vgic.c 22.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2015, 2016 ARM Ltd.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <linux/kvm.h>
#include <linux/kvm_host.h>
19
#include <linux/list_sort.h>
20 21
#include <linux/interrupt.h>
#include <linux/irq.h>
22 23 24

#include "vgic.h"

25
#define CREATE_TRACE_POINTS
26
#include "trace.h"
27 28 29 30 31 32 33

#ifdef CONFIG_DEBUG_SPINLOCK
#define DEBUG_SPINLOCK_BUG_ON(p) BUG_ON(p)
#else
#define DEBUG_SPINLOCK_BUG_ON(p)
#endif

34 35 36
struct vgic_global kvm_vgic_global_state __ro_after_init = {
	.gicv3_cpuif = STATIC_KEY_FALSE_INIT,
};
37

38 39
/*
 * Locking order is always:
40 41 42 43 44 45
 * kvm->lock (mutex)
 *   its->cmd_lock (mutex)
 *     its->its_lock (mutex)
 *       vgic_cpu->ap_list_lock
 *         kvm->lpi_list_lock
 *           vgic_irq->irq_lock
46
 *
47 48 49 50 51
 * If you need to take multiple locks, always take the upper lock first,
 * then the lower ones, e.g. first take the its_lock, then the irq_lock.
 * If you are already holding a lock and need to take a higher one, you
 * have to drop the lower ranking lock first and re-aquire it after having
 * taken the upper one.
52 53 54 55 56 57
 *
 * When taking more than one ap_list_lock at the same time, always take the
 * lowest numbered VCPU's ap_list_lock first, so:
 *   vcpuX->vcpu_id < vcpuY->vcpu_id:
 *     spin_lock(vcpuX->arch.vgic_cpu.ap_list_lock);
 *     spin_lock(vcpuY->arch.vgic_cpu.ap_list_lock);
58 59 60 61
 *
 * Since the VGIC must support injecting virtual interrupts from ISRs, we have
 * to use the spin_lock_irqsave/spin_unlock_irqrestore versions of outer
 * spinlocks for any lock that may be taken while injecting an interrupt.
62 63
 */

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
/*
 * Iterate over the VM's list of mapped LPIs to find the one with a
 * matching interrupt ID and return a reference to the IRQ structure.
 */
static struct vgic_irq *vgic_get_lpi(struct kvm *kvm, u32 intid)
{
	struct vgic_dist *dist = &kvm->arch.vgic;
	struct vgic_irq *irq = NULL;

	spin_lock(&dist->lpi_list_lock);

	list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
		if (irq->intid != intid)
			continue;

		/*
		 * This increases the refcount, the caller is expected to
		 * call vgic_put_irq() later once it's finished with the IRQ.
		 */
83
		vgic_get_irq_kref(irq);
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
		goto out_unlock;
	}
	irq = NULL;

out_unlock:
	spin_unlock(&dist->lpi_list_lock);

	return irq;
}

/*
 * This looks up the virtual interrupt ID to get the corresponding
 * struct vgic_irq. It also increases the refcount, so any caller is expected
 * to call vgic_put_irq() once it's finished with this IRQ.
 */
99 100 101 102 103 104 105 106 107 108 109
struct vgic_irq *vgic_get_irq(struct kvm *kvm, struct kvm_vcpu *vcpu,
			      u32 intid)
{
	/* SGIs and PPIs */
	if (intid <= VGIC_MAX_PRIVATE)
		return &vcpu->arch.vgic_cpu.private_irqs[intid];

	/* SPIs */
	if (intid <= VGIC_MAX_SPI)
		return &kvm->arch.vgic.spis[intid - VGIC_NR_PRIVATE_IRQS];

110
	/* LPIs */
111
	if (intid >= VGIC_MIN_LPI)
112
		return vgic_get_lpi(kvm, intid);
113 114 115 116

	WARN(1, "Looking up struct vgic_irq for reserved INTID");
	return NULL;
}
117

118 119 120 121 122
/*
 * We can't do anything in here, because we lack the kvm pointer to
 * lock and remove the item from the lpi_list. So we keep this function
 * empty and use the return value of kref_put() to trigger the freeing.
 */
123 124 125 126 127 128
static void vgic_irq_release(struct kref *ref)
{
}

void vgic_put_irq(struct kvm *kvm, struct vgic_irq *irq)
{
129
	struct vgic_dist *dist = &kvm->arch.vgic;
130

131 132 133
	if (irq->intid < VGIC_MIN_LPI)
		return;

134 135 136
	spin_lock(&dist->lpi_list_lock);
	if (!kref_put(&irq->refcount, vgic_irq_release)) {
		spin_unlock(&dist->lpi_list_lock);
137
		return;
138
	};
139 140 141 142 143 144

	list_del(&irq->lpi_list);
	dist->lpi_list_count--;
	spin_unlock(&dist->lpi_list_lock);

	kfree(irq);
145 146
}

147 148 149 150 151 152 153
void vgic_irq_set_phys_pending(struct vgic_irq *irq, bool pending)
{
	WARN_ON(irq_set_irqchip_state(irq->host_irq,
				      IRQCHIP_STATE_PENDING,
				      pending));
}

154 155 156 157 158 159
bool vgic_get_phys_line_level(struct vgic_irq *irq)
{
	bool line_level;

	BUG_ON(!irq->hw);

160 161 162
	if (irq->get_input_level)
		return irq->get_input_level(irq->intid);

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
	WARN_ON(irq_get_irqchip_state(irq->host_irq,
				      IRQCHIP_STATE_PENDING,
				      &line_level));
	return line_level;
}

/* Set/Clear the physical active state */
void vgic_irq_set_phys_active(struct vgic_irq *irq, bool active)
{

	BUG_ON(!irq->hw);
	WARN_ON(irq_set_irqchip_state(irq->host_irq,
				      IRQCHIP_STATE_ACTIVE,
				      active));
}

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
/**
 * kvm_vgic_target_oracle - compute the target vcpu for an irq
 *
 * @irq:	The irq to route. Must be already locked.
 *
 * Based on the current state of the interrupt (enabled, pending,
 * active, vcpu and target_vcpu), compute the next vcpu this should be
 * given to. Return NULL if this shouldn't be injected at all.
 *
 * Requires the IRQ lock to be held.
 */
static struct kvm_vcpu *vgic_target_oracle(struct vgic_irq *irq)
{
	DEBUG_SPINLOCK_BUG_ON(!spin_is_locked(&irq->irq_lock));

	/* If the interrupt is active, it must stay on the current vcpu */
	if (irq->active)
		return irq->vcpu ? : irq->target_vcpu;

	/*
	 * If the IRQ is not active but enabled and pending, we should direct
	 * it to its configured target VCPU.
	 * If the distributor is disabled, pending interrupts shouldn't be
	 * forwarded.
	 */
204
	if (irq->enabled && irq_is_pending(irq)) {
205 206 207 208 209 210 211 212 213 214 215 216 217
		if (unlikely(irq->target_vcpu &&
			     !irq->target_vcpu->kvm->arch.vgic.enabled))
			return NULL;

		return irq->target_vcpu;
	}

	/* If neither active nor pending and enabled, then this IRQ should not
	 * be queued to any VCPU.
	 */
	return NULL;
}

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
/*
 * The order of items in the ap_lists defines how we'll pack things in LRs as
 * well, the first items in the list being the first things populated in the
 * LRs.
 *
 * A hard rule is that active interrupts can never be pushed out of the LRs
 * (and therefore take priority) since we cannot reliably trap on deactivation
 * of IRQs and therefore they have to be present in the LRs.
 *
 * Otherwise things should be sorted by the priority field and the GIC
 * hardware support will take care of preemption of priority groups etc.
 *
 * Return negative if "a" sorts before "b", 0 to preserve order, and positive
 * to sort "b" before "a".
 */
static int vgic_irq_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct vgic_irq *irqa = container_of(a, struct vgic_irq, ap_list);
	struct vgic_irq *irqb = container_of(b, struct vgic_irq, ap_list);
	bool penda, pendb;
	int ret;

	spin_lock(&irqa->irq_lock);
	spin_lock_nested(&irqb->irq_lock, SINGLE_DEPTH_NESTING);

	if (irqa->active || irqb->active) {
		ret = (int)irqb->active - (int)irqa->active;
		goto out;
	}

248 249
	penda = irqa->enabled && irq_is_pending(irqa);
	pendb = irqb->enabled && irq_is_pending(irqb);
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273

	if (!penda || !pendb) {
		ret = (int)pendb - (int)penda;
		goto out;
	}

	/* Both pending and enabled, sort by priority */
	ret = irqa->priority - irqb->priority;
out:
	spin_unlock(&irqb->irq_lock);
	spin_unlock(&irqa->irq_lock);
	return ret;
}

/* Must be called with the ap_list_lock held */
static void vgic_sort_ap_list(struct kvm_vcpu *vcpu)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;

	DEBUG_SPINLOCK_BUG_ON(!spin_is_locked(&vgic_cpu->ap_list_lock));

	list_sort(NULL, &vgic_cpu->ap_list_head, vgic_irq_cmp);
}

274 275
/*
 * Only valid injection if changing level for level-triggered IRQs or for a
276 277
 * rising edge, and in-kernel connected IRQ lines can only be controlled by
 * their owner.
278
 */
279
static bool vgic_validate_injection(struct vgic_irq *irq, bool level, void *owner)
280
{
281 282 283
	if (irq->owner != owner)
		return false;

284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
	switch (irq->config) {
	case VGIC_CONFIG_LEVEL:
		return irq->line_level != level;
	case VGIC_CONFIG_EDGE:
		return level;
	}

	return false;
}

/*
 * Check whether an IRQ needs to (and can) be queued to a VCPU's ap list.
 * Do the queuing if necessary, taking the right locks in the right order.
 * Returns true when the IRQ was queued, false otherwise.
 *
 * Needs to be entered with the IRQ lock already held, but will return
 * with all locks dropped.
 */
302 303
bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq,
			   unsigned long flags)
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
{
	struct kvm_vcpu *vcpu;

	DEBUG_SPINLOCK_BUG_ON(!spin_is_locked(&irq->irq_lock));

retry:
	vcpu = vgic_target_oracle(irq);
	if (irq->vcpu || !vcpu) {
		/*
		 * If this IRQ is already on a VCPU's ap_list, then it
		 * cannot be moved or modified and there is no more work for
		 * us to do.
		 *
		 * Otherwise, if the irq is not pending and enabled, it does
		 * not need to be inserted into an ap_list and there is also
		 * no more work for us to do.
		 */
321
		spin_unlock_irqrestore(&irq->irq_lock, flags);
322 323 324 325 326 327 328 329 330 331

		/*
		 * We have to kick the VCPU here, because we could be
		 * queueing an edge-triggered interrupt for which we
		 * get no EOI maintenance interrupt. In that case,
		 * while the IRQ is already on the VCPU's AP list, the
		 * VCPU could have EOI'ed the original interrupt and
		 * won't see this one until it exits for some other
		 * reason.
		 */
332 333
		if (vcpu) {
			kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
334
			kvm_vcpu_kick(vcpu);
335
		}
336 337 338 339 340 341 342
		return false;
	}

	/*
	 * We must unlock the irq lock to take the ap_list_lock where
	 * we are going to insert this new pending interrupt.
	 */
343
	spin_unlock_irqrestore(&irq->irq_lock, flags);
344 345 346

	/* someone can do stuff here, which we re-check below */

347
	spin_lock_irqsave(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
	spin_lock(&irq->irq_lock);

	/*
	 * Did something change behind our backs?
	 *
	 * There are two cases:
	 * 1) The irq lost its pending state or was disabled behind our
	 *    backs and/or it was queued to another VCPU's ap_list.
	 * 2) Someone changed the affinity on this irq behind our
	 *    backs and we are now holding the wrong ap_list_lock.
	 *
	 * In both cases, drop the locks and retry.
	 */

	if (unlikely(irq->vcpu || vcpu != vgic_target_oracle(irq))) {
		spin_unlock(&irq->irq_lock);
364
		spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
365

366
		spin_lock_irqsave(&irq->irq_lock, flags);
367 368 369
		goto retry;
	}

370 371 372 373 374
	/*
	 * Grab a reference to the irq to reflect the fact that it is
	 * now in the ap_list.
	 */
	vgic_get_irq_kref(irq);
375 376 377 378
	list_add_tail(&irq->ap_list, &vcpu->arch.vgic_cpu.ap_list_head);
	irq->vcpu = vcpu;

	spin_unlock(&irq->irq_lock);
379
	spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
380

381
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
382 383 384 385 386
	kvm_vcpu_kick(vcpu);

	return true;
}

387 388 389 390 391 392 393 394 395
/**
 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
 * @kvm:     The VM structure pointer
 * @cpuid:   The CPU for PPIs
 * @intid:   The INTID to inject a new state to.
 * @level:   Edge-triggered:  true:  to trigger the interrupt
 *			      false: to ignore the call
 *	     Level-sensitive  true:  raise the input signal
 *			      false: lower the input signal
396 397 398
 * @owner:   The opaque pointer to the owner of the IRQ being raised to verify
 *           that the caller is allowed to inject this IRQ.  Userspace
 *           injections will have owner == NULL.
399 400 401 402 403 404
 *
 * The VGIC is not concerned with devices being active-LOW or active-HIGH for
 * level-sensitive interrupts.  You can think of the level parameter as 1
 * being HIGH and 0 being LOW and all devices being active-HIGH.
 */
int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int intid,
405
			bool level, void *owner)
406 407 408
{
	struct kvm_vcpu *vcpu;
	struct vgic_irq *irq;
409
	unsigned long flags;
410 411 412 413
	int ret;

	trace_vgic_update_irq_pending(cpuid, intid, level);

414 415 416 417
	ret = vgic_lazy_init(kvm);
	if (ret)
		return ret;

418 419 420 421 422 423 424 425
	vcpu = kvm_get_vcpu(kvm, cpuid);
	if (!vcpu && intid < VGIC_NR_PRIVATE_IRQS)
		return -EINVAL;

	irq = vgic_get_irq(kvm, vcpu, intid);
	if (!irq)
		return -EINVAL;

426
	spin_lock_irqsave(&irq->irq_lock, flags);
427

428
	if (!vgic_validate_injection(irq, level, owner)) {
429
		/* Nothing to see here, move along... */
430
		spin_unlock_irqrestore(&irq->irq_lock, flags);
431
		vgic_put_irq(kvm, irq);
432 433 434
		return 0;
	}

435
	if (irq->config == VGIC_CONFIG_LEVEL)
436
		irq->line_level = level;
437 438
	else
		irq->pending_latch = true;
439

440
	vgic_queue_irq_unlock(kvm, irq, flags);
441
	vgic_put_irq(kvm, irq);
442 443 444 445

	return 0;
}

446 447
/* @irq->irq_lock must be held */
static int kvm_vgic_map_irq(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
448 449
			    unsigned int host_irq,
			    bool (*get_input_level)(int vindid))
450
{
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
	struct irq_desc *desc;
	struct irq_data *data;

	/*
	 * Find the physical IRQ number corresponding to @host_irq
	 */
	desc = irq_to_desc(host_irq);
	if (!desc) {
		kvm_err("%s: no interrupt descriptor\n", __func__);
		return -EINVAL;
	}
	data = irq_desc_get_irq_data(desc);
	while (data->parent_data)
		data = data->parent_data;

	irq->hw = true;
	irq->host_irq = host_irq;
	irq->hwintid = data->hwirq;
469
	irq->get_input_level = get_input_level;
470 471 472 473 474 475 476 477
	return 0;
}

/* @irq->irq_lock must be held */
static inline void kvm_vgic_unmap_irq(struct vgic_irq *irq)
{
	irq->hw = false;
	irq->hwintid = 0;
478
	irq->get_input_level = NULL;
479 480 481
}

int kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, unsigned int host_irq,
482
			  u32 vintid, bool (*get_input_level)(int vindid))
483 484
{
	struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
485
	unsigned long flags;
486
	int ret;
487 488 489

	BUG_ON(!irq);

490
	spin_lock_irqsave(&irq->irq_lock, flags);
491
	ret = kvm_vgic_map_irq(vcpu, irq, host_irq, get_input_level);
492
	spin_unlock_irqrestore(&irq->irq_lock, flags);
493
	vgic_put_irq(vcpu->kvm, irq);
494

495
	return ret;
496 497
}

498
int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, unsigned int vintid)
499
{
500
	struct vgic_irq *irq;
501
	unsigned long flags;
502 503 504 505

	if (!vgic_initialized(vcpu->kvm))
		return -EAGAIN;

506
	irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
507 508
	BUG_ON(!irq);

509
	spin_lock_irqsave(&irq->irq_lock, flags);
510
	kvm_vgic_unmap_irq(irq);
511
	spin_unlock_irqrestore(&irq->irq_lock, flags);
512
	vgic_put_irq(vcpu->kvm, irq);
513 514 515 516

	return 0;
}

517 518 519 520 521 522 523 524 525 526 527 528 529
/**
 * kvm_vgic_set_owner - Set the owner of an interrupt for a VM
 *
 * @vcpu:   Pointer to the VCPU (used for PPIs)
 * @intid:  The virtual INTID identifying the interrupt (PPI or SPI)
 * @owner:  Opaque pointer to the owner
 *
 * Returns 0 if intid is not already used by another in-kernel device and the
 * owner is set, otherwise returns an error code.
 */
int kvm_vgic_set_owner(struct kvm_vcpu *vcpu, unsigned int intid, void *owner)
{
	struct vgic_irq *irq;
530
	unsigned long flags;
531 532 533 534 535 536 537 538 539 540
	int ret = 0;

	if (!vgic_initialized(vcpu->kvm))
		return -EAGAIN;

	/* SGIs and LPIs cannot be wired up to any device */
	if (!irq_is_ppi(intid) && !vgic_valid_spi(vcpu->kvm, intid))
		return -EINVAL;

	irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
541
	spin_lock_irqsave(&irq->irq_lock, flags);
542 543 544 545
	if (irq->owner && irq->owner != owner)
		ret = -EEXIST;
	else
		irq->owner = owner;
546
	spin_unlock_irqrestore(&irq->irq_lock, flags);
547 548 549 550

	return ret;
}

551 552 553 554 555 556 557 558 559 560 561 562
/**
 * vgic_prune_ap_list - Remove non-relevant interrupts from the list
 *
 * @vcpu: The VCPU pointer
 *
 * Go over the list of "interesting" interrupts, and prune those that we
 * won't have to consider in the near future.
 */
static void vgic_prune_ap_list(struct kvm_vcpu *vcpu)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
	struct vgic_irq *irq, *tmp;
563
	unsigned long flags;
564 565

retry:
566
	spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584

	list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
		struct kvm_vcpu *target_vcpu, *vcpuA, *vcpuB;

		spin_lock(&irq->irq_lock);

		BUG_ON(vcpu != irq->vcpu);

		target_vcpu = vgic_target_oracle(irq);

		if (!target_vcpu) {
			/*
			 * We don't need to process this interrupt any
			 * further, move it off the list.
			 */
			list_del(&irq->ap_list);
			irq->vcpu = NULL;
			spin_unlock(&irq->irq_lock);
585 586 587 588 589 590 591 592 593

			/*
			 * This vgic_put_irq call matches the
			 * vgic_get_irq_kref in vgic_queue_irq_unlock,
			 * where we added the LPI to the ap_list. As
			 * we remove the irq from the list, we drop
			 * also drop the refcount.
			 */
			vgic_put_irq(vcpu->kvm, irq);
594 595 596 597 598 599 600 601 602 603 604 605
			continue;
		}

		if (target_vcpu == vcpu) {
			/* We're on the right CPU */
			spin_unlock(&irq->irq_lock);
			continue;
		}

		/* This interrupt looks like it has to be migrated. */

		spin_unlock(&irq->irq_lock);
606
		spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
607 608 609 610 611 612 613 614 615 616 617 618 619

		/*
		 * Ensure locking order by always locking the smallest
		 * ID first.
		 */
		if (vcpu->vcpu_id < target_vcpu->vcpu_id) {
			vcpuA = vcpu;
			vcpuB = target_vcpu;
		} else {
			vcpuA = target_vcpu;
			vcpuB = vcpu;
		}

620
		spin_lock_irqsave(&vcpuA->arch.vgic_cpu.ap_list_lock, flags);
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
		spin_lock_nested(&vcpuB->arch.vgic_cpu.ap_list_lock,
				 SINGLE_DEPTH_NESTING);
		spin_lock(&irq->irq_lock);

		/*
		 * If the affinity has been preserved, move the
		 * interrupt around. Otherwise, it means things have
		 * changed while the interrupt was unlocked, and we
		 * need to replay this.
		 *
		 * In all cases, we cannot trust the list not to have
		 * changed, so we restart from the beginning.
		 */
		if (target_vcpu == vgic_target_oracle(irq)) {
			struct vgic_cpu *new_cpu = &target_vcpu->arch.vgic_cpu;

			list_del(&irq->ap_list);
			irq->vcpu = target_vcpu;
			list_add_tail(&irq->ap_list, &new_cpu->ap_list_head);
		}

		spin_unlock(&irq->irq_lock);
		spin_unlock(&vcpuB->arch.vgic_cpu.ap_list_lock);
644
		spin_unlock_irqrestore(&vcpuA->arch.vgic_cpu.ap_list_lock, flags);
645 646 647
		goto retry;
	}

648
	spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
649 650 651 652
}

static inline void vgic_fold_lr_state(struct kvm_vcpu *vcpu)
{
653 654 655 656
	if (kvm_vgic_global_state.type == VGIC_V2)
		vgic_v2_fold_lr_state(vcpu);
	else
		vgic_v3_fold_lr_state(vcpu);
657 658 659 660 661 662 663
}

/* Requires the irq_lock to be held. */
static inline void vgic_populate_lr(struct kvm_vcpu *vcpu,
				    struct vgic_irq *irq, int lr)
{
	DEBUG_SPINLOCK_BUG_ON(!spin_is_locked(&irq->irq_lock));
664

665 666 667 668
	if (kvm_vgic_global_state.type == VGIC_V2)
		vgic_v2_populate_lr(vcpu, irq, lr);
	else
		vgic_v3_populate_lr(vcpu, irq, lr);
669 670 671 672
}

static inline void vgic_clear_lr(struct kvm_vcpu *vcpu, int lr)
{
673 674 675 676
	if (kvm_vgic_global_state.type == VGIC_V2)
		vgic_v2_clear_lr(vcpu, lr);
	else
		vgic_v3_clear_lr(vcpu, lr);
677 678 679 680
}

static inline void vgic_set_underflow(struct kvm_vcpu *vcpu)
{
681 682 683 684
	if (kvm_vgic_global_state.type == VGIC_V2)
		vgic_v2_set_underflow(vcpu);
	else
		vgic_v3_set_underflow(vcpu);
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
}

/* Requires the ap_list_lock to be held. */
static int compute_ap_list_depth(struct kvm_vcpu *vcpu)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
	struct vgic_irq *irq;
	int count = 0;

	DEBUG_SPINLOCK_BUG_ON(!spin_is_locked(&vgic_cpu->ap_list_lock));

	list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
		spin_lock(&irq->irq_lock);
		/* GICv2 SGIs can count for more than one... */
		if (vgic_irq_is_sgi(irq->intid) && irq->source)
			count += hweight8(irq->source);
		else
			count++;
		spin_unlock(&irq->irq_lock);
	}
	return count;
}

/* Requires the VCPU's ap_list_lock to be held. */
static void vgic_flush_lr_state(struct kvm_vcpu *vcpu)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
	struct vgic_irq *irq;
	int count = 0;

	DEBUG_SPINLOCK_BUG_ON(!spin_is_locked(&vgic_cpu->ap_list_lock));

717
	if (compute_ap_list_depth(vcpu) > kvm_vgic_global_state.nr_lr)
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
		vgic_sort_ap_list(vcpu);

	list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
		spin_lock(&irq->irq_lock);

		if (unlikely(vgic_target_oracle(irq) != vcpu))
			goto next;

		/*
		 * If we get an SGI with multiple sources, try to get
		 * them in all at once.
		 */
		do {
			vgic_populate_lr(vcpu, irq, count++);
		} while (irq->source && count < kvm_vgic_global_state.nr_lr);

next:
		spin_unlock(&irq->irq_lock);

737 738 739 740
		if (count == kvm_vgic_global_state.nr_lr) {
			if (!list_is_last(&irq->ap_list,
					  &vgic_cpu->ap_list_head))
				vgic_set_underflow(vcpu);
741
			break;
742
		}
743 744 745 746 747 748 749 750 751 752 753 754
	}

	vcpu->arch.vgic_cpu.used_lrs = count;

	/* Nuke remaining LRs */
	for ( ; count < kvm_vgic_global_state.nr_lr; count++)
		vgic_clear_lr(vcpu, count);
}

/* Sync back the hardware VGIC state into our emulation after a guest's run. */
void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
{
755 756
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;

757 758
	WARN_ON(vgic_v4_sync_hwstate(vcpu));

759 760
	/* An empty ap_list_head implies used_lrs == 0 */
	if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head))
761 762
		return;

763 764
	if (vgic_cpu->used_lrs)
		vgic_fold_lr_state(vcpu);
765 766 767 768 769 770
	vgic_prune_ap_list(vcpu);
}

/* Flush our emulation state into the GIC hardware before entering the guest. */
void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
{
771 772
	WARN_ON(vgic_v4_flush_hwstate(vcpu));

773 774 775 776 777 778 779 780 781 782
	/*
	 * If there are no virtual interrupts active or pending for this
	 * VCPU, then there is no work to do and we can bail out without
	 * taking any lock.  There is a potential race with someone injecting
	 * interrupts to the VCPU, but it is a benign race as the VCPU will
	 * either observe the new interrupt before or after doing this check,
	 * and introducing additional synchronization mechanism doesn't change
	 * this.
	 */
	if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head))
783 784
		return;

785 786
	DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());

787 788 789 790
	spin_lock(&vcpu->arch.vgic_cpu.ap_list_lock);
	vgic_flush_lr_state(vcpu);
	spin_unlock(&vcpu->arch.vgic_cpu.ap_list_lock);
}
791

792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
void kvm_vgic_load(struct kvm_vcpu *vcpu)
{
	if (unlikely(!vgic_initialized(vcpu->kvm)))
		return;

	if (kvm_vgic_global_state.type == VGIC_V2)
		vgic_v2_load(vcpu);
	else
		vgic_v3_load(vcpu);
}

void kvm_vgic_put(struct kvm_vcpu *vcpu)
{
	if (unlikely(!vgic_initialized(vcpu->kvm)))
		return;

	if (kvm_vgic_global_state.type == VGIC_V2)
		vgic_v2_put(vcpu);
	else
		vgic_v3_put(vcpu);
}

814 815 816 817 818
int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
	struct vgic_irq *irq;
	bool pending = false;
819
	unsigned long flags;
820 821 822 823

	if (!vcpu->kvm->arch.vgic.enabled)
		return false;

824 825 826
	if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last)
		return true;

827
	spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
828 829 830

	list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
		spin_lock(&irq->irq_lock);
831
		pending = irq_is_pending(irq) && irq->enabled;
832 833 834 835 836 837
		spin_unlock(&irq->irq_lock);

		if (pending)
			break;
	}

838
	spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
839 840 841

	return pending;
}
842 843 844 845 846 847 848 849 850 851 852

void vgic_kick_vcpus(struct kvm *kvm)
{
	struct kvm_vcpu *vcpu;
	int c;

	/*
	 * We've injected an interrupt, time to find out who deserves
	 * a good kick...
	 */
	kvm_for_each_vcpu(c, vcpu, kvm) {
853 854
		if (kvm_vgic_vcpu_pending_irq(vcpu)) {
			kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
855
			kvm_vcpu_kick(vcpu);
856
		}
857 858
	}
}
859

860
bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, unsigned int vintid)
861
{
862
	struct vgic_irq *irq;
863
	bool map_is_active;
864
	unsigned long flags;
865

866 867 868
	if (!vgic_initialized(vcpu->kvm))
		return false;

869
	irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
870
	spin_lock_irqsave(&irq->irq_lock, flags);
871
	map_is_active = irq->hw && irq->active;
872
	spin_unlock_irqrestore(&irq->irq_lock, flags);
873
	vgic_put_irq(vcpu->kvm, irq);
874 875 876

	return map_is_active;
}
877