bxt_compute_min_voltage_level(state);
	if (min_voltage_level < 0)
		return min_voltage_level;

2227 2228
	cdclk = bxt_calc_cdclk(dev_priv, min_cdclk);
	vco = bxt_calc_cdclk_pll_vco(dev_priv, cdclk);
2229

2230 2231
	state->cdclk.logical.vco = vco;
	state->cdclk.logical.cdclk = cdclk;
2232
	state->cdclk.logical.voltage_level =
2233 2234
		max_t(int, min_voltage_level,
		      dev_priv->display.calc_voltage_level(cdclk));
2235

2236
	if (!state->active_pipes) {
2237 2238
		cdclk = bxt_calc_cdclk(dev_priv, state->cdclk.force_min_cdclk);
		vco = bxt_calc_cdclk_pll_vco(dev_priv, cdclk);
2239

2240 2241
		state->cdclk.actual.vco = vco;
		state->cdclk.actual.cdclk = cdclk;
2242 2243
		state->cdclk.actual.voltage_level =
			dev_priv->display.calc_voltage_level(cdclk);
2244
	} else {
2245
		state->cdclk.actual = state->cdclk.logical;
2246 2247 2248 2249 2250
	}

	return 0;
}

2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
static int intel_modeset_all_pipes(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct intel_crtc *crtc;

	/*
	 * Add all pipes to the state, and force
	 * a modeset on all the active ones.
	 */
	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state;
		int ret;

		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
		if (IS_ERR(crtc_state))
			return PTR_ERR(crtc_state);

		if (!crtc_state->base.active ||
		    drm_atomic_crtc_needs_modeset(&crtc_state->base))
			continue;

		crtc_state->base.mode_changed = true;

		ret = drm_atomic_add_affected_connectors(&state->base,
							 &crtc->base);
		if (ret)
			return ret;

		ret = drm_atomic_add_affected_planes(&state->base,
						     &crtc->base);
		if (ret)
			return ret;

		crtc_state->update_planes |= crtc_state->active_planes;
	}

	return 0;
}

2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
static int fixed_modeset_calc_cdclk(struct intel_atomic_state *state)
{
	int min_cdclk;

	/*
	 * We can't change the cdclk frequency, but we still want to
	 * check that the required minimum frequency doesn't exceed
	 * the actual cdclk frequency.
	 */
	min_cdclk = intel_compute_min_cdclk(state);
	if (min_cdclk < 0)
		return min_cdclk;

	return 0;
}

2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
int intel_modeset_calc_cdclk(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	enum pipe pipe;
	int ret;

	ret = dev_priv->display.modeset_calc_cdclk(state);
	if (ret)
		return ret;

	/*
2317 2318
	 * Writes to dev_priv->cdclk.{actual,logical} must protected
	 * by holding all the crtc mutexes even if we don't end up
2319 2320
	 * touching the hardware
	 */
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
	if (intel_cdclk_changed(&dev_priv->cdclk.actual,
				&state->cdclk.actual)) {
		/*
		 * Also serialize commits across all crtcs
		 * if the actual hw needs to be poked.
		 */
		ret = intel_atomic_serialize_global_state(state);
		if (ret)
			return ret;
	} else if (intel_cdclk_changed(&dev_priv->cdclk.logical,
				       &state->cdclk.logical)) {
		ret = intel_atomic_lock_global_state(state);
		if (ret)
2334
			return ret;
2335 2336
	} else {
		return 0;
2337 2338
	}

2339 2340 2341 2342
	if (is_power_of_2(state->active_pipes) &&
	    intel_cdclk_needs_cd2x_update(dev_priv,
					  &dev_priv->cdclk.actual,
					  &state->cdclk.actual)) {
2343 2344 2345 2346 2347
		struct intel_crtc *crtc;
		struct intel_crtc_state *crtc_state;

		pipe = ilog2(state->active_pipes);
		crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
2348 2349 2350 2351 2352 2353

		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
		if (IS_ERR(crtc_state))
			return PTR_ERR(crtc_state);

		if (drm_atomic_crtc_needs_modeset(&crtc_state->base))
2354 2355 2356 2357 2358
			pipe = INVALID_PIPE;
	} else {
		pipe = INVALID_PIPE;
	}

2359
	if (pipe != INVALID_PIPE) {
2360
		state->cdclk.pipe = pipe;
2361 2362 2363

		DRM_DEBUG_KMS("Can change cdclk with pipe %c active\n",
			      pipe_name(pipe));
2364 2365
	} else if (intel_cdclk_needs_modeset(&dev_priv->cdclk.actual,
					     &state->cdclk.actual)) {
2366
		/* All pipes must be switched off while we change the cdclk. */
2367 2368 2369 2370 2371
		ret = intel_modeset_all_pipes(state);
		if (ret)
			return ret;

		state->cdclk.pipe = INVALID_PIPE;
2372 2373

		DRM_DEBUG_KMS("Modeset required for cdclk change\n");
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
	}

	DRM_DEBUG_KMS("New cdclk calculated to be logical %u kHz, actual %u kHz\n",
		      state->cdclk.logical.cdclk,
		      state->cdclk.actual.cdclk);
	DRM_DEBUG_KMS("New voltage level calculated to be logical %u, actual %u\n",
		      state->cdclk.logical.voltage_level,
		      state->cdclk.actual.voltage_level);

	return 0;
}

2386 2387 2388 2389
static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
{
	int max_cdclk_freq = dev_priv->max_cdclk_freq;

2390
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
2391
		return 2 * max_cdclk_freq;
2392
	else if (IS_GEN(dev_priv, 9) ||
2393
		 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
2394 2395 2396
		return max_cdclk_freq;
	else if (IS_CHERRYVIEW(dev_priv))
		return max_cdclk_freq*95/100;
2397
	else if (INTEL_GEN(dev_priv) < 4)
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
		return 2*max_cdclk_freq*90/100;
	else
		return max_cdclk_freq*90/100;
}

/**
 * intel_update_max_cdclk - Determine the maximum support CDCLK frequency
 * @dev_priv: i915 device
 *
 * Determine the maximum CDCLK frequency the platform supports, and also
 * derive the maximum dot clock frequency the maximum CDCLK frequency
 * allows.
 */
void intel_update_max_cdclk(struct drm_i915_private *dev_priv)
{
2413 2414 2415 2416 2417 2418
	if (IS_ELKHARTLAKE(dev_priv)) {
		if (dev_priv->cdclk.hw.ref == 24000)
			dev_priv->max_cdclk_freq = 552000;
		else
			dev_priv->max_cdclk_freq = 556800;
	} else if (INTEL_GEN(dev_priv) >= 11) {
2419 2420 2421 2422 2423
		if (dev_priv->cdclk.hw.ref == 24000)
			dev_priv->max_cdclk_freq = 648000;
		else
			dev_priv->max_cdclk_freq = 652800;
	} else if (IS_CANNONLAKE(dev_priv)) {
2424 2425
		dev_priv->max_cdclk_freq = 528000;
	} else if (IS_GEN9_BC(dev_priv)) {
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
		u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
		int max_cdclk, vco;

		vco = dev_priv->skl_preferred_vco_freq;
		WARN_ON(vco != 8100000 && vco != 8640000);

		/*
		 * Use the lower (vco 8640) cdclk values as a
		 * first guess. skl_calc_cdclk() will correct it
		 * if the preferred vco is 8100 instead.
		 */
		if (limit == SKL_DFSM_CDCLK_LIMIT_675)
			max_cdclk = 617143;
		else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
			max_cdclk = 540000;
		else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
			max_cdclk = 432000;
		else
			max_cdclk = 308571;

		dev_priv->max_cdclk_freq = skl_calc_cdclk(max_cdclk, vco);
	} else if (IS_GEMINILAKE(dev_priv)) {
		dev_priv->max_cdclk_freq = 316800;
	} else if (IS_BROXTON(dev_priv)) {
		dev_priv->max_cdclk_freq = 624000;
	} else if (IS_BROADWELL(dev_priv))  {
		/*
		 * FIXME with extra cooling we can allow
		 * 540 MHz for ULX and 675 Mhz for ULT.
		 * How can we know if extra cooling is
		 * available? PCI ID, VTB, something else?
		 */
		if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
			dev_priv->max_cdclk_freq = 450000;
		else if (IS_BDW_ULX(dev_priv))
			dev_priv->max_cdclk_freq = 450000;
		else if (IS_BDW_ULT(dev_priv))
			dev_priv->max_cdclk_freq = 540000;
		else
			dev_priv->max_cdclk_freq = 675000;
	} else if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->max_cdclk_freq = 320000;
	} else if (IS_VALLEYVIEW(dev_priv)) {
		dev_priv->max_cdclk_freq = 400000;
	} else {
		/* otherwise assume cdclk is fixed */
2472
		dev_priv->max_cdclk_freq = dev_priv->cdclk.hw.cdclk;
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
	}

	dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);

	DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
			 dev_priv->max_cdclk_freq);

	DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
			 dev_priv->max_dotclk_freq);
}

/**
 * intel_update_cdclk - Determine the current CDCLK frequency
 * @dev_priv: i915 device
 *
 * Determine the current CDCLK frequency.
 */
void intel_update_cdclk(struct drm_i915_private *dev_priv)
{
2492
	dev_priv->display.get_cdclk(dev_priv, &dev_priv->cdclk.hw);
2493 2494 2495 2496 2497 2498 2499 2500 2501

	/*
	 * 9:0 CMBUS [sic] CDCLK frequency (cdfreq):
	 * Programmng [sic] note: bit[9:2] should be programmed to the number
	 * of cdclk that generates 4MHz reference clock freq which is used to
	 * generate GMBus clock. This will vary with the cdclk freq.
	 */
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		I915_WRITE(GMBUSFREQ_VLV,
2502
			   DIV_ROUND_UP(dev_priv->cdclk.hw.cdclk, 1000));
2503 2504
}

2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
static int cnp_rawclk(struct drm_i915_private *dev_priv)
{
	u32 rawclk;
	int divider, fraction;

	if (I915_READ(SFUSE_STRAP) & SFUSE_STRAP_RAW_FREQUENCY) {
		/* 24 MHz */
		divider = 24000;
		fraction = 0;
	} else {
		/* 19.2 MHz */
		divider = 19000;
		fraction = 200;
	}

2520
	rawclk = CNP_RAWCLK_DIV(divider / 1000);
2521 2522
	if (fraction) {
		int numerator = 1;
2523

2524 2525
		rawclk |= CNP_RAWCLK_DEN(DIV_ROUND_CLOSEST(numerator * 1000,
							   fraction) - 1);
2526
		if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2527
			rawclk |= ICP_RAWCLK_NUM(numerator);
2528 2529 2530
	}

	I915_WRITE(PCH_RAWCLK_FREQ, rawclk);
2531
	return divider + fraction;
2532 2533
}

2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
static int pch_rawclk(struct drm_i915_private *dev_priv)
{
	return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
}

static int vlv_hrawclk(struct drm_i915_private *dev_priv)
{
	/* RAWCLK_FREQ_VLV register updated from power well code */
	return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
				      CCK_DISPLAY_REF_CLOCK_CONTROL);
}

static int g4x_hrawclk(struct drm_i915_private *dev_priv)
{
2548
	u32 clkcfg;
2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561

	/* hrawclock is 1/4 the FSB frequency */
	clkcfg = I915_READ(CLKCFG);
	switch (clkcfg & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_400:
		return 100000;
	case CLKCFG_FSB_533:
		return 133333;
	case CLKCFG_FSB_667:
		return 166667;
	case CLKCFG_FSB_800:
		return 200000;
	case CLKCFG_FSB_1067:
2562
	case CLKCFG_FSB_1067_ALT:
2563 2564
		return 266667;
	case CLKCFG_FSB_1333:
2565
	case CLKCFG_FSB_1333_ALT:
2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
		return 333333;
	default:
		return 133333;
	}
}

/**
 * intel_update_rawclk - Determine the current RAWCLK frequency
 * @dev_priv: i915 device
 *
 * Determine the current RAWCLK frequency. RAWCLK is a fixed
 * frequency clock so this needs to done only once.
 */
void intel_update_rawclk(struct drm_i915_private *dev_priv)
{
2581
	if (INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
2582 2583
		dev_priv->rawclk_freq = cnp_rawclk(dev_priv);
	else if (HAS_PCH_SPLIT(dev_priv))
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
		dev_priv->rawclk_freq = pch_rawclk(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		dev_priv->rawclk_freq = vlv_hrawclk(dev_priv);
	else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv))
		dev_priv->rawclk_freq = g4x_hrawclk(dev_priv);
	else
		/* no rawclk on other platforms, or no need to know it */
		return;

	DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq);
}

/**
 * intel_init_cdclk_hooks - Initialize CDCLK related modesetting hooks
 * @dev_priv: i915 device
 */
void intel_init_cdclk_hooks(struct drm_i915_private *dev_priv)
{
2602 2603
	if (IS_ELKHARTLAKE(dev_priv)) {
		dev_priv->display.set_cdclk = bxt_set_cdclk;
2604
		dev_priv->display.modeset_calc_cdclk = bxt_modeset_calc_cdclk;
2605 2606 2607
		dev_priv->display.calc_voltage_level = ehl_calc_voltage_level;
		dev_priv->cdclk.table = icl_cdclk_table;
	} else if (INTEL_GEN(dev_priv) >= 11) {
2608
		dev_priv->display.set_cdclk = bxt_set_cdclk;
2609
		dev_priv->display.modeset_calc_cdclk = bxt_modeset_calc_cdclk;
2610
		dev_priv->display.calc_voltage_level = icl_calc_voltage_level;
2611
		dev_priv->cdclk.table = icl_cdclk_table;
2612
	} else if (IS_CANNONLAKE(dev_priv)) {
2613
		dev_priv->display.set_cdclk = bxt_set_cdclk;
2614
		dev_priv->display.modeset_calc_cdclk = bxt_modeset_calc_cdclk;
2615
		dev_priv->display.calc_voltage_level = cnl_calc_voltage_level;
2616
		dev_priv->cdclk.table = cnl_cdclk_table;
2617
	} else if (IS_GEN9_LP(dev_priv)) {
2618
		dev_priv->display.set_cdclk = bxt_set_cdclk;
2619
		dev_priv->display.modeset_calc_cdclk = bxt_modeset_calc_cdclk;
2620
		dev_priv->display.calc_voltage_level = bxt_calc_voltage_level;
2621 2622 2623 2624
		if (IS_GEMINILAKE(dev_priv))
			dev_priv->cdclk.table = glk_cdclk_table;
		else
			dev_priv->cdclk.table = bxt_cdclk_table;
2625
	} else if (IS_GEN9_BC(dev_priv)) {
2626
		dev_priv->display.set_cdclk = skl_set_cdclk;
2627
		dev_priv->display.modeset_calc_cdclk = skl_modeset_calc_cdclk;
2628 2629
	} else if (IS_BROADWELL(dev_priv)) {
		dev_priv->display.set_cdclk = bdw_set_cdclk;
2630
		dev_priv->display.modeset_calc_cdclk = bdw_modeset_calc_cdclk;
2631 2632
	} else if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->display.set_cdclk = chv_set_cdclk;
2633
		dev_priv->display.modeset_calc_cdclk = vlv_modeset_calc_cdclk;
2634 2635
	} else if (IS_VALLEYVIEW(dev_priv)) {
		dev_priv->display.set_cdclk = vlv_set_cdclk;
2636
		dev_priv->display.modeset_calc_cdclk = vlv_modeset_calc_cdclk;
2637 2638
	} else {
		dev_priv->display.modeset_calc_cdclk = fixed_modeset_calc_cdclk;
2639 2640
	}

2641
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEN9_LP(dev_priv))
2642
		dev_priv->display.get_cdclk = bxt_get_cdclk;
2643 2644
	else if (IS_GEN9_BC(dev_priv))
		dev_priv->display.get_cdclk = skl_get_cdclk;
2645 2646 2647 2648 2649 2650
	else if (IS_BROADWELL(dev_priv))
		dev_priv->display.get_cdclk = bdw_get_cdclk;
	else if (IS_HASWELL(dev_priv))
		dev_priv->display.get_cdclk = hsw_get_cdclk;
	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		dev_priv->display.get_cdclk = vlv_get_cdclk;
2651
	else if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv))
2652
		dev_priv->display.get_cdclk = fixed_400mhz_get_cdclk;
2653
	else if (IS_GEN(dev_priv, 5))
2654 2655 2656
		dev_priv->display.get_cdclk = fixed_450mhz_get_cdclk;
	else if (IS_GM45(dev_priv))
		dev_priv->display.get_cdclk = gm45_get_cdclk;
2657
	else if (IS_G45(dev_priv))
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
		dev_priv->display.get_cdclk = g33_get_cdclk;
	else if (IS_I965GM(dev_priv))
		dev_priv->display.get_cdclk = i965gm_get_cdclk;
	else if (IS_I965G(dev_priv))
		dev_priv->display.get_cdclk = fixed_400mhz_get_cdclk;
	else if (IS_PINEVIEW(dev_priv))
		dev_priv->display.get_cdclk = pnv_get_cdclk;
	else if (IS_G33(dev_priv))
		dev_priv->display.get_cdclk = g33_get_cdclk;
	else if (IS_I945GM(dev_priv))
		dev_priv->display.get_cdclk = i945gm_get_cdclk;
	else if (IS_I945G(dev_priv))
		dev_priv->display.get_cdclk = fixed_400mhz_get_cdclk;
	else if (IS_I915GM(dev_priv))
		dev_priv->display.get_cdclk = i915gm_get_cdclk;
	else if (IS_I915G(dev_priv))
		dev_priv->display.get_cdclk = fixed_333mhz_get_cdclk;
	else if (IS_I865G(dev_priv))
		dev_priv->display.get_cdclk = fixed_266mhz_get_cdclk;
	else if (IS_I85X(dev_priv))
		dev_priv->display.get_cdclk = i85x_get_cdclk;
	else if (IS_I845G(dev_priv))
		dev_priv->display.get_cdclk = fixed_200mhz_get_cdclk;
	else { /* 830 */
		WARN(!IS_I830(dev_priv),
		     "Unknown platform. Assuming 133 MHz CDCLK\n");
		dev_priv->display.get_cdclk = fixed_133mhz_get_cdclk;
	}
}