pm.c 30.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (c) 2018-2020, The Linux Foundation. All rights reserved.
 *
 */

#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dma-direction.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/mhi.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/wait.h>
#include "internal.h"

/*
 * Not all MHI state transitions are synchronous. Transitions like Linkdown,
 * SYS_ERR, and shutdown can happen anytime asynchronously. This function will
 * transition to a new state only if we're allowed to.
 *
 * Priority increases as we go down. For instance, from any state in L0, the
 * transition can be made to states in L1, L2 and L3. A notable exception to
 * this rule is state DISABLE.  From DISABLE state we can only transition to
 * POR state. Also, while in L2 state, user cannot jump back to previous
 * L1 or L0 states.
 *
 * Valid transitions:
 * L0: DISABLE <--> POR
 *     POR <--> POR
 *     POR -> M0 -> M2 --> M0
 *     POR -> FW_DL_ERR
 *     FW_DL_ERR <--> FW_DL_ERR
 *     M0 <--> M0
 *     M0 -> FW_DL_ERR
 *     M0 -> M3_ENTER -> M3 -> M3_EXIT --> M0
 * L1: SYS_ERR_DETECT -> SYS_ERR_PROCESS --> POR
 * L2: SHUTDOWN_PROCESS -> DISABLE
 * L3: LD_ERR_FATAL_DETECT <--> LD_ERR_FATAL_DETECT
 *     LD_ERR_FATAL_DETECT -> SHUTDOWN_PROCESS
 */
static struct mhi_pm_transitions const dev_state_transitions[] = {
	/* L0 States */
	{
		MHI_PM_DISABLE,
		MHI_PM_POR
	},
	{
		MHI_PM_POR,
		MHI_PM_POR | MHI_PM_DISABLE | MHI_PM_M0 |
		MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS |
		MHI_PM_LD_ERR_FATAL_DETECT | MHI_PM_FW_DL_ERR
	},
	{
		MHI_PM_M0,
		MHI_PM_M0 | MHI_PM_M2 | MHI_PM_M3_ENTER |
		MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS |
		MHI_PM_LD_ERR_FATAL_DETECT | MHI_PM_FW_DL_ERR
	},
	{
		MHI_PM_M2,
		MHI_PM_M0 | MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS |
		MHI_PM_LD_ERR_FATAL_DETECT
	},
	{
		MHI_PM_M3_ENTER,
		MHI_PM_M3 | MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS |
		MHI_PM_LD_ERR_FATAL_DETECT
	},
	{
		MHI_PM_M3,
		MHI_PM_M3_EXIT | MHI_PM_SYS_ERR_DETECT |
		MHI_PM_SHUTDOWN_PROCESS | MHI_PM_LD_ERR_FATAL_DETECT
	},
	{
		MHI_PM_M3_EXIT,
		MHI_PM_M0 | MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS |
		MHI_PM_LD_ERR_FATAL_DETECT
	},
	{
		MHI_PM_FW_DL_ERR,
		MHI_PM_FW_DL_ERR | MHI_PM_SYS_ERR_DETECT |
		MHI_PM_SHUTDOWN_PROCESS | MHI_PM_LD_ERR_FATAL_DETECT
	},
	/* L1 States */
	{
		MHI_PM_SYS_ERR_DETECT,
		MHI_PM_SYS_ERR_PROCESS | MHI_PM_SHUTDOWN_PROCESS |
		MHI_PM_LD_ERR_FATAL_DETECT
	},
	{
		MHI_PM_SYS_ERR_PROCESS,
		MHI_PM_POR | MHI_PM_SHUTDOWN_PROCESS |
		MHI_PM_LD_ERR_FATAL_DETECT
	},
	/* L2 States */
	{
		MHI_PM_SHUTDOWN_PROCESS,
		MHI_PM_DISABLE | MHI_PM_LD_ERR_FATAL_DETECT
	},
	/* L3 States */
	{
		MHI_PM_LD_ERR_FATAL_DETECT,
		MHI_PM_LD_ERR_FATAL_DETECT | MHI_PM_SHUTDOWN_PROCESS
	},
};

enum mhi_pm_state __must_check mhi_tryset_pm_state(struct mhi_controller *mhi_cntrl,
						   enum mhi_pm_state state)
{
	unsigned long cur_state = mhi_cntrl->pm_state;
	int index = find_last_bit(&cur_state, 32);

	if (unlikely(index >= ARRAY_SIZE(dev_state_transitions)))
		return cur_state;

	if (unlikely(dev_state_transitions[index].from_state != cur_state))
		return cur_state;

	if (unlikely(!(dev_state_transitions[index].to_states & state)))
		return cur_state;

	mhi_cntrl->pm_state = state;
	return mhi_cntrl->pm_state;
}

void mhi_set_mhi_state(struct mhi_controller *mhi_cntrl, enum mhi_state state)
{
	if (state == MHI_STATE_RESET) {
		mhi_write_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL,
				    MHICTRL_RESET_MASK, MHICTRL_RESET_SHIFT, 1);
	} else {
		mhi_write_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL,
				    MHICTRL_MHISTATE_MASK,
				    MHICTRL_MHISTATE_SHIFT, state);
	}
}

141 142 143 144 145 146 147 148 149 150 151
/* NOP for backward compatibility, host allowed to ring DB in M2 state */
static void mhi_toggle_dev_wake_nop(struct mhi_controller *mhi_cntrl)
{
}

static void mhi_toggle_dev_wake(struct mhi_controller *mhi_cntrl)
{
	mhi_cntrl->wake_get(mhi_cntrl, false);
	mhi_cntrl->wake_put(mhi_cntrl, true);
}

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
/* Handle device ready state transition */
int mhi_ready_state_transition(struct mhi_controller *mhi_cntrl)
{
	void __iomem *base = mhi_cntrl->regs;
	struct mhi_event *mhi_event;
	enum mhi_pm_state cur_state;
	struct device *dev = &mhi_cntrl->mhi_dev->dev;
	u32 reset = 1, ready = 0;
	int ret, i;

	/* Wait for RESET to be cleared and READY bit to be set by the device */
	wait_event_timeout(mhi_cntrl->state_event,
			   MHI_PM_IN_FATAL_STATE(mhi_cntrl->pm_state) ||
			   mhi_read_reg_field(mhi_cntrl, base, MHICTRL,
					      MHICTRL_RESET_MASK,
					      MHICTRL_RESET_SHIFT, &reset) ||
			   mhi_read_reg_field(mhi_cntrl, base, MHISTATUS,
					      MHISTATUS_READY_MASK,
					      MHISTATUS_READY_SHIFT, &ready) ||
			   (!reset && ready),
			   msecs_to_jiffies(mhi_cntrl->timeout_ms));

	/* Check if device entered error state */
	if (MHI_PM_IN_FATAL_STATE(mhi_cntrl->pm_state)) {
		dev_err(dev, "Device link is not accessible\n");
		return -EIO;
	}

	/* Timeout if device did not transition to ready state */
	if (reset || !ready) {
		dev_err(dev, "Device Ready timeout\n");
		return -ETIMEDOUT;
	}

	dev_dbg(dev, "Device in READY State\n");
	write_lock_irq(&mhi_cntrl->pm_lock);
	cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_POR);
	mhi_cntrl->dev_state = MHI_STATE_READY;
	write_unlock_irq(&mhi_cntrl->pm_lock);

	if (cur_state != MHI_PM_POR) {
		dev_err(dev, "Error moving to state %s from %s\n",
			to_mhi_pm_state_str(MHI_PM_POR),
			to_mhi_pm_state_str(cur_state));
		return -EIO;
	}

	read_lock_bh(&mhi_cntrl->pm_lock);
	if (!MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state)) {
		dev_err(dev, "Device registers not accessible\n");
		goto error_mmio;
	}

	/* Configure MMIO registers */
	ret = mhi_init_mmio(mhi_cntrl);
	if (ret) {
		dev_err(dev, "Error configuring MMIO registers\n");
		goto error_mmio;
	}

	/* Add elements to all SW event rings */
	mhi_event = mhi_cntrl->mhi_event;
	for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
		struct mhi_ring *ring = &mhi_event->ring;

		/* Skip if this is an offload or HW event */
		if (mhi_event->offload_ev || mhi_event->hw_ring)
			continue;

		ring->wp = ring->base + ring->len - ring->el_size;
		*ring->ctxt_wp = ring->iommu_base + ring->len - ring->el_size;
		/* Update all cores */
		smp_wmb();

		/* Ring the event ring db */
		spin_lock_irq(&mhi_event->lock);
		mhi_ring_er_db(mhi_event);
		spin_unlock_irq(&mhi_event->lock);
	}

	/* Set MHI to M0 state */
	mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M0);
	read_unlock_bh(&mhi_cntrl->pm_lock);

	return 0;

error_mmio:
	read_unlock_bh(&mhi_cntrl->pm_lock);

	return -EIO;
}

int mhi_pm_m0_transition(struct mhi_controller *mhi_cntrl)
{
	enum mhi_pm_state cur_state;
	struct mhi_chan *mhi_chan;
	struct device *dev = &mhi_cntrl->mhi_dev->dev;
	int i;

	write_lock_irq(&mhi_cntrl->pm_lock);
	mhi_cntrl->dev_state = MHI_STATE_M0;
	cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M0);
	write_unlock_irq(&mhi_cntrl->pm_lock);
	if (unlikely(cur_state != MHI_PM_M0)) {
		dev_err(dev, "Unable to transition to M0 state\n");
		return -EIO;
	}

	/* Wake up the device */
	read_lock_bh(&mhi_cntrl->pm_lock);
	mhi_cntrl->wake_get(mhi_cntrl, true);

	/* Ring all event rings and CMD ring only if we're in mission mode */
	if (MHI_IN_MISSION_MODE(mhi_cntrl->ee)) {
		struct mhi_event *mhi_event = mhi_cntrl->mhi_event;
		struct mhi_cmd *mhi_cmd =
			&mhi_cntrl->mhi_cmd[PRIMARY_CMD_RING];

		for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
			if (mhi_event->offload_ev)
				continue;

			spin_lock_irq(&mhi_event->lock);
			mhi_ring_er_db(mhi_event);
			spin_unlock_irq(&mhi_event->lock);
		}

		/* Only ring primary cmd ring if ring is not empty */
		spin_lock_irq(&mhi_cmd->lock);
		if (mhi_cmd->ring.rp != mhi_cmd->ring.wp)
			mhi_ring_cmd_db(mhi_cntrl, mhi_cmd);
		spin_unlock_irq(&mhi_cmd->lock);
	}

	/* Ring channel DB registers */
	mhi_chan = mhi_cntrl->mhi_chan;
	for (i = 0; i < mhi_cntrl->max_chan; i++, mhi_chan++) {
		struct mhi_ring *tre_ring = &mhi_chan->tre_ring;

		write_lock_irq(&mhi_chan->lock);
		if (mhi_chan->db_cfg.reset_req)
			mhi_chan->db_cfg.db_mode = true;

		/* Only ring DB if ring is not empty */
		if (tre_ring->base && tre_ring->wp  != tre_ring->rp)
			mhi_ring_chan_db(mhi_cntrl, mhi_chan);
		write_unlock_irq(&mhi_chan->lock);
	}

	mhi_cntrl->wake_put(mhi_cntrl, false);
	read_unlock_bh(&mhi_cntrl->pm_lock);
	wake_up_all(&mhi_cntrl->state_event);

	return 0;
}

/*
 * After receiving the MHI state change event from the device indicating the
 * transition to M1 state, the host can transition the device to M2 state
 * for keeping it in low power state.
 */
void mhi_pm_m1_transition(struct mhi_controller *mhi_cntrl)
{
	enum mhi_pm_state state;
	struct device *dev = &mhi_cntrl->mhi_dev->dev;

	write_lock_irq(&mhi_cntrl->pm_lock);
	state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M2);
	if (state == MHI_PM_M2) {
		mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M2);
		mhi_cntrl->dev_state = MHI_STATE_M2;

		write_unlock_irq(&mhi_cntrl->pm_lock);
		wake_up_all(&mhi_cntrl->state_event);

		/* If there are any pending resources, exit M2 immediately */
		if (unlikely(atomic_read(&mhi_cntrl->pending_pkts) ||
			     atomic_read(&mhi_cntrl->dev_wake))) {
			dev_dbg(dev,
				"Exiting M2, pending_pkts: %d dev_wake: %d\n",
				atomic_read(&mhi_cntrl->pending_pkts),
				atomic_read(&mhi_cntrl->dev_wake));
			read_lock_bh(&mhi_cntrl->pm_lock);
			mhi_cntrl->wake_get(mhi_cntrl, true);
			mhi_cntrl->wake_put(mhi_cntrl, true);
			read_unlock_bh(&mhi_cntrl->pm_lock);
		} else {
			mhi_cntrl->status_cb(mhi_cntrl, MHI_CB_IDLE);
		}
	} else {
		write_unlock_irq(&mhi_cntrl->pm_lock);
	}
}

/* MHI M3 completion handler */
int mhi_pm_m3_transition(struct mhi_controller *mhi_cntrl)
{
	enum mhi_pm_state state;
	struct device *dev = &mhi_cntrl->mhi_dev->dev;

	write_lock_irq(&mhi_cntrl->pm_lock);
	mhi_cntrl->dev_state = MHI_STATE_M3;
	state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M3);
	write_unlock_irq(&mhi_cntrl->pm_lock);
	if (state != MHI_PM_M3) {
		dev_err(dev, "Unable to transition to M3 state\n");
		return -EIO;
	}

	wake_up_all(&mhi_cntrl->state_event);

	return 0;
}

/* Handle device Mission Mode transition */
static int mhi_pm_mission_mode_transition(struct mhi_controller *mhi_cntrl)
{
	struct mhi_event *mhi_event;
	struct device *dev = &mhi_cntrl->mhi_dev->dev;
	int i, ret;

	dev_dbg(dev, "Processing Mission Mode transition\n");

	write_lock_irq(&mhi_cntrl->pm_lock);
	if (MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state))
		mhi_cntrl->ee = mhi_get_exec_env(mhi_cntrl);
	write_unlock_irq(&mhi_cntrl->pm_lock);

	if (!MHI_IN_MISSION_MODE(mhi_cntrl->ee))
		return -EIO;

	wake_up_all(&mhi_cntrl->state_event);

	mhi_cntrl->status_cb(mhi_cntrl, MHI_CB_EE_MISSION_MODE);

	/* Force MHI to be in M0 state before continuing */
	ret = __mhi_device_get_sync(mhi_cntrl);
	if (ret)
		return ret;

	read_lock_bh(&mhi_cntrl->pm_lock);

	if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
		ret = -EIO;
		goto error_mission_mode;
	}

	/* Add elements to all HW event rings */
	mhi_event = mhi_cntrl->mhi_event;
	for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
		struct mhi_ring *ring = &mhi_event->ring;

		if (mhi_event->offload_ev || !mhi_event->hw_ring)
			continue;

		ring->wp = ring->base + ring->len - ring->el_size;
		*ring->ctxt_wp = ring->iommu_base + ring->len - ring->el_size;
		/* Update to all cores */
		smp_wmb();

		spin_lock_irq(&mhi_event->lock);
		if (MHI_DB_ACCESS_VALID(mhi_cntrl))
			mhi_ring_er_db(mhi_event);
		spin_unlock_irq(&mhi_event->lock);
	}

	read_unlock_bh(&mhi_cntrl->pm_lock);

	/*
	 * The MHI devices are only created when the client device switches its
	 * Execution Environment (EE) to either SBL or AMSS states
	 */
	mhi_create_devices(mhi_cntrl);

	read_lock_bh(&mhi_cntrl->pm_lock);

error_mission_mode:
	mhi_cntrl->wake_put(mhi_cntrl, false);
	read_unlock_bh(&mhi_cntrl->pm_lock);

	return ret;
}

/* Handle SYS_ERR and Shutdown transitions */
static void mhi_pm_disable_transition(struct mhi_controller *mhi_cntrl,
				      enum mhi_pm_state transition_state)
{
	enum mhi_pm_state cur_state, prev_state;
	struct mhi_event *mhi_event;
	struct mhi_cmd_ctxt *cmd_ctxt;
	struct mhi_cmd *mhi_cmd;
	struct mhi_event_ctxt *er_ctxt;
	struct device *dev = &mhi_cntrl->mhi_dev->dev;
	int ret, i;

	dev_dbg(dev, "Transitioning from PM state: %s to: %s\n",
		to_mhi_pm_state_str(mhi_cntrl->pm_state),
		to_mhi_pm_state_str(transition_state));

	/* We must notify MHI control driver so it can clean up first */
452
	if (transition_state == MHI_PM_SYS_ERR_PROCESS)
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
		mhi_cntrl->status_cb(mhi_cntrl, MHI_CB_SYS_ERROR);

	mutex_lock(&mhi_cntrl->pm_mutex);
	write_lock_irq(&mhi_cntrl->pm_lock);
	prev_state = mhi_cntrl->pm_state;
	cur_state = mhi_tryset_pm_state(mhi_cntrl, transition_state);
	if (cur_state == transition_state) {
		mhi_cntrl->ee = MHI_EE_DISABLE_TRANSITION;
		mhi_cntrl->dev_state = MHI_STATE_RESET;
	}
	write_unlock_irq(&mhi_cntrl->pm_lock);

	/* Wake up threads waiting for state transition */
	wake_up_all(&mhi_cntrl->state_event);

	if (cur_state != transition_state) {
		dev_err(dev, "Failed to transition to state: %s from: %s\n",
			to_mhi_pm_state_str(transition_state),
			to_mhi_pm_state_str(cur_state));
		mutex_unlock(&mhi_cntrl->pm_mutex);
		return;
	}

	/* Trigger MHI RESET so that the device will not access host memory */
	if (MHI_REG_ACCESS_VALID(prev_state)) {
		u32 in_reset = -1;
		unsigned long timeout = msecs_to_jiffies(mhi_cntrl->timeout_ms);

		dev_dbg(dev, "Triggering MHI Reset in device\n");
		mhi_set_mhi_state(mhi_cntrl, MHI_STATE_RESET);

		/* Wait for the reset bit to be cleared by the device */
		ret = wait_event_timeout(mhi_cntrl->state_event,
					 mhi_read_reg_field(mhi_cntrl,
							    mhi_cntrl->regs,
							    MHICTRL,
							    MHICTRL_RESET_MASK,
							    MHICTRL_RESET_SHIFT,
							    &in_reset) ||
					!in_reset, timeout);
		if ((!ret || in_reset) && cur_state == MHI_PM_SYS_ERR_PROCESS) {
			dev_err(dev, "Device failed to exit MHI Reset state\n");
			mutex_unlock(&mhi_cntrl->pm_mutex);
			return;
		}

		/*
		 * Device will clear BHI_INTVEC as a part of RESET processing,
		 * hence re-program it
		 */
		mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 0);
	}

	dev_dbg(dev,
		 "Waiting for all pending event ring processing to complete\n");
	mhi_event = mhi_cntrl->mhi_event;
	for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
		if (mhi_event->offload_ev)
			continue;
		tasklet_kill(&mhi_event->task);
	}

	/* Release lock and wait for all pending threads to complete */
	mutex_unlock(&mhi_cntrl->pm_mutex);
	dev_dbg(dev, "Waiting for all pending threads to complete\n");
	wake_up_all(&mhi_cntrl->state_event);

	dev_dbg(dev, "Reset all active channels and remove MHI devices\n");
	device_for_each_child(mhi_cntrl->cntrl_dev, NULL, mhi_destroy_device);

	mutex_lock(&mhi_cntrl->pm_mutex);

	WARN_ON(atomic_read(&mhi_cntrl->dev_wake));
	WARN_ON(atomic_read(&mhi_cntrl->pending_pkts));

	/* Reset the ev rings and cmd rings */
	dev_dbg(dev, "Resetting EV CTXT and CMD CTXT\n");
	mhi_cmd = mhi_cntrl->mhi_cmd;
	cmd_ctxt = mhi_cntrl->mhi_ctxt->cmd_ctxt;
	for (i = 0; i < NR_OF_CMD_RINGS; i++, mhi_cmd++, cmd_ctxt++) {
		struct mhi_ring *ring = &mhi_cmd->ring;

		ring->rp = ring->base;
		ring->wp = ring->base;
		cmd_ctxt->rp = cmd_ctxt->rbase;
		cmd_ctxt->wp = cmd_ctxt->rbase;
	}

	mhi_event = mhi_cntrl->mhi_event;
	er_ctxt = mhi_cntrl->mhi_ctxt->er_ctxt;
	for (i = 0; i < mhi_cntrl->total_ev_rings; i++, er_ctxt++,
		     mhi_event++) {
		struct mhi_ring *ring = &mhi_event->ring;

		/* Skip offload events */
		if (mhi_event->offload_ev)
			continue;

		ring->rp = ring->base;
		ring->wp = ring->base;
		er_ctxt->rp = er_ctxt->rbase;
		er_ctxt->wp = er_ctxt->rbase;
	}

	if (cur_state == MHI_PM_SYS_ERR_PROCESS) {
		mhi_ready_state_transition(mhi_cntrl);
	} else {
		/* Move to disable state */
		write_lock_irq(&mhi_cntrl->pm_lock);
		cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_DISABLE);
		write_unlock_irq(&mhi_cntrl->pm_lock);
		if (unlikely(cur_state != MHI_PM_DISABLE))
			dev_err(dev, "Error moving from PM state: %s to: %s\n",
				to_mhi_pm_state_str(cur_state),
				to_mhi_pm_state_str(MHI_PM_DISABLE));
	}

	dev_dbg(dev, "Exiting with PM state: %s, MHI state: %s\n",
		to_mhi_pm_state_str(mhi_cntrl->pm_state),
		TO_MHI_STATE_STR(mhi_cntrl->dev_state));

	mutex_unlock(&mhi_cntrl->pm_mutex);
}

/* Queue a new work item and schedule work */
int mhi_queue_state_transition(struct mhi_controller *mhi_cntrl,
			       enum dev_st_transition state)
{
	struct state_transition *item = kmalloc(sizeof(*item), GFP_ATOMIC);
	unsigned long flags;

	if (!item)
		return -ENOMEM;

	item->state = state;
	spin_lock_irqsave(&mhi_cntrl->transition_lock, flags);
	list_add_tail(&item->node, &mhi_cntrl->transition_list);
	spin_unlock_irqrestore(&mhi_cntrl->transition_lock, flags);

	schedule_work(&mhi_cntrl->st_worker);

	return 0;
}

/* SYS_ERR worker */
598
void mhi_pm_sys_err_handler(struct mhi_controller *mhi_cntrl)
599
{
600 601 602 603 604 605 606
	struct device *dev = &mhi_cntrl->mhi_dev->dev;

	/* skip if controller supports RDDM */
	if (mhi_cntrl->rddm_image) {
		dev_dbg(dev, "Controller supports RDDM, skip SYS_ERROR\n");
		return;
	}
607

608
	mhi_queue_state_transition(mhi_cntrl, DEV_ST_TRANSITION_SYS_ERR);
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
}

/* Device State Transition worker */
void mhi_pm_st_worker(struct work_struct *work)
{
	struct state_transition *itr, *tmp;
	LIST_HEAD(head);
	struct mhi_controller *mhi_cntrl = container_of(work,
							struct mhi_controller,
							st_worker);
	struct device *dev = &mhi_cntrl->mhi_dev->dev;

	spin_lock_irq(&mhi_cntrl->transition_lock);
	list_splice_tail_init(&mhi_cntrl->transition_list, &head);
	spin_unlock_irq(&mhi_cntrl->transition_lock);

	list_for_each_entry_safe(itr, tmp, &head, node) {
		list_del(&itr->node);
		dev_dbg(dev, "Handling state transition: %s\n",
			TO_DEV_STATE_TRANS_STR(itr->state));

		switch (itr->state) {
		case DEV_ST_TRANSITION_PBL:
			write_lock_irq(&mhi_cntrl->pm_lock);
			if (MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state))
				mhi_cntrl->ee = mhi_get_exec_env(mhi_cntrl);
			write_unlock_irq(&mhi_cntrl->pm_lock);
			if (MHI_IN_PBL(mhi_cntrl->ee))
637
				mhi_fw_load_handler(mhi_cntrl);
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
			break;
		case DEV_ST_TRANSITION_SBL:
			write_lock_irq(&mhi_cntrl->pm_lock);
			mhi_cntrl->ee = MHI_EE_SBL;
			write_unlock_irq(&mhi_cntrl->pm_lock);
			/*
			 * The MHI devices are only created when the client
			 * device switches its Execution Environment (EE) to
			 * either SBL or AMSS states
			 */
			mhi_create_devices(mhi_cntrl);
			break;
		case DEV_ST_TRANSITION_MISSION_MODE:
			mhi_pm_mission_mode_transition(mhi_cntrl);
			break;
		case DEV_ST_TRANSITION_READY:
			mhi_ready_state_transition(mhi_cntrl);
			break;
656 657 658 659
		case DEV_ST_TRANSITION_SYS_ERR:
			mhi_pm_disable_transition
				(mhi_cntrl, MHI_PM_SYS_ERR_PROCESS);
			break;
660 661 662 663 664 665 666
		default:
			break;
		}
		kfree(itr);
	}
}

667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
int mhi_pm_suspend(struct mhi_controller *mhi_cntrl)
{
	struct mhi_chan *itr, *tmp;
	struct device *dev = &mhi_cntrl->mhi_dev->dev;
	enum mhi_pm_state new_state;
	int ret;

	if (mhi_cntrl->pm_state == MHI_PM_DISABLE)
		return -EINVAL;

	if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state))
		return -EIO;

	/* Return busy if there are any pending resources */
	if (atomic_read(&mhi_cntrl->dev_wake))
		return -EBUSY;

	/* Take MHI out of M2 state */
	read_lock_bh(&mhi_cntrl->pm_lock);
	mhi_cntrl->wake_get(mhi_cntrl, false);
	read_unlock_bh(&mhi_cntrl->pm_lock);

	ret = wait_event_timeout(mhi_cntrl->state_event,
				 mhi_cntrl->dev_state == MHI_STATE_M0 ||
				 mhi_cntrl->dev_state == MHI_STATE_M1 ||
				 MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state),
				 msecs_to_jiffies(mhi_cntrl->timeout_ms));

	read_lock_bh(&mhi_cntrl->pm_lock);
	mhi_cntrl->wake_put(mhi_cntrl, false);
	read_unlock_bh(&mhi_cntrl->pm_lock);

	if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
		dev_err(dev,
			"Could not enter M0/M1 state");
		return -EIO;
	}

	write_lock_irq(&mhi_cntrl->pm_lock);

	if (atomic_read(&mhi_cntrl->dev_wake)) {
		write_unlock_irq(&mhi_cntrl->pm_lock);
		return -EBUSY;
	}

	dev_info(dev, "Allowing M3 transition\n");
	new_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M3_ENTER);
	if (new_state != MHI_PM_M3_ENTER) {
		write_unlock_irq(&mhi_cntrl->pm_lock);
		dev_err(dev,
			"Error setting to PM state: %s from: %s\n",
			to_mhi_pm_state_str(MHI_PM_M3_ENTER),
			to_mhi_pm_state_str(mhi_cntrl->pm_state));
		return -EIO;
	}

	/* Set MHI to M3 and wait for completion */
	mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M3);
	write_unlock_irq(&mhi_cntrl->pm_lock);
	dev_info(dev, "Wait for M3 completion\n");

	ret = wait_event_timeout(mhi_cntrl->state_event,
				 mhi_cntrl->dev_state == MHI_STATE_M3 ||
				 MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state),
				 msecs_to_jiffies(mhi_cntrl->timeout_ms));

	if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
		dev_err(dev,
			"Did not enter M3 state, MHI state: %s, PM state: %s\n",
			TO_MHI_STATE_STR(mhi_cntrl->dev_state),
			to_mhi_pm_state_str(mhi_cntrl->pm_state));
		return -EIO;
	}

	/* Notify clients about entering LPM */
	list_for_each_entry_safe(itr, tmp, &mhi_cntrl->lpm_chans, node) {
		mutex_lock(&itr->mutex);
		if (itr->mhi_dev)
			mhi_notify(itr->mhi_dev, MHI_CB_LPM_ENTER);
		mutex_unlock(&itr->mutex);
	}

	return 0;
}
EXPORT_SYMBOL_GPL(mhi_pm_suspend);

int mhi_pm_resume(struct mhi_controller *mhi_cntrl)
{
	struct mhi_chan *itr, *tmp;
	struct device *dev = &mhi_cntrl->mhi_dev->dev;
	enum mhi_pm_state cur_state;
	int ret;

	dev_info(dev, "Entered with PM state: %s, MHI state: %s\n",
		 to_mhi_pm_state_str(mhi_cntrl->pm_state),
		 TO_MHI_STATE_STR(mhi_cntrl->dev_state));

	if (mhi_cntrl->pm_state == MHI_PM_DISABLE)
		return 0;

	if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state))
		return -EIO;

	/* Notify clients about exiting LPM */
	list_for_each_entry_safe(itr, tmp, &mhi_cntrl->lpm_chans, node) {
		mutex_lock(&itr->mutex);
		if (itr->mhi_dev)
			mhi_notify(itr->mhi_dev, MHI_CB_LPM_EXIT);
		mutex_unlock(&itr->mutex);
	}

	write_lock_irq(&mhi_cntrl->pm_lock);
	cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M3_EXIT);
	if (cur_state != MHI_PM_M3_EXIT) {
		write_unlock_irq(&mhi_cntrl->pm_lock);
		dev_info(dev,
			 "Error setting to PM state: %s from: %s\n",
			 to_mhi_pm_state_str(MHI_PM_M3_EXIT),
			 to_mhi_pm_state_str(mhi_cntrl->pm_state));
		return -EIO;
	}

	/* Set MHI to M0 and wait for completion */
	mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M0);
	write_unlock_irq(&mhi_cntrl->pm_lock);

	ret = wait_event_timeout(mhi_cntrl->state_event,
				 mhi_cntrl->dev_state == MHI_STATE_M0 ||
				 MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state),
				 msecs_to_jiffies(mhi_cntrl->timeout_ms));

	if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
		dev_err(dev,
			"Did not enter M0 state, MHI state: %s, PM state: %s\n",
			TO_MHI_STATE_STR(mhi_cntrl->dev_state),
			to_mhi_pm_state_str(mhi_cntrl->pm_state));
		return -EIO;
	}

	return 0;
}
EXPORT_SYMBOL_GPL(mhi_pm_resume);

810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
int __mhi_device_get_sync(struct mhi_controller *mhi_cntrl)
{
	int ret;

	/* Wake up the device */
	read_lock_bh(&mhi_cntrl->pm_lock);
	mhi_cntrl->wake_get(mhi_cntrl, true);
	if (MHI_PM_IN_SUSPEND_STATE(mhi_cntrl->pm_state)) {
		pm_wakeup_event(&mhi_cntrl->mhi_dev->dev, 0);
		mhi_cntrl->runtime_get(mhi_cntrl);
		mhi_cntrl->runtime_put(mhi_cntrl);
	}
	read_unlock_bh(&mhi_cntrl->pm_lock);

	ret = wait_event_timeout(mhi_cntrl->state_event,
				 mhi_cntrl->pm_state == MHI_PM_M0 ||
				 MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state),
				 msecs_to_jiffies(mhi_cntrl->timeout_ms));

	if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
		read_lock_bh(&mhi_cntrl->pm_lock);
		mhi_cntrl->wake_put(mhi_cntrl, false);
		read_unlock_bh(&mhi_cntrl->pm_lock);
		return -EIO;
	}

	return 0;
}
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039

/* Assert device wake db */
static void mhi_assert_dev_wake(struct mhi_controller *mhi_cntrl, bool force)
{
	unsigned long flags;

	/*
	 * If force flag is set, then increment the wake count value and
	 * ring wake db
	 */
	if (unlikely(force)) {
		spin_lock_irqsave(&mhi_cntrl->wlock, flags);
		atomic_inc(&mhi_cntrl->dev_wake);
		if (MHI_WAKE_DB_FORCE_SET_VALID(mhi_cntrl->pm_state) &&
		    !mhi_cntrl->wake_set) {
			mhi_write_db(mhi_cntrl, mhi_cntrl->wake_db, 1);
			mhi_cntrl->wake_set = true;
		}
		spin_unlock_irqrestore(&mhi_cntrl->wlock, flags);
	} else {
		/*
		 * If resources are already requested, then just increment
		 * the wake count value and return
		 */
		if (likely(atomic_add_unless(&mhi_cntrl->dev_wake, 1, 0)))
			return;

		spin_lock_irqsave(&mhi_cntrl->wlock, flags);
		if ((atomic_inc_return(&mhi_cntrl->dev_wake) == 1) &&
		    MHI_WAKE_DB_SET_VALID(mhi_cntrl->pm_state) &&
		    !mhi_cntrl->wake_set) {
			mhi_write_db(mhi_cntrl, mhi_cntrl->wake_db, 1);
			mhi_cntrl->wake_set = true;
		}
		spin_unlock_irqrestore(&mhi_cntrl->wlock, flags);
	}
}

/* De-assert device wake db */
static void mhi_deassert_dev_wake(struct mhi_controller *mhi_cntrl,
				  bool override)
{
	unsigned long flags;

	/*
	 * Only continue if there is a single resource, else just decrement
	 * and return
	 */
	if (likely(atomic_add_unless(&mhi_cntrl->dev_wake, -1, 1)))
		return;

	spin_lock_irqsave(&mhi_cntrl->wlock, flags);
	if ((atomic_dec_return(&mhi_cntrl->dev_wake) == 0) &&
	    MHI_WAKE_DB_CLEAR_VALID(mhi_cntrl->pm_state) && !override &&
	    mhi_cntrl->wake_set) {
		mhi_write_db(mhi_cntrl, mhi_cntrl->wake_db, 0);
		mhi_cntrl->wake_set = false;
	}
	spin_unlock_irqrestore(&mhi_cntrl->wlock, flags);
}

int mhi_async_power_up(struct mhi_controller *mhi_cntrl)
{
	enum mhi_ee_type current_ee;
	enum dev_st_transition next_state;
	struct device *dev = &mhi_cntrl->mhi_dev->dev;
	u32 val;
	int ret;

	dev_info(dev, "Requested to power ON\n");

	if (mhi_cntrl->nr_irqs < mhi_cntrl->total_ev_rings)
		return -EINVAL;

	/* Supply default wake routines if not provided by controller driver */
	if (!mhi_cntrl->wake_get || !mhi_cntrl->wake_put ||
	    !mhi_cntrl->wake_toggle) {
		mhi_cntrl->wake_get = mhi_assert_dev_wake;
		mhi_cntrl->wake_put = mhi_deassert_dev_wake;
		mhi_cntrl->wake_toggle = (mhi_cntrl->db_access & MHI_PM_M2) ?
			mhi_toggle_dev_wake_nop : mhi_toggle_dev_wake;
	}

	mutex_lock(&mhi_cntrl->pm_mutex);
	mhi_cntrl->pm_state = MHI_PM_DISABLE;

	if (!mhi_cntrl->pre_init) {
		/* Setup device context */
		ret = mhi_init_dev_ctxt(mhi_cntrl);
		if (ret)
			goto error_dev_ctxt;
	}

	ret = mhi_init_irq_setup(mhi_cntrl);
	if (ret)
		goto error_setup_irq;

	/* Setup BHI offset & INTVEC */
	write_lock_irq(&mhi_cntrl->pm_lock);
	ret = mhi_read_reg(mhi_cntrl, mhi_cntrl->regs, BHIOFF, &val);
	if (ret) {
		write_unlock_irq(&mhi_cntrl->pm_lock);
		goto error_bhi_offset;
	}

	mhi_cntrl->bhi = mhi_cntrl->regs + val;

	/* Setup BHIE offset */
	if (mhi_cntrl->fbc_download) {
		ret = mhi_read_reg(mhi_cntrl, mhi_cntrl->regs, BHIEOFF, &val);
		if (ret) {
			write_unlock_irq(&mhi_cntrl->pm_lock);
			dev_err(dev, "Error reading BHIE offset\n");
			goto error_bhi_offset;
		}

		mhi_cntrl->bhie = mhi_cntrl->regs + val;
	}

	mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 0);
	mhi_cntrl->pm_state = MHI_PM_POR;
	mhi_cntrl->ee = MHI_EE_MAX;
	current_ee = mhi_get_exec_env(mhi_cntrl);
	write_unlock_irq(&mhi_cntrl->pm_lock);

	/* Confirm that the device is in valid exec env */
	if (!MHI_IN_PBL(current_ee) && current_ee != MHI_EE_AMSS) {
		dev_err(dev, "Not a valid EE for power on\n");
		ret = -EIO;
		goto error_bhi_offset;
	}

	/* Transition to next state */
	next_state = MHI_IN_PBL(current_ee) ?
		DEV_ST_TRANSITION_PBL : DEV_ST_TRANSITION_READY;

	mhi_queue_state_transition(mhi_cntrl, next_state);

	mutex_unlock(&mhi_cntrl->pm_mutex);

	dev_info(dev, "Power on setup success\n");

	return 0;

error_bhi_offset:
	mhi_deinit_free_irq(mhi_cntrl);

error_setup_irq:
	if (!mhi_cntrl->pre_init)
		mhi_deinit_dev_ctxt(mhi_cntrl);

error_dev_ctxt:
	mutex_unlock(&mhi_cntrl->pm_mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(mhi_async_power_up);

void mhi_power_down(struct mhi_controller *mhi_cntrl, bool graceful)
{
	enum mhi_pm_state cur_state;
	struct device *dev = &mhi_cntrl->mhi_dev->dev;

	/* If it's not a graceful shutdown, force MHI to linkdown state */
	if (!graceful) {
		mutex_lock(&mhi_cntrl->pm_mutex);
		write_lock_irq(&mhi_cntrl->pm_lock);
		cur_state = mhi_tryset_pm_state(mhi_cntrl,
						MHI_PM_LD_ERR_FATAL_DETECT);
		write_unlock_irq(&mhi_cntrl->pm_lock);
		mutex_unlock(&mhi_cntrl->pm_mutex);
		if (cur_state != MHI_PM_LD_ERR_FATAL_DETECT)
			dev_dbg(dev, "Failed to move to state: %s from: %s\n",
				to_mhi_pm_state_str(MHI_PM_LD_ERR_FATAL_DETECT),
				to_mhi_pm_state_str(mhi_cntrl->pm_state));
	}
	mhi_pm_disable_transition(mhi_cntrl, MHI_PM_SHUTDOWN_PROCESS);
	mhi_deinit_free_irq(mhi_cntrl);

	if (!mhi_cntrl->pre_init) {
		/* Free all allocated resources */
		if (mhi_cntrl->fbc_image) {
			mhi_free_bhie_table(mhi_cntrl, mhi_cntrl->fbc_image);
			mhi_cntrl->fbc_image = NULL;
		}
		mhi_deinit_dev_ctxt(mhi_cntrl);
	}
}
EXPORT_SYMBOL_GPL(mhi_power_down);

int mhi_sync_power_up(struct mhi_controller *mhi_cntrl)
{
	int ret = mhi_async_power_up(mhi_cntrl);

	if (ret)
		return ret;

	wait_event_timeout(mhi_cntrl->state_event,
			   MHI_IN_MISSION_MODE(mhi_cntrl->ee) ||
			   MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state),
			   msecs_to_jiffies(mhi_cntrl->timeout_ms));

1040 1041 1042 1043 1044
	ret = (MHI_IN_MISSION_MODE(mhi_cntrl->ee)) ? 0 : -ETIMEDOUT;
	if (ret)
		mhi_power_down(mhi_cntrl, false);

	return ret;
1045 1046
}
EXPORT_SYMBOL(mhi_sync_power_up);
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068

int mhi_force_rddm_mode(struct mhi_controller *mhi_cntrl)
{
	struct device *dev = &mhi_cntrl->mhi_dev->dev;
	int ret;

	/* Check if device is already in RDDM */
	if (mhi_cntrl->ee == MHI_EE_RDDM)
		return 0;

	dev_dbg(dev, "Triggering SYS_ERR to force RDDM state\n");
	mhi_set_mhi_state(mhi_cntrl, MHI_STATE_SYS_ERR);

	/* Wait for RDDM event */
	ret = wait_event_timeout(mhi_cntrl->state_event,
				 mhi_cntrl->ee == MHI_EE_RDDM,
				 msecs_to_jiffies(mhi_cntrl->timeout_ms));
	ret = ret ? 0 : -EIO;

	return ret;
}
EXPORT_SYMBOL_GPL(mhi_force_rddm_mode);
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108

void mhi_device_get(struct mhi_device *mhi_dev)
{
	struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl;

	mhi_dev->dev_wake++;
	read_lock_bh(&mhi_cntrl->pm_lock);
	mhi_cntrl->wake_get(mhi_cntrl, true);
	read_unlock_bh(&mhi_cntrl->pm_lock);
}
EXPORT_SYMBOL_GPL(mhi_device_get);

int mhi_device_get_sync(struct mhi_device *mhi_dev)
{
	struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl;
	int ret;

	ret = __mhi_device_get_sync(mhi_cntrl);
	if (!ret)
		mhi_dev->dev_wake++;

	return ret;
}
EXPORT_SYMBOL_GPL(mhi_device_get_sync);

void mhi_device_put(struct mhi_device *mhi_dev)
{
	struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl;

	mhi_dev->dev_wake--;
	read_lock_bh(&mhi_cntrl->pm_lock);
	if (MHI_PM_IN_SUSPEND_STATE(mhi_cntrl->pm_state)) {
		mhi_cntrl->runtime_get(mhi_cntrl);
		mhi_cntrl->runtime_put(mhi_cntrl);
	}

	mhi_cntrl->wake_put(mhi_cntrl, false);
	read_unlock_bh(&mhi_cntrl->pm_lock);
}
EXPORT_SYMBOL_GPL(mhi_device_put);