hpre_crypto.c 50.4 KB
Newer Older
1 2 3
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2019 HiSilicon Limited. */
#include <crypto/akcipher.h>
4
#include <crypto/curve25519.h>
5
#include <crypto/dh.h>
6 7
#include <crypto/ecc_curve.h>
#include <crypto/ecdh.h>
8
#include <crypto/rng.h>
9 10 11 12 13 14 15 16
#include <crypto/internal/akcipher.h>
#include <crypto/internal/kpp.h>
#include <crypto/internal/rsa.h>
#include <crypto/kpp.h>
#include <crypto/scatterwalk.h>
#include <linux/dma-mapping.h>
#include <linux/fips.h>
#include <linux/module.h>
17
#include <linux/time.h>
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
#include "hpre.h"

struct hpre_ctx;

#define HPRE_CRYPTO_ALG_PRI	1000
#define HPRE_ALIGN_SZ		64
#define HPRE_BITS_2_BYTES_SHIFT	3
#define HPRE_RSA_512BITS_KSZ	64
#define HPRE_RSA_1536BITS_KSZ	192
#define HPRE_CRT_PRMS		5
#define HPRE_CRT_Q		2
#define HPRE_CRT_P		3
#define HPRE_CRT_INV		4
#define HPRE_DH_G_FLAG		0x02
#define HPRE_TRY_SEND_TIMES	100
#define HPRE_INVLD_REQ_ID		(-1)

#define HPRE_SQE_ALG_BITS	5
#define HPRE_SQE_DONE_SHIFT	30
#define HPRE_DH_MAX_P_SZ	512

39 40 41
#define HPRE_DFX_SEC_TO_US	1000000
#define HPRE_DFX_US_TO_NS	1000

42 43 44
/* due to nist p521  */
#define HPRE_ECC_MAX_KSZ	66

45 46 47
/* size in bytes of the n prime */
#define HPRE_ECC_NIST_P192_N_SIZE	24
#define HPRE_ECC_NIST_P256_N_SIZE	32
48
#define HPRE_ECC_NIST_P384_N_SIZE	48
49 50 51

/* size in bytes */
#define HPRE_ECC_HW256_KSZ_B	32
52
#define HPRE_ECC_HW384_KSZ_B	48
53

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
typedef void (*hpre_cb)(struct hpre_ctx *ctx, void *sqe);

struct hpre_rsa_ctx {
	/* low address: e--->n */
	char *pubkey;
	dma_addr_t dma_pubkey;

	/* low address: d--->n */
	char *prikey;
	dma_addr_t dma_prikey;

	/* low address: dq->dp->q->p->qinv */
	char *crt_prikey;
	dma_addr_t dma_crt_prikey;

	struct crypto_akcipher *soft_tfm;
};

struct hpre_dh_ctx {
	/*
	 * If base is g we compute the public key
	 *	ya = g^xa mod p; [RFC2631 sec 2.1.1]
	 * else if base if the counterpart public key we
	 * compute the shared secret
	 *	ZZ = yb^xa mod p; [RFC2631 sec 2.1.1]
79
	 * low address: d--->n, please refer to Hisilicon HPRE UM
80
	 */
81
	char *xa_p;
82 83 84 85 86 87
	dma_addr_t dma_xa_p;

	char *g; /* m */
	dma_addr_t dma_g;
};

88 89 90 91 92 93 94 95 96 97
struct hpre_ecdh_ctx {
	/* low address: p->a->k->b */
	unsigned char *p;
	dma_addr_t dma_p;

	/* low address: x->y */
	unsigned char *g;
	dma_addr_t dma_g;
};

98 99 100 101 102 103 104 105 106 107
struct hpre_curve25519_ctx {
	/* low address: p->a->k */
	unsigned char *p;
	dma_addr_t dma_p;

	/* gx coordinate */
	unsigned char *g;
	dma_addr_t dma_g;
};

108 109
struct hpre_ctx {
	struct hisi_qp *qp;
110
	struct device *dev;
111
	struct hpre_asym_request **req_list;
112
	struct hpre *hpre;
113 114 115 116 117 118 119
	spinlock_t req_lock;
	unsigned int key_sz;
	bool crt_g2_mode;
	struct idr req_idr;
	union {
		struct hpre_rsa_ctx rsa;
		struct hpre_dh_ctx dh;
120
		struct hpre_ecdh_ctx ecdh;
121
		struct hpre_curve25519_ctx curve25519;
122
	};
123 124
	/* for ecc algorithms */
	unsigned int curve_id;
125 126 127 128 129 130 131 132 133 134
};

struct hpre_asym_request {
	char *src;
	char *dst;
	struct hpre_sqe req;
	struct hpre_ctx *ctx;
	union {
		struct akcipher_request *rsa;
		struct kpp_request *dh;
135
		struct kpp_request *ecdh;
136
		struct kpp_request *curve25519;
137 138 139 140
	} areq;
	int err;
	int req_id;
	hpre_cb cb;
141
	struct timespec64 req_time;
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
};

static int hpre_alloc_req_id(struct hpre_ctx *ctx)
{
	unsigned long flags;
	int id;

	spin_lock_irqsave(&ctx->req_lock, flags);
	id = idr_alloc(&ctx->req_idr, NULL, 0, QM_Q_DEPTH, GFP_ATOMIC);
	spin_unlock_irqrestore(&ctx->req_lock, flags);

	return id;
}

static void hpre_free_req_id(struct hpre_ctx *ctx, int req_id)
{
	unsigned long flags;

	spin_lock_irqsave(&ctx->req_lock, flags);
	idr_remove(&ctx->req_idr, req_id);
	spin_unlock_irqrestore(&ctx->req_lock, flags);
}

static int hpre_add_req_to_ctx(struct hpre_asym_request *hpre_req)
{
	struct hpre_ctx *ctx;
168
	struct hpre_dfx *dfx;
169 170 171 172
	int id;

	ctx = hpre_req->ctx;
	id = hpre_alloc_req_id(ctx);
173
	if (unlikely(id < 0))
174 175 176 177 178
		return -EINVAL;

	ctx->req_list[id] = hpre_req;
	hpre_req->req_id = id;

179 180 181 182
	dfx = ctx->hpre->debug.dfx;
	if (atomic64_read(&dfx[HPRE_OVERTIME_THRHLD].value))
		ktime_get_ts64(&hpre_req->req_time);

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
	return id;
}

static void hpre_rm_req_from_ctx(struct hpre_asym_request *hpre_req)
{
	struct hpre_ctx *ctx = hpre_req->ctx;
	int id = hpre_req->req_id;

	if (hpre_req->req_id >= 0) {
		hpre_req->req_id = HPRE_INVLD_REQ_ID;
		ctx->req_list[id] = NULL;
		hpre_free_req_id(ctx, id);
	}
}

198
static struct hisi_qp *hpre_get_qp_and_start(u8 type)
199 200 201 202
{
	struct hisi_qp *qp;
	int ret;

203
	qp = hpre_create_qp(type);
204 205
	if (!qp) {
		pr_err("Can not create hpre qp!\n");
206 207 208 209 210
		return ERR_PTR(-ENODEV);
	}

	ret = hisi_qm_start_qp(qp, 0);
	if (ret < 0) {
211 212
		hisi_qm_free_qps(&qp, 1);
		pci_err(qp->qm->pdev, "Can not start qp!\n");
213 214 215 216 217 218 219
		return ERR_PTR(-EINVAL);
	}

	return qp;
}

static int hpre_get_data_dma_addr(struct hpre_asym_request *hpre_req,
220 221
				  struct scatterlist *data, unsigned int len,
				  int is_src, dma_addr_t *tmp)
222
{
223
	struct device *dev = hpre_req->ctx->dev;
224 225 226 227 228 229 230 231 232
	enum dma_data_direction dma_dir;

	if (is_src) {
		hpre_req->src = NULL;
		dma_dir = DMA_TO_DEVICE;
	} else {
		hpre_req->dst = NULL;
		dma_dir = DMA_FROM_DEVICE;
	}
233
	*tmp = dma_map_single(dev, sg_virt(data), len, dma_dir);
234
	if (unlikely(dma_mapping_error(dev, *tmp))) {
235 236 237 238 239 240 241 242
		dev_err(dev, "dma map data err!\n");
		return -ENOMEM;
	}

	return 0;
}

static int hpre_prepare_dma_buf(struct hpre_asym_request *hpre_req,
243 244
				struct scatterlist *data, unsigned int len,
				int is_src, dma_addr_t *tmp)
245 246
{
	struct hpre_ctx *ctx = hpre_req->ctx;
247
	struct device *dev = ctx->dev;
248 249 250 251
	void *ptr;
	int shift;

	shift = ctx->key_sz - len;
252
	if (unlikely(shift < 0))
253 254 255
		return -EINVAL;

	ptr = dma_alloc_coherent(dev, ctx->key_sz, tmp, GFP_KERNEL);
256
	if (unlikely(!ptr))
257 258 259 260 261 262 263 264 265 266 267 268 269
		return -ENOMEM;

	if (is_src) {
		scatterwalk_map_and_copy(ptr + shift, data, 0, len, 0);
		hpre_req->src = ptr;
	} else {
		hpre_req->dst = ptr;
	}

	return 0;
}

static int hpre_hw_data_init(struct hpre_asym_request *hpre_req,
270 271
			     struct scatterlist *data, unsigned int len,
			     int is_src, int is_dh)
272 273 274
{
	struct hpre_sqe *msg = &hpre_req->req;
	struct hpre_ctx *ctx = hpre_req->ctx;
275
	dma_addr_t tmp = 0;
276 277 278 279 280 281 282
	int ret;

	/* when the data is dh's source, we should format it */
	if ((sg_is_last(data) && len == ctx->key_sz) &&
	    ((is_dh && !is_src) || !is_dh))
		ret = hpre_get_data_dma_addr(hpre_req, data, len, is_src, &tmp);
	else
283 284
		ret = hpre_prepare_dma_buf(hpre_req, data, len, is_src, &tmp);

285
	if (unlikely(ret))
286 287 288 289 290 291 292 293 294 295 296
		return ret;

	if (is_src)
		msg->in = cpu_to_le64(tmp);
	else
		msg->out = cpu_to_le64(tmp);

	return 0;
}

static void hpre_hw_data_clr_all(struct hpre_ctx *ctx,
297 298 299
				 struct hpre_asym_request *req,
				 struct scatterlist *dst,
				 struct scatterlist *src)
300
{
301
	struct device *dev = ctx->dev;
302 303 304 305
	struct hpre_sqe *sqe = &req->req;
	dma_addr_t tmp;

	tmp = le64_to_cpu(sqe->in);
306 307
	if (unlikely(dma_mapping_error(dev, tmp)))
		return;
308 309 310

	if (src) {
		if (req->src)
311
			dma_free_coherent(dev, ctx->key_sz, req->src, tmp);
312
		else
313
			dma_unmap_single(dev, tmp, ctx->key_sz, DMA_TO_DEVICE);
314 315 316
	}

	tmp = le64_to_cpu(sqe->out);
317 318
	if (unlikely(dma_mapping_error(dev, tmp)))
		return;
319 320 321 322 323 324 325 326 327 328 329 330

	if (req->dst) {
		if (dst)
			scatterwalk_map_and_copy(req->dst, dst, 0,
						 ctx->key_sz, 1);
		dma_free_coherent(dev, ctx->key_sz, req->dst, tmp);
	} else {
		dma_unmap_single(dev, tmp, ctx->key_sz, DMA_FROM_DEVICE);
	}
}

static int hpre_alg_res_post_hf(struct hpre_ctx *ctx, struct hpre_sqe *sqe,
331
				void **kreq)
332 333
{
	struct hpre_asym_request *req;
334
	unsigned int err, done, alg;
335
	int id;
336 337 338

#define HPRE_NO_HW_ERR		0
#define HPRE_HW_TASK_DONE	3
339 340 341
#define HREE_HW_ERR_MASK	GENMASK(10, 0)
#define HREE_SQE_DONE_MASK	GENMASK(1, 0)
#define HREE_ALG_TYPE_MASK	GENMASK(4, 0)
342 343 344 345 346 347 348 349 350 351 352
	id = (int)le16_to_cpu(sqe->tag);
	req = ctx->req_list[id];
	hpre_rm_req_from_ctx(req);
	*kreq = req;

	err = (le32_to_cpu(sqe->dw0) >> HPRE_SQE_ALG_BITS) &
		HREE_HW_ERR_MASK;

	done = (le32_to_cpu(sqe->dw0) >> HPRE_SQE_DONE_SHIFT) &
		HREE_SQE_DONE_MASK;

353
	if (likely(err == HPRE_NO_HW_ERR && done == HPRE_HW_TASK_DONE))
354
		return 0;
355

356
	alg = le32_to_cpu(sqe->dw0) & HREE_ALG_TYPE_MASK;
357
	dev_err_ratelimited(ctx->dev, "alg[0x%x] error: done[0x%x], etype[0x%x]\n",
358 359
		alg, done, err);

360 361 362 363 364
	return -EINVAL;
}

static int hpre_ctx_set(struct hpre_ctx *ctx, struct hisi_qp *qp, int qlen)
{
365 366
	struct hpre *hpre;

367 368 369 370 371
	if (!ctx || !qp || qlen < 0)
		return -EINVAL;

	spin_lock_init(&ctx->req_lock);
	ctx->qp = qp;
372
	ctx->dev = &qp->qm->pdev->dev;
373

374 375
	hpre = container_of(ctx->qp->qm, struct hpre, qm);
	ctx->hpre = hpre;
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
	ctx->req_list = kcalloc(qlen, sizeof(void *), GFP_KERNEL);
	if (!ctx->req_list)
		return -ENOMEM;
	ctx->key_sz = 0;
	ctx->crt_g2_mode = false;
	idr_init(&ctx->req_idr);

	return 0;
}

static void hpre_ctx_clear(struct hpre_ctx *ctx, bool is_clear_all)
{
	if (is_clear_all) {
		idr_destroy(&ctx->req_idr);
		kfree(ctx->req_list);
391
		hisi_qm_free_qps(&ctx->qp, 1);
392 393 394 395 396 397
	}

	ctx->crt_g2_mode = false;
	ctx->key_sz = 0;
}

398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
static bool hpre_is_bd_timeout(struct hpre_asym_request *req,
			       u64 overtime_thrhld)
{
	struct timespec64 reply_time;
	u64 time_use_us;

	ktime_get_ts64(&reply_time);
	time_use_us = (reply_time.tv_sec - req->req_time.tv_sec) *
		HPRE_DFX_SEC_TO_US +
		(reply_time.tv_nsec - req->req_time.tv_nsec) /
		HPRE_DFX_US_TO_NS;

	if (time_use_us <= overtime_thrhld)
		return false;

	return true;
}

416 417
static void hpre_dh_cb(struct hpre_ctx *ctx, void *resp)
{
418
	struct hpre_dfx *dfx = ctx->hpre->debug.dfx;
419 420
	struct hpre_asym_request *req;
	struct kpp_request *areq;
421
	u64 overtime_thrhld;
422 423 424 425 426
	int ret;

	ret = hpre_alg_res_post_hf(ctx, resp, (void **)&req);
	areq = req->areq.dh;
	areq->dst_len = ctx->key_sz;
427 428 429 430 431

	overtime_thrhld = atomic64_read(&dfx[HPRE_OVERTIME_THRHLD].value);
	if (overtime_thrhld && hpre_is_bd_timeout(req, overtime_thrhld))
		atomic64_inc(&dfx[HPRE_OVER_THRHLD_CNT].value);

432 433
	hpre_hw_data_clr_all(ctx, req, areq->dst, areq->src);
	kpp_request_complete(areq, ret);
434
	atomic64_inc(&dfx[HPRE_RECV_CNT].value);
435 436 437 438
}

static void hpre_rsa_cb(struct hpre_ctx *ctx, void *resp)
{
439
	struct hpre_dfx *dfx = ctx->hpre->debug.dfx;
440 441
	struct hpre_asym_request *req;
	struct akcipher_request *areq;
442
	u64 overtime_thrhld;
443 444 445
	int ret;

	ret = hpre_alg_res_post_hf(ctx, resp, (void **)&req);
446 447 448 449 450

	overtime_thrhld = atomic64_read(&dfx[HPRE_OVERTIME_THRHLD].value);
	if (overtime_thrhld && hpre_is_bd_timeout(req, overtime_thrhld))
		atomic64_inc(&dfx[HPRE_OVER_THRHLD_CNT].value);

451 452 453 454
	areq = req->areq.rsa;
	areq->dst_len = ctx->key_sz;
	hpre_hw_data_clr_all(ctx, req, areq->dst, areq->src);
	akcipher_request_complete(areq, ret);
455
	atomic64_inc(&dfx[HPRE_RECV_CNT].value);
456 457 458 459 460
}

static void hpre_alg_cb(struct hisi_qp *qp, void *resp)
{
	struct hpre_ctx *ctx = qp->qp_ctx;
461
	struct hpre_dfx *dfx = ctx->hpre->debug.dfx;
462
	struct hpre_sqe *sqe = resp;
463
	struct hpre_asym_request *req = ctx->req_list[le16_to_cpu(sqe->tag)];
464

465 466 467 468 469 470
	if (unlikely(!req)) {
		atomic64_inc(&dfx[HPRE_INVALID_REQ_CNT].value);
		return;
	}

	req->cb(ctx, resp);
471 472
}

473 474 475 476 477 478
static void hpre_stop_qp_and_put(struct hisi_qp *qp)
{
	hisi_qm_stop_qp(qp);
	hisi_qm_free_qps(&qp, 1);
}

479
static int hpre_ctx_init(struct hpre_ctx *ctx, u8 type)
480 481
{
	struct hisi_qp *qp;
482
	int ret;
483

484
	qp = hpre_get_qp_and_start(type);
485 486 487 488 489 490
	if (IS_ERR(qp))
		return PTR_ERR(qp);

	qp->qp_ctx = ctx;
	qp->req_cb = hpre_alg_cb;

491 492 493 494 495
	ret = hpre_ctx_set(ctx, qp, QM_Q_DEPTH);
	if (ret)
		hpre_stop_qp_and_put(qp);

	return ret;
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
}

static int hpre_msg_request_set(struct hpre_ctx *ctx, void *req, bool is_rsa)
{
	struct hpre_asym_request *h_req;
	struct hpre_sqe *msg;
	int req_id;
	void *tmp;

	if (is_rsa) {
		struct akcipher_request *akreq = req;

		if (akreq->dst_len < ctx->key_sz) {
			akreq->dst_len = ctx->key_sz;
			return -EOVERFLOW;
		}

		tmp = akcipher_request_ctx(akreq);
		h_req = PTR_ALIGN(tmp, HPRE_ALIGN_SZ);
		h_req->cb = hpre_rsa_cb;
		h_req->areq.rsa = akreq;
		msg = &h_req->req;
		memset(msg, 0, sizeof(*msg));
	} else {
		struct kpp_request *kreq = req;

		if (kreq->dst_len < ctx->key_sz) {
			kreq->dst_len = ctx->key_sz;
			return -EOVERFLOW;
		}

		tmp = kpp_request_ctx(kreq);
		h_req = PTR_ALIGN(tmp, HPRE_ALIGN_SZ);
		h_req->cb = hpre_dh_cb;
		h_req->areq.dh = kreq;
		msg = &h_req->req;
		memset(msg, 0, sizeof(*msg));
533
		msg->key = cpu_to_le64(ctx->dh.dma_xa_p);
534 535
	}

536 537
	msg->in = cpu_to_le64(DMA_MAPPING_ERROR);
	msg->out = cpu_to_le64(DMA_MAPPING_ERROR);
538 539 540 541 542 543 544 545 546 547 548 549 550
	msg->dw0 |= cpu_to_le32(0x1 << HPRE_SQE_DONE_SHIFT);
	msg->task_len1 = (ctx->key_sz >> HPRE_BITS_2_BYTES_SHIFT) - 1;
	h_req->ctx = ctx;

	req_id = hpre_add_req_to_ctx(h_req);
	if (req_id < 0)
		return -EBUSY;

	msg->tag = cpu_to_le16((u16)req_id);

	return 0;
}

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
static int hpre_send(struct hpre_ctx *ctx, struct hpre_sqe *msg)
{
	struct hpre_dfx *dfx = ctx->hpre->debug.dfx;
	int ctr = 0;
	int ret;

	do {
		atomic64_inc(&dfx[HPRE_SEND_CNT].value);
		ret = hisi_qp_send(ctx->qp, msg);
		if (ret != -EBUSY)
			break;
		atomic64_inc(&dfx[HPRE_SEND_BUSY_CNT].value);
	} while (ctr++ < HPRE_TRY_SEND_TIMES);

	if (likely(!ret))
		return ret;

	if (ret != -EBUSY)
		atomic64_inc(&dfx[HPRE_SEND_FAIL_CNT].value);

	return ret;
}

574 575 576 577 578 579 580 581 582 583
static int hpre_dh_compute_value(struct kpp_request *req)
{
	struct crypto_kpp *tfm = crypto_kpp_reqtfm(req);
	struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
	void *tmp = kpp_request_ctx(req);
	struct hpre_asym_request *hpre_req = PTR_ALIGN(tmp, HPRE_ALIGN_SZ);
	struct hpre_sqe *msg = &hpre_req->req;
	int ret;

	ret = hpre_msg_request_set(ctx, req, false);
584
	if (unlikely(ret))
585 586 587 588
		return ret;

	if (req->src) {
		ret = hpre_hw_data_init(hpre_req, req->src, req->src_len, 1, 1);
589
		if (unlikely(ret))
590
			goto clear_all;
591 592
	} else {
		msg->in = cpu_to_le64(ctx->dh.dma_g);
593 594 595
	}

	ret = hpre_hw_data_init(hpre_req, req->dst, req->dst_len, 0, 1);
596
	if (unlikely(ret))
597 598 599
		goto clear_all;

	if (ctx->crt_g2_mode && !req->src)
600
		msg->dw0 = cpu_to_le32(le32_to_cpu(msg->dw0) | HPRE_ALG_DH_G2);
601
	else
602
		msg->dw0 = cpu_to_le32(le32_to_cpu(msg->dw0) | HPRE_ALG_DH);
603 604

	/* success */
605
	ret = hpre_send(ctx, msg);
606
	if (likely(!ret))
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
		return -EINPROGRESS;

clear_all:
	hpre_rm_req_from_ctx(hpre_req);
	hpre_hw_data_clr_all(ctx, hpre_req, req->dst, req->src);

	return ret;
}

static int hpre_is_dh_params_length_valid(unsigned int key_sz)
{
#define _HPRE_DH_GRP1		768
#define _HPRE_DH_GRP2		1024
#define _HPRE_DH_GRP5		1536
#define _HPRE_DH_GRP14		2048
#define _HPRE_DH_GRP15		3072
#define _HPRE_DH_GRP16		4096
	switch (key_sz) {
	case _HPRE_DH_GRP1:
	case _HPRE_DH_GRP2:
	case _HPRE_DH_GRP5:
	case _HPRE_DH_GRP14:
	case _HPRE_DH_GRP15:
	case _HPRE_DH_GRP16:
		return 0;
632 633
	default:
		return -EINVAL;
634 635 636 637 638
	}
}

static int hpre_dh_set_params(struct hpre_ctx *ctx, struct dh *params)
{
639
	struct device *dev = ctx->dev;
640 641 642 643 644 645
	unsigned int sz;

	if (params->p_size > HPRE_DH_MAX_P_SZ)
		return -EINVAL;

	if (hpre_is_dh_params_length_valid(params->p_size <<
646
					   HPRE_BITS_2_BYTES_SHIFT))
647 648 649 650
		return -EINVAL;

	sz = ctx->key_sz = params->p_size;
	ctx->dh.xa_p = dma_alloc_coherent(dev, sz << 1,
651
					  &ctx->dh.dma_xa_p, GFP_KERNEL);
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
	if (!ctx->dh.xa_p)
		return -ENOMEM;

	memcpy(ctx->dh.xa_p + sz, params->p, sz);

	/* If g equals 2 don't copy it */
	if (params->g_size == 1 && *(char *)params->g == HPRE_DH_G_FLAG) {
		ctx->crt_g2_mode = true;
		return 0;
	}

	ctx->dh.g = dma_alloc_coherent(dev, sz, &ctx->dh.dma_g, GFP_KERNEL);
	if (!ctx->dh.g) {
		dma_free_coherent(dev, sz << 1, ctx->dh.xa_p,
				  ctx->dh.dma_xa_p);
		ctx->dh.xa_p = NULL;
		return -ENOMEM;
	}

	memcpy(ctx->dh.g + (sz - params->g_size), params->g, params->g_size);

	return 0;
}

static void hpre_dh_clear_ctx(struct hpre_ctx *ctx, bool is_clear_all)
{
678
	struct device *dev = ctx->dev;
679 680 681 682 683 684 685 686 687 688 689
	unsigned int sz = ctx->key_sz;

	if (is_clear_all)
		hisi_qm_stop_qp(ctx->qp);

	if (ctx->dh.g) {
		dma_free_coherent(dev, sz, ctx->dh.g, ctx->dh.dma_g);
		ctx->dh.g = NULL;
	}

	if (ctx->dh.xa_p) {
690
		memzero_explicit(ctx->dh.xa_p, sz);
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
		dma_free_coherent(dev, sz << 1, ctx->dh.xa_p,
				  ctx->dh.dma_xa_p);
		ctx->dh.xa_p = NULL;
	}

	hpre_ctx_clear(ctx, is_clear_all);
}

static int hpre_dh_set_secret(struct crypto_kpp *tfm, const void *buf,
			      unsigned int len)
{
	struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
	struct dh params;
	int ret;

	if (crypto_dh_decode_key(buf, len, &params) < 0)
		return -EINVAL;

	/* Free old secret if any */
	hpre_dh_clear_ctx(ctx, false);

	ret = hpre_dh_set_params(ctx, &params);
	if (ret < 0)
		goto err_clear_ctx;

	memcpy(ctx->dh.xa_p + (ctx->key_sz - params.key_size), params.key,
	       params.key_size);

	return 0;

err_clear_ctx:
	hpre_dh_clear_ctx(ctx, false);
	return ret;
}

static unsigned int hpre_dh_max_size(struct crypto_kpp *tfm)
{
	struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);

	return ctx->key_sz;
}

static int hpre_dh_init_tfm(struct crypto_kpp *tfm)
{
	struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);

737
	return hpre_ctx_init(ctx, HPRE_V2_ALG_TYPE);
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
}

static void hpre_dh_exit_tfm(struct crypto_kpp *tfm)
{
	struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);

	hpre_dh_clear_ctx(ctx, true);
}

static void hpre_rsa_drop_leading_zeros(const char **ptr, size_t *len)
{
	while (!**ptr && *len) {
		(*ptr)++;
		(*len)--;
	}
}

static bool hpre_rsa_key_size_is_support(unsigned int len)
{
	unsigned int bits = len << HPRE_BITS_2_BYTES_SHIFT;

#define _RSA_1024BITS_KEY_WDTH		1024
#define _RSA_2048BITS_KEY_WDTH		2048
#define _RSA_3072BITS_KEY_WDTH		3072
#define _RSA_4096BITS_KEY_WDTH		4096

	switch (bits) {
	case _RSA_1024BITS_KEY_WDTH:
	case _RSA_2048BITS_KEY_WDTH:
	case _RSA_3072BITS_KEY_WDTH:
	case _RSA_4096BITS_KEY_WDTH:
		return true;
	default:
		return false;
	}
}

static int hpre_rsa_enc(struct akcipher_request *req)
{
	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
	struct hpre_ctx *ctx = akcipher_tfm_ctx(tfm);
	void *tmp = akcipher_request_ctx(req);
	struct hpre_asym_request *hpre_req = PTR_ALIGN(tmp, HPRE_ALIGN_SZ);
	struct hpre_sqe *msg = &hpre_req->req;
	int ret;

	/* For 512 and 1536 bits key size, use soft tfm instead */
	if (ctx->key_sz == HPRE_RSA_512BITS_KSZ ||
	    ctx->key_sz == HPRE_RSA_1536BITS_KSZ) {
		akcipher_request_set_tfm(req, ctx->rsa.soft_tfm);
		ret = crypto_akcipher_encrypt(req);
		akcipher_request_set_tfm(req, tfm);
		return ret;
	}

793
	if (unlikely(!ctx->rsa.pubkey))
794 795 796
		return -EINVAL;

	ret = hpre_msg_request_set(ctx, req, true);
797
	if (unlikely(ret))
798 799
		return ret;

800
	msg->dw0 |= cpu_to_le32(HPRE_ALG_NC_NCRT);
801
	msg->key = cpu_to_le64(ctx->rsa.dma_pubkey);
802 803

	ret = hpre_hw_data_init(hpre_req, req->src, req->src_len, 1, 0);
804
	if (unlikely(ret))
805 806 807
		goto clear_all;

	ret = hpre_hw_data_init(hpre_req, req->dst, req->dst_len, 0, 0);
808
	if (unlikely(ret))
809 810 811
		goto clear_all;

	/* success */
812
	ret = hpre_send(ctx, msg);
813
	if (likely(!ret))
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
		return -EINPROGRESS;

clear_all:
	hpre_rm_req_from_ctx(hpre_req);
	hpre_hw_data_clr_all(ctx, hpre_req, req->dst, req->src);

	return ret;
}

static int hpre_rsa_dec(struct akcipher_request *req)
{
	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
	struct hpre_ctx *ctx = akcipher_tfm_ctx(tfm);
	void *tmp = akcipher_request_ctx(req);
	struct hpre_asym_request *hpre_req = PTR_ALIGN(tmp, HPRE_ALIGN_SZ);
	struct hpre_sqe *msg = &hpre_req->req;
	int ret;

	/* For 512 and 1536 bits key size, use soft tfm instead */
	if (ctx->key_sz == HPRE_RSA_512BITS_KSZ ||
	    ctx->key_sz == HPRE_RSA_1536BITS_KSZ) {
		akcipher_request_set_tfm(req, ctx->rsa.soft_tfm);
		ret = crypto_akcipher_decrypt(req);
		akcipher_request_set_tfm(req, tfm);
		return ret;
	}

841
	if (unlikely(!ctx->rsa.prikey))
842 843 844
		return -EINVAL;

	ret = hpre_msg_request_set(ctx, req, true);
845
	if (unlikely(ret))
846 847 848
		return ret;

	if (ctx->crt_g2_mode) {
849
		msg->key = cpu_to_le64(ctx->rsa.dma_crt_prikey);
850 851
		msg->dw0 = cpu_to_le32(le32_to_cpu(msg->dw0) |
				       HPRE_ALG_NC_CRT);
852
	} else {
853
		msg->key = cpu_to_le64(ctx->rsa.dma_prikey);
854 855
		msg->dw0 = cpu_to_le32(le32_to_cpu(msg->dw0) |
				       HPRE_ALG_NC_NCRT);
856 857 858
	}

	ret = hpre_hw_data_init(hpre_req, req->src, req->src_len, 1, 0);
859
	if (unlikely(ret))
860 861 862
		goto clear_all;

	ret = hpre_hw_data_init(hpre_req, req->dst, req->dst_len, 0, 0);
863
	if (unlikely(ret))
864 865 866
		goto clear_all;

	/* success */
867
	ret = hpre_send(ctx, msg);
868
	if (likely(!ret))
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
		return -EINPROGRESS;

clear_all:
	hpre_rm_req_from_ctx(hpre_req);
	hpre_hw_data_clr_all(ctx, hpre_req, req->dst, req->src);

	return ret;
}

static int hpre_rsa_set_n(struct hpre_ctx *ctx, const char *value,
			  size_t vlen, bool private)
{
	const char *ptr = value;

	hpre_rsa_drop_leading_zeros(&ptr, &vlen);

	ctx->key_sz = vlen;

	/* if invalid key size provided, we use software tfm */
	if (!hpre_rsa_key_size_is_support(ctx->key_sz))
		return 0;

891
	ctx->rsa.pubkey = dma_alloc_coherent(ctx->dev, vlen << 1,
892 893 894 895 896 897
					     &ctx->rsa.dma_pubkey,
					     GFP_KERNEL);
	if (!ctx->rsa.pubkey)
		return -ENOMEM;

	if (private) {
898
		ctx->rsa.prikey = dma_alloc_coherent(ctx->dev, vlen << 1,
899 900 901
						     &ctx->rsa.dma_prikey,
						     GFP_KERNEL);
		if (!ctx->rsa.prikey) {
902
			dma_free_coherent(ctx->dev, vlen << 1,
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
					  ctx->rsa.pubkey,
					  ctx->rsa.dma_pubkey);
			ctx->rsa.pubkey = NULL;
			return -ENOMEM;
		}
		memcpy(ctx->rsa.prikey + vlen, ptr, vlen);
	}
	memcpy(ctx->rsa.pubkey + vlen, ptr, vlen);

	/* Using hardware HPRE to do RSA */
	return 1;
}

static int hpre_rsa_set_e(struct hpre_ctx *ctx, const char *value,
			  size_t vlen)
{
	const char *ptr = value;

	hpre_rsa_drop_leading_zeros(&ptr, &vlen);

923
	if (!ctx->key_sz || !vlen || vlen > ctx->key_sz)
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
		return -EINVAL;

	memcpy(ctx->rsa.pubkey + ctx->key_sz - vlen, ptr, vlen);

	return 0;
}

static int hpre_rsa_set_d(struct hpre_ctx *ctx, const char *value,
			  size_t vlen)
{
	const char *ptr = value;

	hpre_rsa_drop_leading_zeros(&ptr, &vlen);

	if (!ctx->key_sz || !vlen || vlen > ctx->key_sz)
		return -EINVAL;

	memcpy(ctx->rsa.prikey + ctx->key_sz - vlen, ptr, vlen);

	return 0;
}

946 947
static int hpre_crt_para_get(char *para, size_t para_sz,
			     const char *raw, size_t raw_sz)
948 949 950 951 952
{
	const char *ptr = raw;
	size_t len = raw_sz;

	hpre_rsa_drop_leading_zeros(&ptr, &len);
953
	if (!len || len > para_sz)
954 955
		return -EINVAL;

956
	memcpy(para + para_sz - len, ptr, len);
957 958 959 960 961 962 963

	return 0;
}

static int hpre_rsa_setkey_crt(struct hpre_ctx *ctx, struct rsa_key *rsa_key)
{
	unsigned int hlf_ksz = ctx->key_sz >> 1;
964
	struct device *dev = ctx->dev;
965 966 967 968 969 970 971 972 973
	u64 offset;
	int ret;

	ctx->rsa.crt_prikey = dma_alloc_coherent(dev, hlf_ksz * HPRE_CRT_PRMS,
					&ctx->rsa.dma_crt_prikey,
					GFP_KERNEL);
	if (!ctx->rsa.crt_prikey)
		return -ENOMEM;

974 975
	ret = hpre_crt_para_get(ctx->rsa.crt_prikey, hlf_ksz,
				rsa_key->dq, rsa_key->dq_sz);
976 977 978 979
	if (ret)
		goto free_key;

	offset = hlf_ksz;
980 981
	ret = hpre_crt_para_get(ctx->rsa.crt_prikey + offset, hlf_ksz,
				rsa_key->dp, rsa_key->dp_sz);
982 983 984 985
	if (ret)
		goto free_key;

	offset = hlf_ksz * HPRE_CRT_Q;
986 987
	ret = hpre_crt_para_get(ctx->rsa.crt_prikey + offset, hlf_ksz,
				rsa_key->q, rsa_key->q_sz);
988 989 990 991
	if (ret)
		goto free_key;

	offset = hlf_ksz * HPRE_CRT_P;
992 993
	ret = hpre_crt_para_get(ctx->rsa.crt_prikey + offset, hlf_ksz,
				rsa_key->p, rsa_key->p_sz);
994 995 996 997
	if (ret)
		goto free_key;

	offset = hlf_ksz * HPRE_CRT_INV;
998 999
	ret = hpre_crt_para_get(ctx->rsa.crt_prikey + offset, hlf_ksz,
				rsa_key->qinv, rsa_key->qinv_sz);
1000 1001 1002 1003 1004 1005 1006 1007 1008
	if (ret)
		goto free_key;

	ctx->crt_g2_mode = true;

	return 0;

free_key:
	offset = hlf_ksz * HPRE_CRT_PRMS;
1009
	memzero_explicit(ctx->rsa.crt_prikey, offset);
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
	dma_free_coherent(dev, hlf_ksz * HPRE_CRT_PRMS, ctx->rsa.crt_prikey,
			  ctx->rsa.dma_crt_prikey);
	ctx->rsa.crt_prikey = NULL;
	ctx->crt_g2_mode = false;

	return ret;
}

/* If it is clear all, all the resources of the QP will be cleaned. */
static void hpre_rsa_clear_ctx(struct hpre_ctx *ctx, bool is_clear_all)
{
	unsigned int half_key_sz = ctx->key_sz >> 1;
1022
	struct device *dev = ctx->dev;
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033

	if (is_clear_all)
		hisi_qm_stop_qp(ctx->qp);

	if (ctx->rsa.pubkey) {
		dma_free_coherent(dev, ctx->key_sz << 1,
				  ctx->rsa.pubkey, ctx->rsa.dma_pubkey);
		ctx->rsa.pubkey = NULL;
	}

	if (ctx->rsa.crt_prikey) {
1034 1035
		memzero_explicit(ctx->rsa.crt_prikey,
				 half_key_sz * HPRE_CRT_PRMS);
1036 1037 1038 1039 1040 1041
		dma_free_coherent(dev, half_key_sz * HPRE_CRT_PRMS,
				  ctx->rsa.crt_prikey, ctx->rsa.dma_crt_prikey);
		ctx->rsa.crt_prikey = NULL;
	}

	if (ctx->rsa.prikey) {
1042
		memzero_explicit(ctx->rsa.prikey, ctx->key_sz);
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
		dma_free_coherent(dev, ctx->key_sz << 1, ctx->rsa.prikey,
				  ctx->rsa.dma_prikey);
		ctx->rsa.prikey = NULL;
	}

	hpre_ctx_clear(ctx, is_clear_all);
}

/*
 * we should judge if it is CRT or not,
 * CRT: return true,  N-CRT: return false .
 */
static bool hpre_is_crt_key(struct rsa_key *key)
{
	u16 len = key->p_sz + key->q_sz + key->dp_sz + key->dq_sz +
		  key->qinv_sz;

#define LEN_OF_NCRT_PARA	5

	/* N-CRT less than 5 parameters */
	return len > LEN_OF_NCRT_PARA;
}

static int hpre_rsa_setkey(struct hpre_ctx *ctx, const void *key,
			   unsigned int keylen, bool private)
{
	struct rsa_key rsa_key;
	int ret;

	hpre_rsa_clear_ctx(ctx, false);

	if (private)
		ret = rsa_parse_priv_key(&rsa_key, key, keylen);
	else
		ret = rsa_parse_pub_key(&rsa_key, key, keylen);
	if (ret < 0)
		return ret;

	ret = hpre_rsa_set_n(ctx, rsa_key.n, rsa_key.n_sz, private);
	if (ret <= 0)
		return ret;

	if (private) {
		ret = hpre_rsa_set_d(ctx, rsa_key.d, rsa_key.d_sz);
		if (ret < 0)
			goto free;

		if (hpre_is_crt_key(&rsa_key)) {
			ret = hpre_rsa_setkey_crt(ctx, &rsa_key);
			if (ret < 0)
				goto free;
		}
	}

	ret = hpre_rsa_set_e(ctx, rsa_key.e, rsa_key.e_sz);
	if (ret < 0)
		goto free;

	if ((private && !ctx->rsa.prikey) || !ctx->rsa.pubkey) {
		ret = -EINVAL;
		goto free;
	}

	return 0;

free:
	hpre_rsa_clear_ctx(ctx, false);
	return ret;
}

static int hpre_rsa_setpubkey(struct crypto_akcipher *tfm, const void *key,
			      unsigned int keylen)
{
	struct hpre_ctx *ctx = akcipher_tfm_ctx(tfm);
	int ret;

	ret = crypto_akcipher_set_pub_key(ctx->rsa.soft_tfm, key, keylen);
	if (ret)
		return ret;

	return hpre_rsa_setkey(ctx, key, keylen, false);
}

static int hpre_rsa_setprivkey(struct crypto_akcipher *tfm, const void *key,
			       unsigned int keylen)
{
	struct hpre_ctx *ctx = akcipher_tfm_ctx(tfm);
	int ret;

	ret = crypto_akcipher_set_priv_key(ctx->rsa.soft_tfm, key, keylen);
	if (ret)
		return ret;

	return hpre_rsa_setkey(ctx, key, keylen, true);
}

static unsigned int hpre_rsa_max_size(struct crypto_akcipher *tfm)
{
	struct hpre_ctx *ctx = akcipher_tfm_ctx(tfm);

	/* For 512 and 1536 bits key size, use soft tfm instead */
	if (ctx->key_sz == HPRE_RSA_512BITS_KSZ ||
	    ctx->key_sz == HPRE_RSA_1536BITS_KSZ)
		return crypto_akcipher_maxsize(ctx->rsa.soft_tfm);

	return ctx->key_sz;
}

static int hpre_rsa_init_tfm(struct crypto_akcipher *tfm)
{
	struct hpre_ctx *ctx = akcipher_tfm_ctx(tfm);
Z
Zaibo Xu 已提交
1154
	int ret;
1155 1156 1157 1158 1159 1160 1161

	ctx->rsa.soft_tfm = crypto_alloc_akcipher("rsa-generic", 0, 0);
	if (IS_ERR(ctx->rsa.soft_tfm)) {
		pr_err("Can not alloc_akcipher!\n");
		return PTR_ERR(ctx->rsa.soft_tfm);
	}

1162
	ret = hpre_ctx_init(ctx, HPRE_V2_ALG_TYPE);
Z
Zaibo Xu 已提交
1163 1164 1165 1166
	if (ret)
		crypto_free_akcipher(ctx->rsa.soft_tfm);

	return ret;
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
}

static void hpre_rsa_exit_tfm(struct crypto_akcipher *tfm)
{
	struct hpre_ctx *ctx = akcipher_tfm_ctx(tfm);

	hpre_rsa_clear_ctx(ctx, true);
	crypto_free_akcipher(ctx->rsa.soft_tfm);
}

1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
static void hpre_key_to_big_end(u8 *data, int len)
{
	int i, j;
	u8 tmp;

	for (i = 0; i < len / 2; i++) {
		j = len - i - 1;
		tmp = data[j];
		data[j] = data[i];
		data[i] = tmp;
	}
}

static void hpre_ecc_clear_ctx(struct hpre_ctx *ctx, bool is_clear_all,
			       bool is_ecdh)
{
1193
	struct device *dev = ctx->dev;
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
	unsigned int sz = ctx->key_sz;
	unsigned int shift = sz << 1;

	if (is_clear_all)
		hisi_qm_stop_qp(ctx->qp);

	if (is_ecdh && ctx->ecdh.p) {
		/* ecdh: p->a->k->b */
		memzero_explicit(ctx->ecdh.p + shift, sz);
		dma_free_coherent(dev, sz << 3, ctx->ecdh.p, ctx->ecdh.dma_p);
		ctx->ecdh.p = NULL;
1205 1206 1207 1208 1209 1210
	} else if (!is_ecdh && ctx->curve25519.p) {
		/* curve25519: p->a->k */
		memzero_explicit(ctx->curve25519.p + shift, sz);
		dma_free_coherent(dev, sz << 2, ctx->curve25519.p,
				  ctx->curve25519.dma_p);
		ctx->curve25519.p = NULL;
1211 1212 1213 1214 1215
	}

	hpre_ctx_clear(ctx, is_clear_all);
}

1216 1217 1218 1219 1220 1221 1222
/*
 * The bits of 192/224/256/384/521 are supported by HPRE,
 * and convert the bits like:
 * bits<=256, bits=256; 256<bits<=384, bits=384; 384<bits<=576, bits=576;
 * If the parameter bit width is insufficient, then we fill in the
 * high-order zeros by soft, so TASK_LENGTH1 is 0x3/0x5/0x8;
 */
1223 1224 1225 1226 1227 1228
static unsigned int hpre_ecdh_supported_curve(unsigned short id)
{
	switch (id) {
	case ECC_CURVE_NIST_P192:
	case ECC_CURVE_NIST_P256:
		return HPRE_ECC_HW256_KSZ_B;
1229 1230
	case ECC_CURVE_NIST_P384:
		return HPRE_ECC_HW384_KSZ_B;
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
	default:
		break;
	}

	return 0;
}

static void fill_curve_param(void *addr, u64 *param, unsigned int cur_sz, u8 ndigits)
{
	unsigned int sz = cur_sz - (ndigits - 1) * sizeof(u64);
	u8 i = 0;

	while (i < ndigits - 1) {
		memcpy(addr + sizeof(u64) * i, &param[i], sizeof(u64));
		i++;
	}

	memcpy(addr + sizeof(u64) * i, &param[ndigits - 1], sz);
	hpre_key_to_big_end((u8 *)addr, cur_sz);
}

static int hpre_ecdh_fill_curve(struct hpre_ctx *ctx, struct ecdh *params,
				unsigned int cur_sz)
{
	unsigned int shifta = ctx->key_sz << 1;
	unsigned int shiftb = ctx->key_sz << 2;
	void *p = ctx->ecdh.p + ctx->key_sz - cur_sz;
	void *a = ctx->ecdh.p + shifta - cur_sz;
	void *b = ctx->ecdh.p + shiftb - cur_sz;
	void *x = ctx->ecdh.g + ctx->key_sz - cur_sz;
	void *y = ctx->ecdh.g + shifta - cur_sz;
	const struct ecc_curve *curve = ecc_get_curve(ctx->curve_id);
	char *n;

	if (unlikely(!curve))
		return -EINVAL;

	n = kzalloc(ctx->key_sz, GFP_KERNEL);
	if (!n)
		return -ENOMEM;

	fill_curve_param(p, curve->p, cur_sz, curve->g.ndigits);
	fill_curve_param(a, curve->a, cur_sz, curve->g.ndigits);
	fill_curve_param(b, curve->b, cur_sz, curve->g.ndigits);
	fill_curve_param(x, curve->g.x, cur_sz, curve->g.ndigits);
	fill_curve_param(y, curve->g.y, cur_sz, curve->g.ndigits);
	fill_curve_param(n, curve->n, cur_sz, curve->g.ndigits);

	if (params->key_size == cur_sz && memcmp(params->key, n, cur_sz) >= 0) {
		kfree(n);
		return -EINVAL;
	}

	kfree(n);
	return 0;
}

static unsigned int hpre_ecdh_get_curvesz(unsigned short id)
{
	switch (id) {
	case ECC_CURVE_NIST_P192:
		return HPRE_ECC_NIST_P192_N_SIZE;
	case ECC_CURVE_NIST_P256:
		return HPRE_ECC_NIST_P256_N_SIZE;
1295 1296
	case ECC_CURVE_NIST_P384:
		return HPRE_ECC_NIST_P384_N_SIZE;
1297 1298 1299 1300 1301 1302 1303 1304 1305
	default:
		break;
	}

	return 0;
}

static int hpre_ecdh_set_param(struct hpre_ctx *ctx, struct ecdh *params)
{
1306
	struct device *dev = ctx->dev;
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
	unsigned int sz, shift, curve_sz;
	int ret;

	ctx->key_sz = hpre_ecdh_supported_curve(ctx->curve_id);
	if (!ctx->key_sz)
		return -EINVAL;

	curve_sz = hpre_ecdh_get_curvesz(ctx->curve_id);
	if (!curve_sz || params->key_size > curve_sz)
		return -EINVAL;

	sz = ctx->key_sz;

	if (!ctx->ecdh.p) {
		ctx->ecdh.p = dma_alloc_coherent(dev, sz << 3, &ctx->ecdh.dma_p,
						 GFP_KERNEL);
		if (!ctx->ecdh.p)
			return -ENOMEM;
	}

	shift = sz << 2;
	ctx->ecdh.g = ctx->ecdh.p + shift;
	ctx->ecdh.dma_g = ctx->ecdh.dma_p + shift;

	ret = hpre_ecdh_fill_curve(ctx, params, curve_sz);
	if (ret) {
		dev_err(dev, "failed to fill curve_param, ret = %d!\n", ret);
		dma_free_coherent(dev, sz << 3, ctx->ecdh.p, ctx->ecdh.dma_p);
		ctx->ecdh.p = NULL;
		return ret;
	}

	return 0;
}

static bool hpre_key_is_zero(char *key, unsigned short key_sz)
{
	int i;

	for (i = 0; i < key_sz; i++)
		if (key[i])
			return false;

	return true;
}

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
static int ecdh_gen_privkey(struct hpre_ctx *ctx, struct ecdh *params)
{
	struct device *dev = ctx->dev;
	int ret;

	ret = crypto_get_default_rng();
	if (ret) {
		dev_err(dev, "failed to get default rng, ret = %d!\n", ret);
		return ret;
	}

	ret = crypto_rng_get_bytes(crypto_default_rng, (u8 *)params->key,
				   params->key_size);
	crypto_put_default_rng();
	if (ret)
		dev_err(dev, "failed to get rng, ret = %d!\n", ret);

	return ret;
}

1373 1374 1375 1376
static int hpre_ecdh_set_secret(struct crypto_kpp *tfm, const void *buf,
				unsigned int len)
{
	struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
1377
	struct device *dev = ctx->dev;
1378
	char key[HPRE_ECC_MAX_KSZ];
1379 1380 1381 1382 1383 1384 1385 1386 1387
	unsigned int sz, sz_shift;
	struct ecdh params;
	int ret;

	if (crypto_ecdh_decode_key(buf, len, &params) < 0) {
		dev_err(dev, "failed to decode ecdh key!\n");
		return -EINVAL;
	}

1388 1389 1390 1391 1392 1393 1394 1395 1396
	/* Use stdrng to generate private key */
	if (!params.key || !params.key_size) {
		params.key = key;
		params.key_size = hpre_ecdh_get_curvesz(ctx->curve_id);
		ret = ecdh_gen_privkey(ctx, &params);
		if (ret)
			return ret;
	}

1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
	if (hpre_key_is_zero(params.key, params.key_size)) {
		dev_err(dev, "Invalid hpre key!\n");
		return -EINVAL;
	}

	hpre_ecc_clear_ctx(ctx, false, true);

	ret = hpre_ecdh_set_param(ctx, &params);
	if (ret < 0) {
		dev_err(dev, "failed to set hpre param, ret = %d!\n", ret);
		return ret;
	}

	sz = ctx->key_sz;
	sz_shift = (sz << 1) + sz - params.key_size;
	memcpy(ctx->ecdh.p + sz_shift, params.key, params.key_size);

	return 0;
}

static void hpre_ecdh_hw_data_clr_all(struct hpre_ctx *ctx,
				      struct hpre_asym_request *req,
				      struct scatterlist *dst,
				      struct scatterlist *src)
{
1422
	struct device *dev = ctx->dev;
1423 1424 1425 1426
	struct hpre_sqe *sqe = &req->req;
	dma_addr_t dma;

	dma = le64_to_cpu(sqe->in);
1427 1428
	if (unlikely(dma_mapping_error(dev, dma)))
		return;
1429 1430 1431 1432 1433

	if (src && req->src)
		dma_free_coherent(dev, ctx->key_sz << 2, req->src, dma);

	dma = le64_to_cpu(sqe->out);
1434 1435
	if (unlikely(dma_mapping_error(dev, dma)))
		return;
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489

	if (req->dst)
		dma_free_coherent(dev, ctx->key_sz << 1, req->dst, dma);
	if (dst)
		dma_unmap_single(dev, dma, ctx->key_sz << 1, DMA_FROM_DEVICE);
}

static void hpre_ecdh_cb(struct hpre_ctx *ctx, void *resp)
{
	unsigned int curve_sz = hpre_ecdh_get_curvesz(ctx->curve_id);
	struct hpre_dfx *dfx = ctx->hpre->debug.dfx;
	struct hpre_asym_request *req = NULL;
	struct kpp_request *areq;
	u64 overtime_thrhld;
	char *p;
	int ret;

	ret = hpre_alg_res_post_hf(ctx, resp, (void **)&req);
	areq = req->areq.ecdh;
	areq->dst_len = ctx->key_sz << 1;

	overtime_thrhld = atomic64_read(&dfx[HPRE_OVERTIME_THRHLD].value);
	if (overtime_thrhld && hpre_is_bd_timeout(req, overtime_thrhld))
		atomic64_inc(&dfx[HPRE_OVER_THRHLD_CNT].value);

	p = sg_virt(areq->dst);
	memmove(p, p + ctx->key_sz - curve_sz, curve_sz);
	memmove(p + curve_sz, p + areq->dst_len - curve_sz, curve_sz);

	hpre_ecdh_hw_data_clr_all(ctx, req, areq->dst, areq->src);
	kpp_request_complete(areq, ret);

	atomic64_inc(&dfx[HPRE_RECV_CNT].value);
}

static int hpre_ecdh_msg_request_set(struct hpre_ctx *ctx,
				     struct kpp_request *req)
{
	struct hpre_asym_request *h_req;
	struct hpre_sqe *msg;
	int req_id;
	void *tmp;

	if (req->dst_len < ctx->key_sz << 1) {
		req->dst_len = ctx->key_sz << 1;
		return -EINVAL;
	}

	tmp = kpp_request_ctx(req);
	h_req = PTR_ALIGN(tmp, HPRE_ALIGN_SZ);
	h_req->cb = hpre_ecdh_cb;
	h_req->areq.ecdh = req;
	msg = &h_req->req;
	memset(msg, 0, sizeof(*msg));
1490 1491
	msg->in = cpu_to_le64(DMA_MAPPING_ERROR);
	msg->out = cpu_to_le64(DMA_MAPPING_ERROR);
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
	msg->key = cpu_to_le64(ctx->ecdh.dma_p);

	msg->dw0 |= cpu_to_le32(0x1U << HPRE_SQE_DONE_SHIFT);
	msg->task_len1 = (ctx->key_sz >> HPRE_BITS_2_BYTES_SHIFT) - 1;
	h_req->ctx = ctx;

	req_id = hpre_add_req_to_ctx(h_req);
	if (req_id < 0)
		return -EBUSY;

	msg->tag = cpu_to_le16((u16)req_id);
	return 0;
}

static int hpre_ecdh_src_data_init(struct hpre_asym_request *hpre_req,
				   struct scatterlist *data, unsigned int len)
{
	struct hpre_sqe *msg = &hpre_req->req;
	struct hpre_ctx *ctx = hpre_req->ctx;
1511
	struct device *dev = ctx->dev;
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
	unsigned int tmpshift;
	dma_addr_t dma = 0;
	void *ptr;
	int shift;

	/* Src_data include gx and gy. */
	shift = ctx->key_sz - (len >> 1);
	if (unlikely(shift < 0))
		return -EINVAL;

	ptr = dma_alloc_coherent(dev, ctx->key_sz << 2, &dma, GFP_KERNEL);
	if (unlikely(!ptr))
		return -ENOMEM;

	tmpshift = ctx->key_sz << 1;
	scatterwalk_map_and_copy(ptr + tmpshift, data, 0, len, 0);
	memcpy(ptr + shift, ptr + tmpshift, len >> 1);
	memcpy(ptr + ctx->key_sz + shift, ptr + tmpshift + (len >> 1), len >> 1);

	hpre_req->src = ptr;
	msg->in = cpu_to_le64(dma);
	return 0;
}

static int hpre_ecdh_dst_data_init(struct hpre_asym_request *hpre_req,
				   struct scatterlist *data, unsigned int len)
{
	struct hpre_sqe *msg = &hpre_req->req;
	struct hpre_ctx *ctx = hpre_req->ctx;
1541
	struct device *dev = ctx->dev;
1542
	dma_addr_t dma;
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563

	if (unlikely(!data || !sg_is_last(data) || len != ctx->key_sz << 1)) {
		dev_err(dev, "data or data length is illegal!\n");
		return -EINVAL;
	}

	hpre_req->dst = NULL;
	dma = dma_map_single(dev, sg_virt(data), len, DMA_FROM_DEVICE);
	if (unlikely(dma_mapping_error(dev, dma))) {
		dev_err(dev, "dma map data err!\n");
		return -ENOMEM;
	}

	msg->out = cpu_to_le64(dma);
	return 0;
}

static int hpre_ecdh_compute_value(struct kpp_request *req)
{
	struct crypto_kpp *tfm = crypto_kpp_reqtfm(req);
	struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
1564
	struct device *dev = ctx->dev;
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
	void *tmp = kpp_request_ctx(req);
	struct hpre_asym_request *hpre_req = PTR_ALIGN(tmp, HPRE_ALIGN_SZ);
	struct hpre_sqe *msg = &hpre_req->req;
	int ret;

	ret = hpre_ecdh_msg_request_set(ctx, req);
	if (unlikely(ret)) {
		dev_err(dev, "failed to set ecdh request, ret = %d!\n", ret);
		return ret;
	}

	if (req->src) {
		ret = hpre_ecdh_src_data_init(hpre_req, req->src, req->src_len);
		if (unlikely(ret)) {
			dev_err(dev, "failed to init src data, ret = %d!\n", ret);
			goto clear_all;
		}
	} else {
		msg->in = cpu_to_le64(ctx->ecdh.dma_g);
	}

	ret = hpre_ecdh_dst_data_init(hpre_req, req->dst, req->dst_len);
	if (unlikely(ret)) {
		dev_err(dev, "failed to init dst data, ret = %d!\n", ret);
		goto clear_all;
	}

	msg->dw0 = cpu_to_le32(le32_to_cpu(msg->dw0) | HPRE_ALG_ECC_MUL);
	ret = hpre_send(ctx, msg);
	if (likely(!ret))
		return -EINPROGRESS;

clear_all:
	hpre_rm_req_from_ctx(hpre_req);
	hpre_ecdh_hw_data_clr_all(ctx, hpre_req, req->dst, req->src);
	return ret;
}

static unsigned int hpre_ecdh_max_size(struct crypto_kpp *tfm)
{
	struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);

	/* max size is the pub_key_size, include x and y */
	return ctx->key_sz << 1;
}

static int hpre_ecdh_nist_p192_init_tfm(struct crypto_kpp *tfm)
{
	struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);

	ctx->curve_id = ECC_CURVE_NIST_P192;

	return hpre_ctx_init(ctx, HPRE_V3_ECC_ALG_TYPE);
}

static int hpre_ecdh_nist_p256_init_tfm(struct crypto_kpp *tfm)
{
	struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);

	ctx->curve_id = ECC_CURVE_NIST_P256;

	return hpre_ctx_init(ctx, HPRE_V3_ECC_ALG_TYPE);
}

1629 1630 1631 1632 1633 1634 1635 1636 1637
static int hpre_ecdh_nist_p384_init_tfm(struct crypto_kpp *tfm)
{
	struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);

	ctx->curve_id = ECC_CURVE_NIST_P384;

	return hpre_ctx_init(ctx, HPRE_V3_ECC_ALG_TYPE);
}

1638 1639 1640 1641 1642 1643 1644
static void hpre_ecdh_exit_tfm(struct crypto_kpp *tfm)
{
	struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);

	hpre_ecc_clear_ctx(ctx, true, true);
}

1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
static void hpre_curve25519_fill_curve(struct hpre_ctx *ctx, const void *buf,
				       unsigned int len)
{
	u8 secret[CURVE25519_KEY_SIZE] = { 0 };
	unsigned int sz = ctx->key_sz;
	const struct ecc_curve *curve;
	unsigned int shift = sz << 1;
	void *p;

	/*
	 * The key from 'buf' is in little-endian, we should preprocess it as
	 * the description in rfc7748: "k[0] &= 248, k[31] &= 127, k[31] |= 64",
	 * then convert it to big endian. Only in this way, the result can be
	 * the same as the software curve-25519 that exists in crypto.
	 */
	memcpy(secret, buf, len);
	curve25519_clamp_secret(secret);
	hpre_key_to_big_end(secret, CURVE25519_KEY_SIZE);

	p = ctx->curve25519.p + sz - len;

	curve = ecc_get_curve25519();

	/* fill curve parameters */
	fill_curve_param(p, curve->p, len, curve->g.ndigits);
	fill_curve_param(p + sz, curve->a, len, curve->g.ndigits);
	memcpy(p + shift, secret, len);
	fill_curve_param(p + shift + sz, curve->g.x, len, curve->g.ndigits);
	memzero_explicit(secret, CURVE25519_KEY_SIZE);
}

static int hpre_curve25519_set_param(struct hpre_ctx *ctx, const void *buf,
				     unsigned int len)
{
1679
	struct device *dev = ctx->dev;
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
	unsigned int sz = ctx->key_sz;
	unsigned int shift = sz << 1;

	/* p->a->k->gx */
	if (!ctx->curve25519.p) {
		ctx->curve25519.p = dma_alloc_coherent(dev, sz << 2,
						       &ctx->curve25519.dma_p,
						       GFP_KERNEL);
		if (!ctx->curve25519.p)
			return -ENOMEM;
	}

	ctx->curve25519.g = ctx->curve25519.p + shift + sz;
	ctx->curve25519.dma_g = ctx->curve25519.dma_p + shift + sz;

	hpre_curve25519_fill_curve(ctx, buf, len);

	return 0;
}

static int hpre_curve25519_set_secret(struct crypto_kpp *tfm, const void *buf,
				      unsigned int len)
{
	struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
1704
	struct device *dev = ctx->dev;
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
	int ret = -EINVAL;

	if (len != CURVE25519_KEY_SIZE ||
	    !crypto_memneq(buf, curve25519_null_point, CURVE25519_KEY_SIZE)) {
		dev_err(dev, "key is null or key len is not 32bytes!\n");
		return ret;
	}

	/* Free old secret if any */
	hpre_ecc_clear_ctx(ctx, false, false);

	ctx->key_sz = CURVE25519_KEY_SIZE;
	ret = hpre_curve25519_set_param(ctx, buf, CURVE25519_KEY_SIZE);
	if (ret) {
		dev_err(dev, "failed to set curve25519 param, ret = %d!\n", ret);
		hpre_ecc_clear_ctx(ctx, false, false);
		return ret;
	}

	return 0;
}

static void hpre_curve25519_hw_data_clr_all(struct hpre_ctx *ctx,
					    struct hpre_asym_request *req,
					    struct scatterlist *dst,
					    struct scatterlist *src)
{
1732
	struct device *dev = ctx->dev;
1733 1734 1735 1736
	struct hpre_sqe *sqe = &req->req;
	dma_addr_t dma;

	dma = le64_to_cpu(sqe->in);
1737 1738
	if (unlikely(dma_mapping_error(dev, dma)))
		return;
1739 1740 1741 1742 1743

	if (src && req->src)
		dma_free_coherent(dev, ctx->key_sz, req->src, dma);

	dma = le64_to_cpu(sqe->out);
1744 1745
	if (unlikely(dma_mapping_error(dev, dma)))
		return;
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795

	if (req->dst)
		dma_free_coherent(dev, ctx->key_sz, req->dst, dma);
	if (dst)
		dma_unmap_single(dev, dma, ctx->key_sz, DMA_FROM_DEVICE);
}

static void hpre_curve25519_cb(struct hpre_ctx *ctx, void *resp)
{
	struct hpre_dfx *dfx = ctx->hpre->debug.dfx;
	struct hpre_asym_request *req = NULL;
	struct kpp_request *areq;
	u64 overtime_thrhld;
	int ret;

	ret = hpre_alg_res_post_hf(ctx, resp, (void **)&req);
	areq = req->areq.curve25519;
	areq->dst_len = ctx->key_sz;

	overtime_thrhld = atomic64_read(&dfx[HPRE_OVERTIME_THRHLD].value);
	if (overtime_thrhld && hpre_is_bd_timeout(req, overtime_thrhld))
		atomic64_inc(&dfx[HPRE_OVER_THRHLD_CNT].value);

	hpre_key_to_big_end(sg_virt(areq->dst), CURVE25519_KEY_SIZE);

	hpre_curve25519_hw_data_clr_all(ctx, req, areq->dst, areq->src);
	kpp_request_complete(areq, ret);

	atomic64_inc(&dfx[HPRE_RECV_CNT].value);
}

static int hpre_curve25519_msg_request_set(struct hpre_ctx *ctx,
					   struct kpp_request *req)
{
	struct hpre_asym_request *h_req;
	struct hpre_sqe *msg;
	int req_id;
	void *tmp;

	if (unlikely(req->dst_len < ctx->key_sz)) {
		req->dst_len = ctx->key_sz;
		return -EINVAL;
	}

	tmp = kpp_request_ctx(req);
	h_req = PTR_ALIGN(tmp, HPRE_ALIGN_SZ);
	h_req->cb = hpre_curve25519_cb;
	h_req->areq.curve25519 = req;
	msg = &h_req->req;
	memset(msg, 0, sizeof(*msg));
1796 1797
	msg->in = cpu_to_le64(DMA_MAPPING_ERROR);
	msg->out = cpu_to_le64(DMA_MAPPING_ERROR);
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
	msg->key = cpu_to_le64(ctx->curve25519.dma_p);

	msg->dw0 |= cpu_to_le32(0x1U << HPRE_SQE_DONE_SHIFT);
	msg->task_len1 = (ctx->key_sz >> HPRE_BITS_2_BYTES_SHIFT) - 1;
	h_req->ctx = ctx;

	req_id = hpre_add_req_to_ctx(h_req);
	if (req_id < 0)
		return -EBUSY;

	msg->tag = cpu_to_le16((u16)req_id);
	return 0;
}

1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
static void hpre_curve25519_src_modulo_p(u8 *ptr)
{
	int i;

	for (i = 0; i < CURVE25519_KEY_SIZE - 1; i++)
		ptr[i] = 0;

	/* The modulus is ptr's last byte minus '0xed'(last byte of p) */
	ptr[i] -= 0xed;
}

1823 1824 1825 1826 1827
static int hpre_curve25519_src_init(struct hpre_asym_request *hpre_req,
				    struct scatterlist *data, unsigned int len)
{
	struct hpre_sqe *msg = &hpre_req->req;
	struct hpre_ctx *ctx = hpre_req->ctx;
1828
	struct device *dev = ctx->dev;
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
	u8 p[CURVE25519_KEY_SIZE] = { 0 };
	const struct ecc_curve *curve;
	dma_addr_t dma = 0;
	u8 *ptr;

	if (len != CURVE25519_KEY_SIZE) {
		dev_err(dev, "sourc_data len is not 32bytes, len = %u!\n", len);
		return -EINVAL;
	}

	ptr = dma_alloc_coherent(dev, ctx->key_sz, &dma, GFP_KERNEL);
	if (unlikely(!ptr))
		return -ENOMEM;

	scatterwalk_map_and_copy(ptr, data, 0, len, 0);

	if (!crypto_memneq(ptr, curve25519_null_point, CURVE25519_KEY_SIZE)) {
		dev_err(dev, "gx is null!\n");
		goto err;
	}

	/*
	 * Src_data(gx) is in little-endian order, MSB in the final byte should
1852
	 * be masked as described in RFC7748, then transform it to big-endian
1853 1854 1855 1856 1857 1858 1859 1860
	 * form, then hisi_hpre can use the data.
	 */
	ptr[31] &= 0x7f;
	hpre_key_to_big_end(ptr, CURVE25519_KEY_SIZE);

	curve = ecc_get_curve25519();

	fill_curve_param(p, curve->p, CURVE25519_KEY_SIZE, curve->g.ndigits);
1861 1862 1863 1864 1865

	/*
	 * When src_data equals (2^255 - 19) ~  (2^255 - 1), it is out of p,
	 * we get its modulus to p, and then use it.
	 */
1866 1867 1868 1869
	if (memcmp(ptr, p, ctx->key_sz) == 0) {
		dev_err(dev, "gx is p!\n");
		return -EINVAL;
	} else if (memcmp(ptr, p, ctx->key_sz) > 0) {
1870
		hpre_curve25519_src_modulo_p(ptr);
1871
	}
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886

	hpre_req->src = ptr;
	msg->in = cpu_to_le64(dma);
	return 0;

err:
	dma_free_coherent(dev, ctx->key_sz, ptr, dma);
	return -EINVAL;
}

static int hpre_curve25519_dst_init(struct hpre_asym_request *hpre_req,
				    struct scatterlist *data, unsigned int len)
{
	struct hpre_sqe *msg = &hpre_req->req;
	struct hpre_ctx *ctx = hpre_req->ctx;
1887
	struct device *dev = ctx->dev;
1888
	dma_addr_t dma;
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909

	if (!data || !sg_is_last(data) || len != ctx->key_sz) {
		dev_err(dev, "data or data length is illegal!\n");
		return -EINVAL;
	}

	hpre_req->dst = NULL;
	dma = dma_map_single(dev, sg_virt(data), len, DMA_FROM_DEVICE);
	if (unlikely(dma_mapping_error(dev, dma))) {
		dev_err(dev, "dma map data err!\n");
		return -ENOMEM;
	}

	msg->out = cpu_to_le64(dma);
	return 0;
}

static int hpre_curve25519_compute_value(struct kpp_request *req)
{
	struct crypto_kpp *tfm = crypto_kpp_reqtfm(req);
	struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
1910
	struct device *dev = ctx->dev;
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
	void *tmp = kpp_request_ctx(req);
	struct hpre_asym_request *hpre_req = PTR_ALIGN(tmp, HPRE_ALIGN_SZ);
	struct hpre_sqe *msg = &hpre_req->req;
	int ret;

	ret = hpre_curve25519_msg_request_set(ctx, req);
	if (unlikely(ret)) {
		dev_err(dev, "failed to set curve25519 request, ret = %d!\n", ret);
		return ret;
	}

	if (req->src) {
		ret = hpre_curve25519_src_init(hpre_req, req->src, req->src_len);
		if (unlikely(ret)) {
			dev_err(dev, "failed to init src data, ret = %d!\n",
				ret);
			goto clear_all;
		}
	} else {
		msg->in = cpu_to_le64(ctx->curve25519.dma_g);
	}

	ret = hpre_curve25519_dst_init(hpre_req, req->dst, req->dst_len);
	if (unlikely(ret)) {
		dev_err(dev, "failed to init dst data, ret = %d!\n", ret);
		goto clear_all;
	}

	msg->dw0 = cpu_to_le32(le32_to_cpu(msg->dw0) | HPRE_ALG_CURVE25519_MUL);
	ret = hpre_send(ctx, msg);
	if (likely(!ret))
		return -EINPROGRESS;

clear_all:
	hpre_rm_req_from_ctx(hpre_req);
	hpre_curve25519_hw_data_clr_all(ctx, hpre_req, req->dst, req->src);
	return ret;
}

static unsigned int hpre_curve25519_max_size(struct crypto_kpp *tfm)
{
	struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);

	return ctx->key_sz;
}

static int hpre_curve25519_init_tfm(struct crypto_kpp *tfm)
{
	struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);

	return hpre_ctx_init(ctx, HPRE_V3_ECC_ALG_TYPE);
}

static void hpre_curve25519_exit_tfm(struct crypto_kpp *tfm)
{
	struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);

	hpre_ecc_clear_ctx(ctx, true, false);
}

1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
static struct akcipher_alg rsa = {
	.sign = hpre_rsa_dec,
	.verify = hpre_rsa_enc,
	.encrypt = hpre_rsa_enc,
	.decrypt = hpre_rsa_dec,
	.set_pub_key = hpre_rsa_setpubkey,
	.set_priv_key = hpre_rsa_setprivkey,
	.max_size = hpre_rsa_max_size,
	.init = hpre_rsa_init_tfm,
	.exit = hpre_rsa_exit_tfm,
	.reqsize = sizeof(struct hpre_asym_request) + HPRE_ALIGN_SZ,
	.base = {
		.cra_ctxsize = sizeof(struct hpre_ctx),
		.cra_priority = HPRE_CRYPTO_ALG_PRI,
		.cra_name = "rsa",
		.cra_driver_name = "hpre-rsa",
		.cra_module = THIS_MODULE,
	},
};

static struct kpp_alg dh = {
	.set_secret = hpre_dh_set_secret,
	.generate_public_key = hpre_dh_compute_value,
	.compute_shared_secret = hpre_dh_compute_value,
	.max_size = hpre_dh_max_size,
	.init = hpre_dh_init_tfm,
	.exit = hpre_dh_exit_tfm,
	.reqsize = sizeof(struct hpre_asym_request) + HPRE_ALIGN_SZ,
	.base = {
		.cra_ctxsize = sizeof(struct hpre_ctx),
		.cra_priority = HPRE_CRYPTO_ALG_PRI,
		.cra_name = "dh",
		.cra_driver_name = "hpre-dh",
		.cra_module = THIS_MODULE,
	},
};

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
static struct kpp_alg ecdh_nist_p192 = {
	.set_secret = hpre_ecdh_set_secret,
	.generate_public_key = hpre_ecdh_compute_value,
	.compute_shared_secret = hpre_ecdh_compute_value,
	.max_size = hpre_ecdh_max_size,
	.init = hpre_ecdh_nist_p192_init_tfm,
	.exit = hpre_ecdh_exit_tfm,
	.reqsize = sizeof(struct hpre_asym_request) + HPRE_ALIGN_SZ,
	.base = {
		.cra_ctxsize = sizeof(struct hpre_ctx),
		.cra_priority = HPRE_CRYPTO_ALG_PRI,
		.cra_name = "ecdh-nist-p192",
2020
		.cra_driver_name = "hpre-ecdh-nist-p192",
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
		.cra_module = THIS_MODULE,
	},
};

static struct kpp_alg ecdh_nist_p256 = {
	.set_secret = hpre_ecdh_set_secret,
	.generate_public_key = hpre_ecdh_compute_value,
	.compute_shared_secret = hpre_ecdh_compute_value,
	.max_size = hpre_ecdh_max_size,
	.init = hpre_ecdh_nist_p256_init_tfm,
	.exit = hpre_ecdh_exit_tfm,
	.reqsize = sizeof(struct hpre_asym_request) + HPRE_ALIGN_SZ,
	.base = {
		.cra_ctxsize = sizeof(struct hpre_ctx),
		.cra_priority = HPRE_CRYPTO_ALG_PRI,
		.cra_name = "ecdh-nist-p256",
2037
		.cra_driver_name = "hpre-ecdh-nist-p256",
2038 2039 2040 2041
		.cra_module = THIS_MODULE,
	},
};

2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
static struct kpp_alg ecdh_nist_p384 = {
	.set_secret = hpre_ecdh_set_secret,
	.generate_public_key = hpre_ecdh_compute_value,
	.compute_shared_secret = hpre_ecdh_compute_value,
	.max_size = hpre_ecdh_max_size,
	.init = hpre_ecdh_nist_p384_init_tfm,
	.exit = hpre_ecdh_exit_tfm,
	.reqsize = sizeof(struct hpre_asym_request) + HPRE_ALIGN_SZ,
	.base = {
		.cra_ctxsize = sizeof(struct hpre_ctx),
		.cra_priority = HPRE_CRYPTO_ALG_PRI,
		.cra_name = "ecdh-nist-p384",
		.cra_driver_name = "hpre-ecdh-nist-p384",
		.cra_module = THIS_MODULE,
	},
};

2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
static struct kpp_alg curve25519_alg = {
	.set_secret = hpre_curve25519_set_secret,
	.generate_public_key = hpre_curve25519_compute_value,
	.compute_shared_secret = hpre_curve25519_compute_value,
	.max_size = hpre_curve25519_max_size,
	.init = hpre_curve25519_init_tfm,
	.exit = hpre_curve25519_exit_tfm,
	.reqsize = sizeof(struct hpre_asym_request) + HPRE_ALIGN_SZ,
	.base = {
		.cra_ctxsize = sizeof(struct hpre_ctx),
		.cra_priority = HPRE_CRYPTO_ALG_PRI,
		.cra_name = "curve25519",
		.cra_driver_name = "hpre-curve25519",
		.cra_module = THIS_MODULE,
	},
};


2077 2078 2079 2080 2081 2082 2083 2084 2085
static int hpre_register_ecdh(void)
{
	int ret;

	ret = crypto_register_kpp(&ecdh_nist_p192);
	if (ret)
		return ret;

	ret = crypto_register_kpp(&ecdh_nist_p256);
2086 2087 2088 2089 2090 2091
	if (ret)
		goto unregister_ecdh_p192;

	ret = crypto_register_kpp(&ecdh_nist_p384);
	if (ret)
		goto unregister_ecdh_p256;
2092 2093

	return 0;
2094 2095 2096 2097 2098 2099

unregister_ecdh_p256:
	crypto_unregister_kpp(&ecdh_nist_p256);
unregister_ecdh_p192:
	crypto_unregister_kpp(&ecdh_nist_p192);
	return ret;
2100 2101 2102 2103
}

static void hpre_unregister_ecdh(void)
{
2104
	crypto_unregister_kpp(&ecdh_nist_p384);
2105 2106 2107 2108
	crypto_unregister_kpp(&ecdh_nist_p256);
	crypto_unregister_kpp(&ecdh_nist_p192);
}

2109
int hpre_algs_register(struct hisi_qm *qm)
2110
{
2111 2112 2113 2114 2115 2116
	int ret;

	rsa.base.cra_flags = 0;
	ret = crypto_register_akcipher(&rsa);
	if (ret)
		return ret;
2117

2118
	ret = crypto_register_kpp(&dh);
2119 2120
	if (ret)
		goto unreg_rsa;
2121

2122 2123
	if (qm->ver >= QM_HW_V3) {
		ret = hpre_register_ecdh();
2124
		if (ret)
2125
			goto unreg_dh;
2126
		ret = crypto_register_kpp(&curve25519_alg);
2127 2128
		if (ret)
			goto unreg_ecdh;
2129 2130
	}
	return 0;
2131

2132 2133 2134
unreg_ecdh:
	hpre_unregister_ecdh();
unreg_dh:
2135
	crypto_unregister_kpp(&dh);
2136
unreg_rsa:
2137 2138
	crypto_unregister_akcipher(&rsa);
	return ret;
2139 2140
}

2141
void hpre_algs_unregister(struct hisi_qm *qm)
2142
{
2143 2144
	if (qm->ver >= QM_HW_V3) {
		crypto_unregister_kpp(&curve25519_alg);
2145
		hpre_unregister_ecdh();
2146
	}
2147

2148
	crypto_unregister_kpp(&dh);
2149
	crypto_unregister_akcipher(&rsa);
2150
}