multipath.c 6.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
/*
 * Copyright (c) 2017 Christoph Hellwig.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 */

#include <linux/moduleparam.h>
#include "nvme.h"

static bool multipath = true;
module_param(multipath, bool, 0644);
MODULE_PARM_DESC(multipath,
	"turn on native support for multiple controllers per subsystem");

void nvme_failover_req(struct request *req)
{
	struct nvme_ns *ns = req->q->queuedata;
	unsigned long flags;

	spin_lock_irqsave(&ns->head->requeue_lock, flags);
	blk_steal_bios(&ns->head->requeue_list, req);
	spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
	blk_mq_end_request(req, 0);

	nvme_reset_ctrl(ns->ctrl);
	kblockd_schedule_work(&ns->head->requeue_work);
}

36
bool nvme_req_needs_failover(struct request *req, blk_status_t error)
37 38 39
{
	if (!(req->cmd_flags & REQ_NVME_MPATH))
		return false;
K
Keith Busch 已提交
40
	return blk_path_error(error);
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
}

void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns;

	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list) {
		if (ns->head->disk)
			kblockd_schedule_work(&ns->head->requeue_work);
	}
	mutex_unlock(&ctrl->namespaces_mutex);
}

static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head)
{
	struct nvme_ns *ns;

	list_for_each_entry_rcu(ns, &head->list, siblings) {
		if (ns->ctrl->state == NVME_CTRL_LIVE) {
			rcu_assign_pointer(head->current_path, ns);
			return ns;
		}
	}

	return NULL;
}

inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
{
	struct nvme_ns *ns = srcu_dereference(head->current_path, &head->srcu);

	if (unlikely(!ns || ns->ctrl->state != NVME_CTRL_LIVE))
		ns = __nvme_find_path(head);
	return ns;
}

static blk_qc_t nvme_ns_head_make_request(struct request_queue *q,
		struct bio *bio)
{
	struct nvme_ns_head *head = q->queuedata;
	struct device *dev = disk_to_dev(head->disk);
	struct nvme_ns *ns;
	blk_qc_t ret = BLK_QC_T_NONE;
	int srcu_idx;

	srcu_idx = srcu_read_lock(&head->srcu);
	ns = nvme_find_path(head);
	if (likely(ns)) {
		bio->bi_disk = ns->disk;
		bio->bi_opf |= REQ_NVME_MPATH;
		ret = direct_make_request(bio);
	} else if (!list_empty_careful(&head->list)) {
94
		dev_warn_ratelimited(dev, "no path available - requeuing I/O\n");
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164

		spin_lock_irq(&head->requeue_lock);
		bio_list_add(&head->requeue_list, bio);
		spin_unlock_irq(&head->requeue_lock);
	} else {
		dev_warn_ratelimited(dev, "no path - failing I/O\n");

		bio->bi_status = BLK_STS_IOERR;
		bio_endio(bio);
	}

	srcu_read_unlock(&head->srcu, srcu_idx);
	return ret;
}

static bool nvme_ns_head_poll(struct request_queue *q, blk_qc_t qc)
{
	struct nvme_ns_head *head = q->queuedata;
	struct nvme_ns *ns;
	bool found = false;
	int srcu_idx;

	srcu_idx = srcu_read_lock(&head->srcu);
	ns = srcu_dereference(head->current_path, &head->srcu);
	if (likely(ns && ns->ctrl->state == NVME_CTRL_LIVE))
		found = ns->queue->poll_fn(q, qc);
	srcu_read_unlock(&head->srcu, srcu_idx);
	return found;
}

static void nvme_requeue_work(struct work_struct *work)
{
	struct nvme_ns_head *head =
		container_of(work, struct nvme_ns_head, requeue_work);
	struct bio *bio, *next;

	spin_lock_irq(&head->requeue_lock);
	next = bio_list_get(&head->requeue_list);
	spin_unlock_irq(&head->requeue_lock);

	while ((bio = next) != NULL) {
		next = bio->bi_next;
		bio->bi_next = NULL;

		/*
		 * Reset disk to the mpath node and resubmit to select a new
		 * path.
		 */
		bio->bi_disk = head->disk;
		generic_make_request(bio);
	}
}

int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
{
	struct request_queue *q;
	bool vwc = false;

	bio_list_init(&head->requeue_list);
	spin_lock_init(&head->requeue_lock);
	INIT_WORK(&head->requeue_work, nvme_requeue_work);

	/*
	 * Add a multipath node if the subsystems supports multiple controllers.
	 * We also do this for private namespaces as the namespace sharing data could
	 * change after a rescan.
	 */
	if (!(ctrl->subsys->cmic & (1 << 1)) || !multipath)
		return 0;

165
	q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE, NULL);
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
	if (!q)
		goto out;
	q->queuedata = head;
	blk_queue_make_request(q, nvme_ns_head_make_request);
	q->poll_fn = nvme_ns_head_poll;
	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
	/* set to a default value for 512 until disk is validated */
	blk_queue_logical_block_size(q, 512);

	/* we need to propagate up the VMC settings */
	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
		vwc = true;
	blk_queue_write_cache(q, vwc, vwc);

	head->disk = alloc_disk(0);
	if (!head->disk)
		goto out_cleanup_queue;
	head->disk->fops = &nvme_ns_head_ops;
	head->disk->private_data = head;
	head->disk->queue = q;
	head->disk->flags = GENHD_FL_EXT_DEVT;
	sprintf(head->disk->disk_name, "nvme%dn%d",
			ctrl->subsys->instance, head->instance);
	return 0;

out_cleanup_queue:
	blk_cleanup_queue(q);
out:
	return -ENOMEM;
}

void nvme_mpath_add_disk(struct nvme_ns_head *head)
{
	if (!head->disk)
		return;
201 202 203 204 205 206 207 208 209 210

	mutex_lock(&head->subsys->lock);
	if (!(head->disk->flags & GENHD_FL_UP)) {
		device_add_disk(&head->subsys->dev, head->disk);
		if (sysfs_create_group(&disk_to_dev(head->disk)->kobj,
				&nvme_ns_id_attr_group))
			pr_warn("%s: failed to create sysfs group for identification\n",
				head->disk->disk_name);
	}
	mutex_unlock(&head->subsys->lock);
211 212
}

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
void nvme_mpath_add_disk_links(struct nvme_ns *ns)
{
	struct kobject *slave_disk_kobj, *holder_disk_kobj;

	if (!ns->head->disk)
		return;

	slave_disk_kobj = &disk_to_dev(ns->disk)->kobj;
	if (sysfs_create_link(ns->head->disk->slave_dir, slave_disk_kobj,
			kobject_name(slave_disk_kobj)))
		return;

	holder_disk_kobj = &disk_to_dev(ns->head->disk)->kobj;
	if (sysfs_create_link(ns->disk->part0.holder_dir, holder_disk_kobj,
			kobject_name(holder_disk_kobj)))
		sysfs_remove_link(ns->head->disk->slave_dir,
			kobject_name(slave_disk_kobj));
}

232 233 234 235
void nvme_mpath_remove_disk(struct nvme_ns_head *head)
{
	if (!head->disk)
		return;
236 237
	sysfs_remove_group(&disk_to_dev(head->disk)->kobj,
			   &nvme_ns_id_attr_group);
238 239 240 241 242 243 244 245
	del_gendisk(head->disk);
	blk_set_queue_dying(head->disk->queue);
	/* make sure all pending bios are cleaned up */
	kblockd_schedule_work(&head->requeue_work);
	flush_work(&head->requeue_work);
	blk_cleanup_queue(head->disk->queue);
	put_disk(head->disk);
}
246 247 248 249 250 251 252 253 254 255 256

void nvme_mpath_remove_disk_links(struct nvme_ns *ns)
{
	if (!ns->head->disk)
		return;

	sysfs_remove_link(ns->disk->part0.holder_dir,
			kobject_name(&disk_to_dev(ns->head->disk)->kobj));
	sysfs_remove_link(ns->head->disk->slave_dir,
			kobject_name(&disk_to_dev(ns->disk)->kobj));
}