modules.txt 15.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

In this document you will find information about:
- how to build external modules
- how to make your module use kbuild infrastructure
- how kbuild will install a kernel
- how to install modules in a non-standard location

=== Table of Contents

	=== 1 Introduction
	=== 2 How to build external modules
	   --- 2.1 Building external modules
	   --- 2.2 Available targets
	   --- 2.3 Available options
	   --- 2.4 Preparing the kernel tree for module build
	=== 3. Example commands
	=== 4. Creating a kbuild file for an external module
	=== 5. Include files
	   --- 5.1 How to include files from the kernel include dir
	   --- 5.2 External modules using an include/ dir
21
	   --- 5.3 External modules using several directories
L
Linus Torvalds 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
	=== 6. Module installation
	   --- 6.1 INSTALL_MOD_PATH
	   --- 6.2 INSTALL_MOD_DIR
	=== 7. Module versioning
	=== 8. Tips & Tricks
	   --- 8.1 Testing for CONFIG_FOO_BAR



=== 1. Introduction

kbuild includes functionality for building modules both
within the kernel source tree and outside the kernel source tree.
The latter is usually referred to as external modules and is used
both during development and for modules that are not planned to be
included in the kernel tree.

What is covered within this file is mainly information to authors
of modules. The author of an external modules should supply
a makefile that hides most of the complexity so one only has to type
42
'make' to build the module. A complete example will be present in
L
Linus Torvalds 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
chapter ¤. Creating a kbuild file for an external module".


=== 2. How to build external modules

kbuild offers functionality to build external modules, with the
prerequisite that there is a pre-built kernel available with full source.
A subset of the targets available when building the kernel is available
when building an external module.

--- 2.1 Building external modules

	Use the following command to build an external module:

		make -C <path-to-kernel> M=`pwd`

	For the running kernel use:
		make -C /lib/modules/`uname -r`/build M=`pwd`

	For the above command to succeed the kernel must have been built with
	modules enabled.

	To install the modules that were just built:

		make -C <path-to-kernel> M=`pwd` modules_install

	More complex examples later, the above should get you going.

--- 2.2 Available targets

73
	$KDIR refers to the path to the kernel source top-level directory
L
Linus Torvalds 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

	make -C $KDIR M=`pwd`
		Will build the module(s) located in current directory.
		All output files will be located in the same directory
		as the module source.
		No attempts are made to update the kernel source, and it is
		a precondition that a successful make has been executed
		for the kernel.

	make -C $KDIR M=`pwd` modules
		The modules target is implied when no target is given.
		Same functionality as if no target was specified.
		See description above.

	make -C $KDIR M=$PWD modules_install
		Install the external module(s).
		Installation default is in /lib/modules/<kernel-version>/extra,
91
		but may be prefixed with INSTALL_MOD_PATH - see separate chapter.
L
Linus Torvalds 已提交
92 93 94

	make -C $KDIR M=$PWD clean
		Remove all generated files for the module - the kernel
95
		source directory is not modified.
L
Linus Torvalds 已提交
96 97 98 99 100 101 102

	make -C $KDIR M=`pwd` help
		help will list the available target when building external
		modules.

--- 2.3 Available options:

103
	$KDIR refers to the path to the kernel source top-level directory
L
Linus Torvalds 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209

	make -C $KDIR
		Used to specify where to find the kernel source.
		'$KDIR' represent the directory where the kernel source is.
		Make will actually change directory to the specified directory
		when executed but change back when finished.

	make -C $KDIR M=`pwd`
		M= is used to tell kbuild that an external module is
		being built.
		The option given to M= is the directory where the external
		module (kbuild file) is located.
		When an external module is being built only a subset of the
		usual targets are available.

	make -C $KDIR SUBDIRS=`pwd`
		Same as M=. The SUBDIRS= syntax is kept for backwards
		compatibility.

--- 2.4 Preparing the kernel tree for module build

	To make sure the kernel contains the information required to
	build external modules the target 'modules_prepare' must be used.
	'module_prepare' solely exists as a simple way to prepare
	a kernel for building external modules.
	Note: modules_prepare will not build Module.symvers even if
	      CONFIG_MODULEVERSIONING is set.
	      Therefore a full kernel build needs to be executed to make
	      module versioning work.


=== 3. Example commands

This example shows the actual commands to be executed when building
an external module for the currently running kernel.
In the example below the distribution is supposed to use the
facility to locate output files for a kernel compile in a different
directory than the kernel source - but the examples will also work
when the source and the output files are mixed in the same directory.

# Kernel source
/lib/modules/<kernel-version>/source -> /usr/src/linux-<version>

# Output from kernel compile
/lib/modules/<kernel-version>/build -> /usr/src/linux-<version>-up

Change to the directory where the kbuild file is located and execute
the following commands to build the module:

	cd /home/user/src/module
	make -C /usr/src/`uname -r`/source            \
	        O=/lib/modules/`uname-r`/build        \
	        M=`pwd`

Then to install the module use the following command:

	make -C /usr/src/`uname -r`/source            \
	        O=/lib/modules/`uname-r`/build        \
	        M=`pwd`                               \
		modules_install

If one looks closely you will see that this is the same commands as
listed before - with the directories spelled out.

The above are rather long commands, and the following chapter
lists a few tricks to make it all easier.


=== 4. Creating a kbuild file for an external module

kbuild is the build system for the kernel, and external modules
must use kbuild to stay compatible with changes in the build system
and to pick up the right flags to gcc etc.

The kbuild file used as input shall follow the syntax described
in Documentation/kbuild/makefiles.txt. This chapter will introduce a few
more tricks to be used when dealing with external modules.

In the following a Makefile will be created for a module with the
following files:
	8123_if.c
	8123_if.h
	8123_pci.c
	8123_bin.o_shipped	<= Binary blob

--- 4.1 Shared Makefile for module and kernel

	An external module always includes a wrapper Makefile supporting
	building the module using 'make' with no arguments.
	The Makefile provided will most likely include additional
	functionality such as test targets etc. and this part shall
	be filtered away from kbuild since it may impact kbuild if
	name clashes occurs.

	Example 1:
		--> filename: Makefile
		ifneq ($(KERNELRELEASE),)
		# kbuild part of makefile
		obj-m  := 8123.o
		8123-y := 8123_if.o 8123_pci.o 8123_bin.o

		else
		# Normal Makefile

		KERNELDIR := /lib/modules/`uname -r`/build
		all::
210
			$(MAKE) -C $(KERNELDIR) M=`pwd` $@
L
Linus Torvalds 已提交
211 212 213

		# Module specific targets
		genbin:
214
			echo "X" > 8123_bin.o_shipped
L
Linus Torvalds 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344

		endif

	In example 1 the check for KERNELRELEASE is used to separate
	the two parts of the Makefile. kbuild will only see the two
	assignments whereas make will see everything except the two
	kbuild assignments.

	In recent versions of the kernel, kbuild will look for a file named
	Kbuild and as second option look for a file named Makefile.
	Utilising the Kbuild file makes us split up the Makefile in example 1
	into two files as shown in example 2:

	Example 2:
		--> filename: Kbuild
		obj-m  := 8123.o
		8123-y := 8123_if.o 8123_pci.o 8123_bin.o

		--> filename: Makefile
		KERNELDIR := /lib/modules/`uname -r`/build
		all::
			$(MAKE) -C $KERNELDIR M=`pwd` $@

		# Module specific targets
		genbin:
			echo "X" > 8123_bin_shipped


	In example 2 we are down to two fairly simple files and for simple
	files as used in this example the split is questionable. But some
	external modules use Makefiles of several hundred lines and here it
	really pays off to separate the kbuild part from the rest.
	Example 3 shows a backward compatible version.

	Example 3:
		--> filename: Kbuild
		obj-m  := 8123.o
		8123-y := 8123_if.o 8123_pci.o 8123_bin.o

		--> filename: Makefile
		ifneq ($(KERNELRELEASE),)
		include Kbuild
		else
		# Normal Makefile

		KERNELDIR := /lib/modules/`uname -r`/build
		all::
			$(MAKE) -C $KERNELDIR M=`pwd` $@

		# Module specific targets
		genbin:
			echo "X" > 8123_bin_shipped

		endif

		The trick here is to include the Kbuild file from Makefile so
		if an older version of kbuild picks up the Makefile the Kbuild
		file will be included.

--- 4.2 Binary blobs included in a module

	Some external modules needs to include a .o as a blob. kbuild
	has support for this, but requires the blob file to be named
	<filename>_shipped. In our example the blob is named
	8123_bin.o_shipped and when the kbuild rules kick in the file
	8123_bin.o is created as a simple copy off the 8213_bin.o_shipped file
	with the _shipped part stripped of the filename.
	This allows the 8123_bin.o filename to be used in the assignment to
	the module.

	Example 4:
		obj-m  := 8123.o
		8123-y := 8123_if.o 8123_pci.o 8123_bin.o

	In example 4 there is no distinction between the ordinary .c/.h files
	and the binary file. But kbuild will pick up different rules to create
	the .o file.


=== 5. Include files

Include files are a necessity when a .c file uses something from another .c
files (not strictly in the sense of .c but if good programming practice is
used). Any module that consist of more than one .c file will have a .h file
for one of the .c files. 
- If the .h file only describes a module internal interface then the .h file
  shall be placed in the same directory as the .c files.
- If the .h files describe an interface used by other parts of the kernel
  located in different directories, the .h files shall be located in
  include/linux/ or other include/ directories as appropriate.

One exception for this rule is larger subsystems that have their own directory
under include/ such as include/scsi. Another exception is arch-specific
.h files which are located under include/asm-$(ARCH)/*.

External modules have a tendency to locate include files in a separate include/
directory and therefore needs to deal with this in their kbuild file.

--- 5.1 How to include files from the kernel include dir

	When a module needs to include a file from include/linux/ then one
	just uses:

		#include <linux/modules.h>

	kbuild will make sure to add options to gcc so the relevant
	directories are searched.
	Likewise for .h files placed in the same directory as the .c file.

		#include "8123_if.h"

	will do the job.

--- 5.2 External modules using an include/ dir

	External modules often locate their .h files in a separate include/
	directory although this is not usual kernel style. When an external
	module uses an include/ dir then kbuild needs to be told so.
	The trick here is to use either EXTRA_CFLAGS (take effect for all .c
	files) or CFLAGS_$F.o (take effect only for a single file).

	In our example if we move 8123_if.h to a subdirectory named include/
	the resulting Kbuild file would look like:

		--> filename: Kbuild
		obj-m  := 8123.o

		EXTRA_CFLAGS := -Iinclude
		8123-y := 8123_if.o 8123_pci.o 8123_bin.o

345 346
	Note that in the assignment there is no space between -I and the path.
	This is a kbuild limitation:  there must be no space present.
L
Linus Torvalds 已提交
347

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
--- 5.3 External modules using several directories

	If an external module does not follow the usual kernel style but
	decide to spread files over several directories then kbuild can
	support this too.

	Consider the following example:
	
	|
	+- src/complex_main.c
	|   +- hal/hardwareif.c
	|   +- hal/include/hardwareif.h
	+- include/complex.h
	
	To build a single module named complex.ko we then need the following
	kbuild file:

	Kbuild:
		obj-m := complex.o
		complex-y := src/complex_main.o
		complex-y += src/hal/hardwareif.o

		EXTRA_CFLAGS := -I$(src)/include
		EXTRA_CFLAGS += -I$(src)src/hal/include


	kbuild knows how to handle .o files located in another directory -
	although this is NOT reccommended practice. The syntax is to specify
	the directory relative to the directory where the Kbuild file is
	located.

	To find the .h files we have to explicitly tell kbuild where to look
	for the .h files. When kbuild executes current directory is always
	the root of the kernel tree (argument to -C) and therefore we have to
	tell kbuild how to find the .h files using absolute paths.
	$(src) will specify the absolute path to the directory where the
	Kbuild file are located when being build as an external module.
	Therefore -I$(src)/ is used to point out the directory of the Kbuild
	file and any additional path are just appended.
L
Linus Torvalds 已提交
387 388 389

=== 6. Module installation

390
Modules which are included in the kernel are installed in the directory:
L
Linus Torvalds 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407

	/lib/modules/$(KERNELRELEASE)/kernel

External modules are installed in the directory:

	/lib/modules/$(KERNELRELEASE)/extra

--- 6.1 INSTALL_MOD_PATH

	Above are the default directories, but as always some level of
	customization is possible. One can prefix the path using the variable
	INSTALL_MOD_PATH:

		$ make INSTALL_MOD_PATH=/frodo modules_install
		=> Install dir: /frodo/lib/modules/$(KERNELRELEASE)/kernel

	INSTALL_MOD_PATH may be set as an ordinary shell variable or as in the
408
	example above be specified on the command line when calling make.
L
Linus Torvalds 已提交
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
	INSTALL_MOD_PATH has effect both when installing modules included in
	the kernel as well as when installing external modules.

--- 6.2 INSTALL_MOD_DIR

	When installing external modules they are default installed in a
	directory under /lib/modules/$(KERNELRELEASE)/extra, but one may wish
	to locate modules for a specific functionality in a separate
	directory. For this purpose one can use INSTALL_MOD_DIR to specify an
	alternative name than 'extra'.

		$ make INSTALL_MOD_DIR=gandalf -C KERNELDIR \
			M=`pwd` modules_install
		=> Install dir: /lib/modules/$(KERNELRELEASE)/gandalf


=== 7. Module versioning

427
Module versioning is enabled by the CONFIG_MODVERSIONS tag.
L
Linus Torvalds 已提交
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459

Module versioning is used as a simple ABI consistency check. The Module
versioning creates a CRC value of the full prototype for an exported symbol and
when a module is loaded/used then the CRC values contained in the kernel are
compared with similar values in the module. If they are not equal then the
kernel refuses to load the module.

During a kernel build a file named Module.symvers will be generated. This
file includes the symbol version of all symbols within the kernel. If the 
Module.symvers file is saved from the last full kernel compile one does not
have to do a full kernel compile to build a module version's compatible module.

=== 8. Tips & Tricks

--- 8.1 Testing for CONFIG_FOO_BAR

	Modules often needs to check for certain CONFIG_ options to decide if
	a specific feature shall be included in the module. When kbuild is used
	this is done by referencing the CONFIG_ variable directly.

		#fs/ext2/Makefile
		obj-$(CONFIG_EXT2_FS) += ext2.o

		ext2-y := balloc.o bitmap.o dir.o
		ext2-$(CONFIG_EXT2_FS_XATTR) += xattr.o

	External modules have traditionally used grep to check for specific
	CONFIG_ settings directly in .config. This usage is broken.
	As introduced before external modules shall use kbuild when building
	and therefore can use the same methods as in-kernel modules when testing
	for CONFIG_ definitions.