intel_dpll_mgr.c 54.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 * Copyright © 2006-2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */

#include "intel_drv.h"

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
/**
 * DOC: Display PLLs
 *
 * Display PLLs used for driving outputs vary by platform. While some have
 * per-pipe or per-encoder dedicated PLLs, others allow the use of any PLL
 * from a pool. In the latter scenario, it is possible that multiple pipes
 * share a PLL if their configurations match.
 *
 * This file provides an abstraction over display PLLs. The function
 * intel_shared_dpll_init() initializes the PLLs for the given platform.  The
 * users of a PLL are tracked and that tracking is integrated with the atomic
 * modest interface. During an atomic operation, a PLL can be requested for a
 * given CRTC and encoder configuration by calling intel_get_shared_dpll() and
 * a previously used PLL can be released with intel_release_shared_dpll().
 * Changes to the users are first staged in the atomic state, and then made
 * effective by calling intel_shared_dpll_swap_state() during the atomic
 * commit phase.
 */

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
struct intel_shared_dpll *
skl_find_link_pll(struct drm_i915_private *dev_priv, int clock)
{
	struct intel_shared_dpll *pll = NULL;
	struct intel_dpll_hw_state dpll_hw_state;
	enum intel_dpll_id i;
	bool found = false;

	if (!skl_ddi_dp_set_dpll_hw_state(clock, &dpll_hw_state))
		return pll;

	for (i = DPLL_ID_SKL_DPLL1; i <= DPLL_ID_SKL_DPLL3; i++) {
		pll = &dev_priv->shared_dplls[i];

		/* Only want to check enabled timings first */
60
		if (pll->state.crtc_mask == 0)
61 62
			continue;

63 64
		if (memcmp(&dpll_hw_state, &pll->state.hw_state,
			   sizeof(pll->state.hw_state)) == 0) {
65 66 67 68 69 70 71 72 73
			found = true;
			break;
		}
	}

	/* Ok no matching timings, maybe there's a free one? */
	for (i = DPLL_ID_SKL_DPLL1;
	     ((found == false) && (i <= DPLL_ID_SKL_DPLL3)); i++) {
		pll = &dev_priv->shared_dplls[i];
74 75
		if (pll->state.crtc_mask == 0) {
			pll->state.hw_state = dpll_hw_state;
76 77 78 79 80 81 82
			break;
		}
	}

	return pll;
}

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
static void
intel_atomic_duplicate_dpll_state(struct drm_i915_private *dev_priv,
				  struct intel_shared_dpll_state *shared_dpll)
{
	enum intel_dpll_id i;

	/* Copy shared dpll state */
	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];

		shared_dpll[i] = pll->state;
	}
}

static struct intel_shared_dpll_state *
intel_atomic_get_shared_dpll_state(struct drm_atomic_state *s)
{
	struct intel_atomic_state *state = to_intel_atomic_state(s);

	WARN_ON(!drm_modeset_is_locked(&s->dev->mode_config.connection_mutex));

	if (!state->dpll_set) {
		state->dpll_set = true;

		intel_atomic_duplicate_dpll_state(to_i915(s->dev),
						  state->shared_dpll);
	}

	return state->shared_dpll;
}

114 115 116 117 118 119 120 121
/**
 * intel_get_shared_dpll_by_id - get a DPLL given its id
 * @dev_priv: i915 device instance
 * @id: pll id
 *
 * Returns:
 * A pointer to the DPLL with @id
 */
122
struct intel_shared_dpll *
123 124
intel_get_shared_dpll_by_id(struct drm_i915_private *dev_priv,
			    enum intel_dpll_id id)
125
{
126 127
	return &dev_priv->shared_dplls[id];
}
128

129 130 131 132 133 134 135 136
/**
 * intel_get_shared_dpll_id - get the id of a DPLL
 * @dev_priv: i915 device instance
 * @pll: the DPLL
 *
 * Returns:
 * The id of @pll
 */
137 138 139 140 141 142 143 144 145 146 147
enum intel_dpll_id
intel_get_shared_dpll_id(struct drm_i915_private *dev_priv,
			 struct intel_shared_dpll *pll)
{
	if (WARN_ON(pll < dev_priv->shared_dplls||
		    pll > &dev_priv->shared_dplls[dev_priv->num_shared_dpll]))
		return -1;

	return (enum intel_dpll_id) (pll - dev_priv->shared_dplls);
}

148 149 150 151 152 153 154 155 156 157 158
/* For ILK+ */
void assert_shared_dpll(struct drm_i915_private *dev_priv,
			struct intel_shared_dpll *pll,
			bool state)
{
	bool cur_state;
	struct intel_dpll_hw_state hw_state;

	if (WARN(!pll, "asserting DPLL %s with no DPLL\n", onoff(state)))
		return;

159
	cur_state = pll->funcs.get_hw_state(dev_priv, pll, &hw_state);
160 161 162 163 164
	I915_STATE_WARN(cur_state != state,
	     "%s assertion failure (expected %s, current %s)\n",
			pll->name, onoff(state), onoff(cur_state));
}

165 166 167 168 169 170 171
/**
 * intel_prepare_shared_dpll - call a dpll's prepare hook
 * @crtc: CRTC which has a shared dpll
 *
 * This calls the PLL's prepare hook if it has one and if the PLL is not
 * already enabled. The prepare hook is platform specific.
 */
172 173 174
void intel_prepare_shared_dpll(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
175
	struct drm_i915_private *dev_priv = to_i915(dev);
176
	struct intel_shared_dpll *pll = crtc->config->shared_dpll;
177 178 179 180

	if (WARN_ON(pll == NULL))
		return;

181
	mutex_lock(&dev_priv->dpll_lock);
182
	WARN_ON(!pll->state.crtc_mask);
183
	if (!pll->active_mask) {
184 185 186 187
		DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
		WARN_ON(pll->on);
		assert_shared_dpll_disabled(dev_priv, pll);

188
		pll->funcs.prepare(dev_priv, pll);
189
	}
190
	mutex_unlock(&dev_priv->dpll_lock);
191 192 193
}

/**
194 195
 * intel_enable_shared_dpll - enable a CRTC's shared DPLL
 * @crtc: CRTC which has a shared DPLL
196
 *
197
 * Enable the shared DPLL used by @crtc.
198 199 200 201
 */
void intel_enable_shared_dpll(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
202
	struct drm_i915_private *dev_priv = to_i915(dev);
203
	struct intel_shared_dpll *pll = crtc->config->shared_dpll;
204
	unsigned crtc_mask = 1 << drm_crtc_index(&crtc->base);
205
	unsigned old_mask;
206 207 208 209

	if (WARN_ON(pll == NULL))
		return;

210 211 212
	mutex_lock(&dev_priv->dpll_lock);
	old_mask = pll->active_mask;

213
	if (WARN_ON(!(pll->state.crtc_mask & crtc_mask)) ||
214
	    WARN_ON(pll->active_mask & crtc_mask))
215
		goto out;
216

217 218 219 220
	pll->active_mask |= crtc_mask;

	DRM_DEBUG_KMS("enable %s (active %x, on? %d) for crtc %d\n",
		      pll->name, pll->active_mask, pll->on,
221 222
		      crtc->base.base.id);

223
	if (old_mask) {
224 225
		WARN_ON(!pll->on);
		assert_shared_dpll_enabled(dev_priv, pll);
226
		goto out;
227 228 229 230
	}
	WARN_ON(pll->on);

	DRM_DEBUG_KMS("enabling %s\n", pll->name);
231
	pll->funcs.enable(dev_priv, pll);
232
	pll->on = true;
233 234 235

out:
	mutex_unlock(&dev_priv->dpll_lock);
236 237
}

238 239 240 241 242 243
/**
 * intel_disable_shared_dpll - disable a CRTC's shared DPLL
 * @crtc: CRTC which has a shared DPLL
 *
 * Disable the shared DPLL used by @crtc.
 */
244 245
void intel_disable_shared_dpll(struct intel_crtc *crtc)
{
246
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
247
	struct intel_shared_dpll *pll = crtc->config->shared_dpll;
248
	unsigned crtc_mask = 1 << drm_crtc_index(&crtc->base);
249 250

	/* PCH only available on ILK+ */
251
	if (INTEL_GEN(dev_priv) < 5)
252 253 254 255 256
		return;

	if (pll == NULL)
		return;

257
	mutex_lock(&dev_priv->dpll_lock);
258
	if (WARN_ON(!(pll->active_mask & crtc_mask)))
259
		goto out;
260

261 262
	DRM_DEBUG_KMS("disable %s (active %x, on? %d) for crtc %d\n",
		      pll->name, pll->active_mask, pll->on,
263 264 265 266
		      crtc->base.base.id);

	assert_shared_dpll_enabled(dev_priv, pll);
	WARN_ON(!pll->on);
267 268 269

	pll->active_mask &= ~crtc_mask;
	if (pll->active_mask)
270
		goto out;
271 272

	DRM_DEBUG_KMS("disabling %s\n", pll->name);
273
	pll->funcs.disable(dev_priv, pll);
274
	pll->on = false;
275 276 277

out:
	mutex_unlock(&dev_priv->dpll_lock);
278 279
}

280
static struct intel_shared_dpll *
281
intel_find_shared_dpll(struct intel_crtc *crtc,
282 283 284
		       struct intel_crtc_state *crtc_state,
		       enum intel_dpll_id range_min,
		       enum intel_dpll_id range_max)
285
{
286
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
287
	struct intel_shared_dpll *pll;
288
	struct intel_shared_dpll_state *shared_dpll;
289
	enum intel_dpll_id i;
290

291 292
	shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);

293
	for (i = range_min; i <= range_max; i++) {
294 295 296 297 298 299 300 301 302
		pll = &dev_priv->shared_dplls[i];

		/* Only want to check enabled timings first */
		if (shared_dpll[i].crtc_mask == 0)
			continue;

		if (memcmp(&crtc_state->dpll_hw_state,
			   &shared_dpll[i].hw_state,
			   sizeof(crtc_state->dpll_hw_state)) == 0) {
303 304
			DRM_DEBUG_KMS("[CRTC:%d:%s] sharing existing %s (crtc mask 0x%08x, active %x)\n",
				      crtc->base.base.id, crtc->base.name, pll->name,
305
				      shared_dpll[i].crtc_mask,
306
				      pll->active_mask);
307
			return pll;
308 309 310 311
		}
	}

	/* Ok no matching timings, maybe there's a free one? */
312
	for (i = range_min; i <= range_max; i++) {
313 314
		pll = &dev_priv->shared_dplls[i];
		if (shared_dpll[i].crtc_mask == 0) {
315 316
			DRM_DEBUG_KMS("[CRTC:%d:%s] allocated %s\n",
				      crtc->base.base.id, crtc->base.name, pll->name);
317
			return pll;
318 319 320
		}
	}

321
	return NULL;
322 323
}

324 325 326
static void
intel_reference_shared_dpll(struct intel_shared_dpll *pll,
			    struct intel_crtc_state *crtc_state)
327
{
328
	struct intel_shared_dpll_state *shared_dpll;
329 330
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	enum intel_dpll_id i = pll->id;
331 332 333

	shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);

334 335 336 337
	if (shared_dpll[i].crtc_mask == 0)
		shared_dpll[i].hw_state =
			crtc_state->dpll_hw_state;

338
	crtc_state->shared_dpll = pll;
339 340 341
	DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
			 pipe_name(crtc->pipe));

342
	shared_dpll[pll->id].crtc_mask |= 1 << crtc->pipe;
343 344
}

345 346 347 348 349 350 351 352 353 354 355
/**
 * intel_shared_dpll_swap_state - make atomic DPLL configuration effective
 * @state: atomic state
 *
 * This is the dpll version of drm_atomic_helper_swap_state() since the
 * helper does not handle driver-specific global state.
 *
 * For consistency with atomic helpers this function does a complete swap,
 * i.e. it also puts the current state into @state, even though there is no
 * need for that at this moment.
 */
356
void intel_shared_dpll_swap_state(struct drm_atomic_state *state)
357 358
{
	struct drm_i915_private *dev_priv = to_i915(state->dev);
359
	struct intel_shared_dpll_state *shared_dpll;
360 361 362 363 364 365 366 367
	struct intel_shared_dpll *pll;
	enum intel_dpll_id i;

	if (!to_intel_atomic_state(state)->dpll_set)
		return;

	shared_dpll = to_intel_atomic_state(state)->shared_dpll;
	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
368
		struct intel_shared_dpll_state tmp;
369

370
		pll = &dev_priv->shared_dplls[i];
371

372 373
		tmp = pll->state;
		pll->state = shared_dpll[i];
374
		shared_dpll[i] = tmp;
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
	}
}

static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
				      struct intel_shared_dpll *pll,
				      struct intel_dpll_hw_state *hw_state)
{
	uint32_t val;

	if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
		return false;

	val = I915_READ(PCH_DPLL(pll->id));
	hw_state->dpll = val;
	hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
	hw_state->fp1 = I915_READ(PCH_FP1(pll->id));

	intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);

	return val & DPLL_VCO_ENABLE;
}

397 398
static void ibx_pch_dpll_prepare(struct drm_i915_private *dev_priv,
				 struct intel_shared_dpll *pll)
399
{
400 401
	I915_WRITE(PCH_FP0(pll->id), pll->state.hw_state.fp0);
	I915_WRITE(PCH_FP1(pll->id), pll->state.hw_state.fp1);
402 403 404 405 406 407 408
}

static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
{
	u32 val;
	bool enabled;

409
	I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
410 411 412 413 414 415 416 417 418 419 420 421 422

	val = I915_READ(PCH_DREF_CONTROL);
	enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
			    DREF_SUPERSPREAD_SOURCE_MASK));
	I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
}

static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
				struct intel_shared_dpll *pll)
{
	/* PCH refclock must be enabled first */
	ibx_assert_pch_refclk_enabled(dev_priv);

423
	I915_WRITE(PCH_DPLL(pll->id), pll->state.hw_state.dpll);
424 425 426 427 428 429 430 431 432 433

	/* Wait for the clocks to stabilize. */
	POSTING_READ(PCH_DPLL(pll->id));
	udelay(150);

	/* The pixel multiplier can only be updated once the
	 * DPLL is enabled and the clocks are stable.
	 *
	 * So write it again.
	 */
434
	I915_WRITE(PCH_DPLL(pll->id), pll->state.hw_state.dpll);
435 436 437 438 439 440 441
	POSTING_READ(PCH_DPLL(pll->id));
	udelay(200);
}

static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
				 struct intel_shared_dpll *pll)
{
442
	struct drm_device *dev = &dev_priv->drm;
443 444 445 446
	struct intel_crtc *crtc;

	/* Make sure no transcoder isn't still depending on us. */
	for_each_intel_crtc(dev, crtc) {
447
		if (crtc->config->shared_dpll == pll)
448 449 450 451 452 453 454 455
			assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
	}

	I915_WRITE(PCH_DPLL(pll->id), 0);
	POSTING_READ(PCH_DPLL(pll->id));
	udelay(200);
}

456
static struct intel_shared_dpll *
457 458
ibx_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
	     struct intel_encoder *encoder)
459 460 461 462 463 464 465 466 467 468
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_shared_dpll *pll;
	enum intel_dpll_id i;

	if (HAS_PCH_IBX(dev_priv)) {
		/* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
		i = (enum intel_dpll_id) crtc->pipe;
		pll = &dev_priv->shared_dplls[i];

469 470
		DRM_DEBUG_KMS("[CRTC:%d:%s] using pre-allocated %s\n",
			      crtc->base.base.id, crtc->base.name, pll->name);
471 472 473 474 475 476
	} else {
		pll = intel_find_shared_dpll(crtc, crtc_state,
					     DPLL_ID_PCH_PLL_A,
					     DPLL_ID_PCH_PLL_B);
	}

477 478 479
	if (!pll)
		return NULL;

480 481 482 483 484 485
	/* reference the pll */
	intel_reference_shared_dpll(pll, crtc_state);

	return pll;
}

486 487 488 489 490 491 492 493 494 495 496
static void ibx_dump_hw_state(struct drm_i915_private *dev_priv,
			      struct intel_dpll_hw_state *hw_state)
{
	DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
		      "fp0: 0x%x, fp1: 0x%x\n",
		      hw_state->dpll,
		      hw_state->dpll_md,
		      hw_state->fp0,
		      hw_state->fp1);
}

497
static const struct intel_shared_dpll_funcs ibx_pch_dpll_funcs = {
498
	.prepare = ibx_pch_dpll_prepare,
499 500 501
	.enable = ibx_pch_dpll_enable,
	.disable = ibx_pch_dpll_disable,
	.get_hw_state = ibx_pch_dpll_get_hw_state,
502 503
};

504 505 506
static void hsw_ddi_wrpll_enable(struct drm_i915_private *dev_priv,
			       struct intel_shared_dpll *pll)
{
507
	I915_WRITE(WRPLL_CTL(pll->id), pll->state.hw_state.wrpll);
508 509 510 511 512 513 514
	POSTING_READ(WRPLL_CTL(pll->id));
	udelay(20);
}

static void hsw_ddi_spll_enable(struct drm_i915_private *dev_priv,
				struct intel_shared_dpll *pll)
{
515
	I915_WRITE(SPLL_CTL, pll->state.hw_state.spll);
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
	POSTING_READ(SPLL_CTL);
	udelay(20);
}

static void hsw_ddi_wrpll_disable(struct drm_i915_private *dev_priv,
				  struct intel_shared_dpll *pll)
{
	uint32_t val;

	val = I915_READ(WRPLL_CTL(pll->id));
	I915_WRITE(WRPLL_CTL(pll->id), val & ~WRPLL_PLL_ENABLE);
	POSTING_READ(WRPLL_CTL(pll->id));
}

static void hsw_ddi_spll_disable(struct drm_i915_private *dev_priv,
				 struct intel_shared_dpll *pll)
{
	uint32_t val;

	val = I915_READ(SPLL_CTL);
	I915_WRITE(SPLL_CTL, val & ~SPLL_PLL_ENABLE);
	POSTING_READ(SPLL_CTL);
}

static bool hsw_ddi_wrpll_get_hw_state(struct drm_i915_private *dev_priv,
				       struct intel_shared_dpll *pll,
				       struct intel_dpll_hw_state *hw_state)
{
	uint32_t val;

	if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
		return false;

	val = I915_READ(WRPLL_CTL(pll->id));
	hw_state->wrpll = val;

	intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);

	return val & WRPLL_PLL_ENABLE;
}

static bool hsw_ddi_spll_get_hw_state(struct drm_i915_private *dev_priv,
				      struct intel_shared_dpll *pll,
				      struct intel_dpll_hw_state *hw_state)
{
	uint32_t val;

	if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
		return false;

	val = I915_READ(SPLL_CTL);
	hw_state->spll = val;

	intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);

	return val & SPLL_PLL_ENABLE;
}

574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
#define LC_FREQ 2700
#define LC_FREQ_2K U64_C(LC_FREQ * 2000)

#define P_MIN 2
#define P_MAX 64
#define P_INC 2

/* Constraints for PLL good behavior */
#define REF_MIN 48
#define REF_MAX 400
#define VCO_MIN 2400
#define VCO_MAX 4800

struct hsw_wrpll_rnp {
	unsigned p, n2, r2;
};

static unsigned hsw_wrpll_get_budget_for_freq(int clock)
{
	unsigned budget;

	switch (clock) {
	case 25175000:
	case 25200000:
	case 27000000:
	case 27027000:
	case 37762500:
	case 37800000:
	case 40500000:
	case 40541000:
	case 54000000:
	case 54054000:
	case 59341000:
	case 59400000:
	case 72000000:
	case 74176000:
	case 74250000:
	case 81000000:
	case 81081000:
	case 89012000:
	case 89100000:
	case 108000000:
	case 108108000:
	case 111264000:
	case 111375000:
	case 148352000:
	case 148500000:
	case 162000000:
	case 162162000:
	case 222525000:
	case 222750000:
	case 296703000:
	case 297000000:
		budget = 0;
		break;
	case 233500000:
	case 245250000:
	case 247750000:
	case 253250000:
	case 298000000:
		budget = 1500;
		break;
	case 169128000:
	case 169500000:
	case 179500000:
	case 202000000:
		budget = 2000;
		break;
	case 256250000:
	case 262500000:
	case 270000000:
	case 272500000:
	case 273750000:
	case 280750000:
	case 281250000:
	case 286000000:
	case 291750000:
		budget = 4000;
		break;
	case 267250000:
	case 268500000:
		budget = 5000;
		break;
	default:
		budget = 1000;
		break;
	}

	return budget;
}

static void hsw_wrpll_update_rnp(uint64_t freq2k, unsigned budget,
				 unsigned r2, unsigned n2, unsigned p,
				 struct hsw_wrpll_rnp *best)
{
	uint64_t a, b, c, d, diff, diff_best;

	/* No best (r,n,p) yet */
	if (best->p == 0) {
		best->p = p;
		best->n2 = n2;
		best->r2 = r2;
		return;
	}

	/*
	 * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
	 * freq2k.
	 *
	 * delta = 1e6 *
	 *	   abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
	 *	   freq2k;
	 *
	 * and we would like delta <= budget.
	 *
	 * If the discrepancy is above the PPM-based budget, always prefer to
	 * improve upon the previous solution.  However, if you're within the
	 * budget, try to maximize Ref * VCO, that is N / (P * R^2).
	 */
	a = freq2k * budget * p * r2;
	b = freq2k * budget * best->p * best->r2;
	diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2);
	diff_best = abs_diff(freq2k * best->p * best->r2,
			     LC_FREQ_2K * best->n2);
	c = 1000000 * diff;
	d = 1000000 * diff_best;

	if (a < c && b < d) {
		/* If both are above the budget, pick the closer */
		if (best->p * best->r2 * diff < p * r2 * diff_best) {
			best->p = p;
			best->n2 = n2;
			best->r2 = r2;
		}
	} else if (a >= c && b < d) {
		/* If A is below the threshold but B is above it?  Update. */
		best->p = p;
		best->n2 = n2;
		best->r2 = r2;
	} else if (a >= c && b >= d) {
		/* Both are below the limit, so pick the higher n2/(r2*r2) */
		if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
			best->p = p;
			best->n2 = n2;
			best->r2 = r2;
		}
	}
	/* Otherwise a < c && b >= d, do nothing */
}

static void
hsw_ddi_calculate_wrpll(int clock /* in Hz */,
			unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
{
	uint64_t freq2k;
	unsigned p, n2, r2;
	struct hsw_wrpll_rnp best = { 0, 0, 0 };
	unsigned budget;

	freq2k = clock / 100;

	budget = hsw_wrpll_get_budget_for_freq(clock);

	/* Special case handling for 540 pixel clock: bypass WR PLL entirely
	 * and directly pass the LC PLL to it. */
	if (freq2k == 5400000) {
		*n2_out = 2;
		*p_out = 1;
		*r2_out = 2;
		return;
	}

	/*
	 * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
	 * the WR PLL.
	 *
	 * We want R so that REF_MIN <= Ref <= REF_MAX.
	 * Injecting R2 = 2 * R gives:
	 *   REF_MAX * r2 > LC_FREQ * 2 and
	 *   REF_MIN * r2 < LC_FREQ * 2
	 *
	 * Which means the desired boundaries for r2 are:
	 *  LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
	 *
	 */
	for (r2 = LC_FREQ * 2 / REF_MAX + 1;
	     r2 <= LC_FREQ * 2 / REF_MIN;
	     r2++) {

		/*
		 * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
		 *
		 * Once again we want VCO_MIN <= VCO <= VCO_MAX.
		 * Injecting R2 = 2 * R and N2 = 2 * N, we get:
		 *   VCO_MAX * r2 > n2 * LC_FREQ and
		 *   VCO_MIN * r2 < n2 * LC_FREQ)
		 *
		 * Which means the desired boundaries for n2 are:
		 * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
		 */
		for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
		     n2 <= VCO_MAX * r2 / LC_FREQ;
		     n2++) {

			for (p = P_MIN; p <= P_MAX; p += P_INC)
				hsw_wrpll_update_rnp(freq2k, budget,
						     r2, n2, p, &best);
		}
	}

	*n2_out = best.n2;
	*p_out = best.p;
	*r2_out = best.r2;
}

M
Manasi Navare 已提交
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
static struct intel_shared_dpll *hsw_ddi_hdmi_get_dpll(int clock,
						       struct intel_crtc *crtc,
						       struct intel_crtc_state *crtc_state)
{
	struct intel_shared_dpll *pll;
	uint32_t val;
	unsigned int p, n2, r2;

	hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);

	val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL |
	      WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
	      WRPLL_DIVIDER_POST(p);

	crtc_state->dpll_hw_state.wrpll = val;

	pll = intel_find_shared_dpll(crtc, crtc_state,
				     DPLL_ID_WRPLL1, DPLL_ID_WRPLL2);

	if (!pll)
		return NULL;

	return pll;
}

struct intel_shared_dpll *hsw_ddi_dp_get_dpll(struct intel_encoder *encoder,
					      int clock)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_shared_dpll *pll;
	enum intel_dpll_id pll_id;

	switch (clock / 2) {
	case 81000:
		pll_id = DPLL_ID_LCPLL_810;
		break;
	case 135000:
		pll_id = DPLL_ID_LCPLL_1350;
		break;
	case 270000:
		pll_id = DPLL_ID_LCPLL_2700;
		break;
	default:
		DRM_DEBUG_KMS("Invalid clock for DP: %d\n", clock);
		return NULL;
	}

	pll = intel_get_shared_dpll_by_id(dev_priv, pll_id);

	if (!pll)
		return NULL;

	return pll;
}

844
static struct intel_shared_dpll *
845 846
hsw_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
	     struct intel_encoder *encoder)
847 848
{
	struct intel_shared_dpll *pll;
849
	int clock = crtc_state->port_clock;
850

851 852 853
	memset(&crtc_state->dpll_hw_state, 0,
	       sizeof(crtc_state->dpll_hw_state));

854
	if (encoder->type == INTEL_OUTPUT_HDMI) {
M
Manasi Navare 已提交
855
		pll = hsw_ddi_hdmi_get_dpll(clock, crtc, crtc_state);
856

857
	} else if (encoder->type == INTEL_OUTPUT_DP ||
858 859
		   encoder->type == INTEL_OUTPUT_DP_MST ||
		   encoder->type == INTEL_OUTPUT_EDP) {
M
Manasi Navare 已提交
860
		pll = hsw_ddi_dp_get_dpll(encoder, clock);
861

862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
	} else if (encoder->type == INTEL_OUTPUT_ANALOG) {
		if (WARN_ON(crtc_state->port_clock / 2 != 135000))
			return NULL;

		crtc_state->dpll_hw_state.spll =
			SPLL_PLL_ENABLE | SPLL_PLL_FREQ_1350MHz | SPLL_PLL_SSC;

		pll = intel_find_shared_dpll(crtc, crtc_state,
					     DPLL_ID_SPLL, DPLL_ID_SPLL);
	} else {
		return NULL;
	}

	if (!pll)
		return NULL;

	intel_reference_shared_dpll(pll, crtc_state);
879 880 881 882

	return pll;
}

883 884 885 886 887 888 889
static void hsw_dump_hw_state(struct drm_i915_private *dev_priv,
			      struct intel_dpll_hw_state *hw_state)
{
	DRM_DEBUG_KMS("dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
		      hw_state->wrpll, hw_state->spll);
}

890 891 892 893
static const struct intel_shared_dpll_funcs hsw_ddi_wrpll_funcs = {
	.enable = hsw_ddi_wrpll_enable,
	.disable = hsw_ddi_wrpll_disable,
	.get_hw_state = hsw_ddi_wrpll_get_hw_state,
894 895
};

896 897 898 899
static const struct intel_shared_dpll_funcs hsw_ddi_spll_funcs = {
	.enable = hsw_ddi_spll_enable,
	.disable = hsw_ddi_spll_disable,
	.get_hw_state = hsw_ddi_spll_get_hw_state,
900 901
};

902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
static void hsw_ddi_lcpll_enable(struct drm_i915_private *dev_priv,
				 struct intel_shared_dpll *pll)
{
}

static void hsw_ddi_lcpll_disable(struct drm_i915_private *dev_priv,
				  struct intel_shared_dpll *pll)
{
}

static bool hsw_ddi_lcpll_get_hw_state(struct drm_i915_private *dev_priv,
				       struct intel_shared_dpll *pll,
				       struct intel_dpll_hw_state *hw_state)
{
	return true;
}

static const struct intel_shared_dpll_funcs hsw_ddi_lcpll_funcs = {
	.enable = hsw_ddi_lcpll_enable,
	.disable = hsw_ddi_lcpll_disable,
	.get_hw_state = hsw_ddi_lcpll_get_hw_state,
};

925 926 927 928 929
struct skl_dpll_regs {
	i915_reg_t ctl, cfgcr1, cfgcr2;
};

/* this array is indexed by the *shared* pll id */
930 931 932 933 934 935
static const struct skl_dpll_regs skl_dpll_regs[4] = {
	{
		/* DPLL 0 */
		.ctl = LCPLL1_CTL,
		/* DPLL 0 doesn't support HDMI mode */
	},
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
	{
		/* DPLL 1 */
		.ctl = LCPLL2_CTL,
		.cfgcr1 = DPLL_CFGCR1(SKL_DPLL1),
		.cfgcr2 = DPLL_CFGCR2(SKL_DPLL1),
	},
	{
		/* DPLL 2 */
		.ctl = WRPLL_CTL(0),
		.cfgcr1 = DPLL_CFGCR1(SKL_DPLL2),
		.cfgcr2 = DPLL_CFGCR2(SKL_DPLL2),
	},
	{
		/* DPLL 3 */
		.ctl = WRPLL_CTL(1),
		.cfgcr1 = DPLL_CFGCR1(SKL_DPLL3),
		.cfgcr2 = DPLL_CFGCR2(SKL_DPLL3),
	},
};

956 957
static void skl_ddi_pll_write_ctrl1(struct drm_i915_private *dev_priv,
				    struct intel_shared_dpll *pll)
958 959 960 961 962
{
	uint32_t val;

	val = I915_READ(DPLL_CTRL1);

963 964
	val &= ~(DPLL_CTRL1_HDMI_MODE(pll->id) | DPLL_CTRL1_SSC(pll->id) |
		 DPLL_CTRL1_LINK_RATE_MASK(pll->id));
965
	val |= pll->state.hw_state.ctrl1 << (pll->id * 6);
966 967 968

	I915_WRITE(DPLL_CTRL1, val);
	POSTING_READ(DPLL_CTRL1);
969 970 971 972 973 974 975 976
}

static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv,
			       struct intel_shared_dpll *pll)
{
	const struct skl_dpll_regs *regs = skl_dpll_regs;

	skl_ddi_pll_write_ctrl1(dev_priv, pll);
977

978 979
	I915_WRITE(regs[pll->id].cfgcr1, pll->state.hw_state.cfgcr1);
	I915_WRITE(regs[pll->id].cfgcr2, pll->state.hw_state.cfgcr2);
980 981 982 983 984 985 986
	POSTING_READ(regs[pll->id].cfgcr1);
	POSTING_READ(regs[pll->id].cfgcr2);

	/* the enable bit is always bit 31 */
	I915_WRITE(regs[pll->id].ctl,
		   I915_READ(regs[pll->id].ctl) | LCPLL_PLL_ENABLE);

987 988 989 990 991
	if (intel_wait_for_register(dev_priv,
				    DPLL_STATUS,
				    DPLL_LOCK(pll->id),
				    DPLL_LOCK(pll->id),
				    5))
992 993 994 995 996 997 998
		DRM_ERROR("DPLL %d not locked\n", pll->id);
}

static void skl_ddi_dpll0_enable(struct drm_i915_private *dev_priv,
				 struct intel_shared_dpll *pll)
{
	skl_ddi_pll_write_ctrl1(dev_priv, pll);
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
}

static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv,
				struct intel_shared_dpll *pll)
{
	const struct skl_dpll_regs *regs = skl_dpll_regs;

	/* the enable bit is always bit 31 */
	I915_WRITE(regs[pll->id].ctl,
		   I915_READ(regs[pll->id].ctl) & ~LCPLL_PLL_ENABLE);
	POSTING_READ(regs[pll->id].ctl);
}

1012 1013 1014 1015 1016
static void skl_ddi_dpll0_disable(struct drm_i915_private *dev_priv,
				  struct intel_shared_dpll *pll)
{
}

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
				     struct intel_shared_dpll *pll,
				     struct intel_dpll_hw_state *hw_state)
{
	uint32_t val;
	const struct skl_dpll_regs *regs = skl_dpll_regs;
	bool ret;

	if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
		return false;

	ret = false;

	val = I915_READ(regs[pll->id].ctl);
	if (!(val & LCPLL_PLL_ENABLE))
		goto out;

	val = I915_READ(DPLL_CTRL1);
1035
	hw_state->ctrl1 = (val >> (pll->id * 6)) & 0x3f;
1036 1037

	/* avoid reading back stale values if HDMI mode is not enabled */
1038
	if (val & DPLL_CTRL1_HDMI_MODE(pll->id)) {
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
		hw_state->cfgcr1 = I915_READ(regs[pll->id].cfgcr1);
		hw_state->cfgcr2 = I915_READ(regs[pll->id].cfgcr2);
	}
	ret = true;

out:
	intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);

	return ret;
}

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
static bool skl_ddi_dpll0_get_hw_state(struct drm_i915_private *dev_priv,
				       struct intel_shared_dpll *pll,
				       struct intel_dpll_hw_state *hw_state)
{
	uint32_t val;
	const struct skl_dpll_regs *regs = skl_dpll_regs;
	bool ret;

	if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
		return false;

	ret = false;

	/* DPLL0 is always enabled since it drives CDCLK */
	val = I915_READ(regs[pll->id].ctl);
	if (WARN_ON(!(val & LCPLL_PLL_ENABLE)))
		goto out;

	val = I915_READ(DPLL_CTRL1);
	hw_state->ctrl1 = (val >> (pll->id * 6)) & 0x3f;

	ret = true;

out:
	intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);

	return ret;
}

1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
struct skl_wrpll_context {
	uint64_t min_deviation;		/* current minimal deviation */
	uint64_t central_freq;		/* chosen central freq */
	uint64_t dco_freq;		/* chosen dco freq */
	unsigned int p;			/* chosen divider */
};

static void skl_wrpll_context_init(struct skl_wrpll_context *ctx)
{
	memset(ctx, 0, sizeof(*ctx));

	ctx->min_deviation = U64_MAX;
}

/* DCO freq must be within +1%/-6%  of the DCO central freq */
#define SKL_DCO_MAX_PDEVIATION	100
#define SKL_DCO_MAX_NDEVIATION	600

static void skl_wrpll_try_divider(struct skl_wrpll_context *ctx,
				  uint64_t central_freq,
				  uint64_t dco_freq,
				  unsigned int divider)
{
	uint64_t deviation;

	deviation = div64_u64(10000 * abs_diff(dco_freq, central_freq),
			      central_freq);

	/* positive deviation */
	if (dco_freq >= central_freq) {
		if (deviation < SKL_DCO_MAX_PDEVIATION &&
		    deviation < ctx->min_deviation) {
			ctx->min_deviation = deviation;
			ctx->central_freq = central_freq;
			ctx->dco_freq = dco_freq;
			ctx->p = divider;
		}
	/* negative deviation */
	} else if (deviation < SKL_DCO_MAX_NDEVIATION &&
		   deviation < ctx->min_deviation) {
		ctx->min_deviation = deviation;
		ctx->central_freq = central_freq;
		ctx->dco_freq = dco_freq;
		ctx->p = divider;
	}
}

static void skl_wrpll_get_multipliers(unsigned int p,
				      unsigned int *p0 /* out */,
				      unsigned int *p1 /* out */,
				      unsigned int *p2 /* out */)
{
	/* even dividers */
	if (p % 2 == 0) {
		unsigned int half = p / 2;

		if (half == 1 || half == 2 || half == 3 || half == 5) {
			*p0 = 2;
			*p1 = 1;
			*p2 = half;
		} else if (half % 2 == 0) {
			*p0 = 2;
			*p1 = half / 2;
			*p2 = 2;
		} else if (half % 3 == 0) {
			*p0 = 3;
			*p1 = half / 3;
			*p2 = 2;
		} else if (half % 7 == 0) {
			*p0 = 7;
			*p1 = half / 7;
			*p2 = 2;
		}
	} else if (p == 3 || p == 9) {  /* 3, 5, 7, 9, 15, 21, 35 */
		*p0 = 3;
		*p1 = 1;
		*p2 = p / 3;
	} else if (p == 5 || p == 7) {
		*p0 = p;
		*p1 = 1;
		*p2 = 1;
	} else if (p == 15) {
		*p0 = 3;
		*p1 = 1;
		*p2 = 5;
	} else if (p == 21) {
		*p0 = 7;
		*p1 = 1;
		*p2 = 3;
	} else if (p == 35) {
		*p0 = 7;
		*p1 = 1;
		*p2 = 5;
	}
}

struct skl_wrpll_params {
	uint32_t        dco_fraction;
	uint32_t        dco_integer;
	uint32_t        qdiv_ratio;
	uint32_t        qdiv_mode;
	uint32_t        kdiv;
	uint32_t        pdiv;
	uint32_t        central_freq;
};

static void skl_wrpll_params_populate(struct skl_wrpll_params *params,
				      uint64_t afe_clock,
				      uint64_t central_freq,
				      uint32_t p0, uint32_t p1, uint32_t p2)
{
	uint64_t dco_freq;

	switch (central_freq) {
	case 9600000000ULL:
		params->central_freq = 0;
		break;
	case 9000000000ULL:
		params->central_freq = 1;
		break;
	case 8400000000ULL:
		params->central_freq = 3;
	}

	switch (p0) {
	case 1:
		params->pdiv = 0;
		break;
	case 2:
		params->pdiv = 1;
		break;
	case 3:
		params->pdiv = 2;
		break;
	case 7:
		params->pdiv = 4;
		break;
	default:
		WARN(1, "Incorrect PDiv\n");
	}

	switch (p2) {
	case 5:
		params->kdiv = 0;
		break;
	case 2:
		params->kdiv = 1;
		break;
	case 3:
		params->kdiv = 2;
		break;
	case 1:
		params->kdiv = 3;
		break;
	default:
		WARN(1, "Incorrect KDiv\n");
	}

	params->qdiv_ratio = p1;
	params->qdiv_mode = (params->qdiv_ratio == 1) ? 0 : 1;

	dco_freq = p0 * p1 * p2 * afe_clock;

	/*
	 * Intermediate values are in Hz.
	 * Divide by MHz to match bsepc
	 */
	params->dco_integer = div_u64(dco_freq, 24 * MHz(1));
	params->dco_fraction =
		div_u64((div_u64(dco_freq, 24) -
			 params->dco_integer * MHz(1)) * 0x8000, MHz(1));
}

static bool
skl_ddi_calculate_wrpll(int clock /* in Hz */,
			struct skl_wrpll_params *wrpll_params)
{
	uint64_t afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */
	uint64_t dco_central_freq[3] = {8400000000ULL,
					9000000000ULL,
					9600000000ULL};
	static const int even_dividers[] = {  4,  6,  8, 10, 12, 14, 16, 18, 20,
					     24, 28, 30, 32, 36, 40, 42, 44,
					     48, 52, 54, 56, 60, 64, 66, 68,
					     70, 72, 76, 78, 80, 84, 88, 90,
					     92, 96, 98 };
	static const int odd_dividers[] = { 3, 5, 7, 9, 15, 21, 35 };
	static const struct {
		const int *list;
		int n_dividers;
	} dividers[] = {
		{ even_dividers, ARRAY_SIZE(even_dividers) },
		{ odd_dividers, ARRAY_SIZE(odd_dividers) },
	};
	struct skl_wrpll_context ctx;
	unsigned int dco, d, i;
	unsigned int p0, p1, p2;

	skl_wrpll_context_init(&ctx);

	for (d = 0; d < ARRAY_SIZE(dividers); d++) {
		for (dco = 0; dco < ARRAY_SIZE(dco_central_freq); dco++) {
			for (i = 0; i < dividers[d].n_dividers; i++) {
				unsigned int p = dividers[d].list[i];
				uint64_t dco_freq = p * afe_clock;

				skl_wrpll_try_divider(&ctx,
						      dco_central_freq[dco],
						      dco_freq,
						      p);
				/*
				 * Skip the remaining dividers if we're sure to
				 * have found the definitive divider, we can't
				 * improve a 0 deviation.
				 */
				if (ctx.min_deviation == 0)
					goto skip_remaining_dividers;
			}
		}

skip_remaining_dividers:
		/*
		 * If a solution is found with an even divider, prefer
		 * this one.
		 */
		if (d == 0 && ctx.p)
			break;
	}

	if (!ctx.p) {
		DRM_DEBUG_DRIVER("No valid divider found for %dHz\n", clock);
		return false;
	}

	/*
	 * gcc incorrectly analyses that these can be used without being
	 * initialized. To be fair, it's hard to guess.
	 */
	p0 = p1 = p2 = 0;
	skl_wrpll_get_multipliers(ctx.p, &p0, &p1, &p2);
	skl_wrpll_params_populate(wrpll_params, afe_clock, ctx.central_freq,
				  p0, p1, p2);

	return true;
}

J
Jim Bride 已提交
1325 1326 1327
static bool skl_ddi_hdmi_pll_dividers(struct intel_crtc *crtc,
				      struct intel_crtc_state *crtc_state,
				      int clock)
1328
{
1329
	uint32_t ctrl1, cfgcr1, cfgcr2;
J
Jim Bride 已提交
1330
	struct skl_wrpll_params wrpll_params = { 0, };
1331 1332 1333 1334 1335 1336 1337

	/*
	 * See comment in intel_dpll_hw_state to understand why we always use 0
	 * as the DPLL id in this function.
	 */
	ctrl1 = DPLL_CTRL1_OVERRIDE(0);

J
Jim Bride 已提交
1338
	ctrl1 |= DPLL_CTRL1_HDMI_MODE(0);
1339

J
Jim Bride 已提交
1340 1341
	if (!skl_ddi_calculate_wrpll(clock * 1000, &wrpll_params))
		return false;
1342

J
Jim Bride 已提交
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
	cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE |
		DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) |
		wrpll_params.dco_integer;

	cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) |
		DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) |
		DPLL_CFGCR2_KDIV(wrpll_params.kdiv) |
		DPLL_CFGCR2_PDIV(wrpll_params.pdiv) |
		wrpll_params.central_freq;

	memset(&crtc_state->dpll_hw_state, 0,
	       sizeof(crtc_state->dpll_hw_state));

	crtc_state->dpll_hw_state.ctrl1 = ctrl1;
	crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
	crtc_state->dpll_hw_state.cfgcr2 = cfgcr2;
	return true;
}


bool skl_ddi_dp_set_dpll_hw_state(int clock,
				  struct intel_dpll_hw_state *dpll_hw_state)
{
	uint32_t ctrl1;

	/*
	 * See comment in intel_dpll_hw_state to understand why we always use 0
	 * as the DPLL id in this function.
	 */
	ctrl1 = DPLL_CTRL1_OVERRIDE(0);
	switch (clock / 2) {
	case 81000:
		ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, 0);
		break;
	case 135000:
		ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, 0);
		break;
	case 270000:
		ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, 0);
		break;
		/* eDP 1.4 rates */
	case 162000:
		ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, 0);
		break;
	case 108000:
		ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, 0);
		break;
	case 216000:
		ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, 0);
		break;
	}
1394

J
Jim Bride 已提交
1395 1396 1397
	dpll_hw_state->ctrl1 = ctrl1;
	return true;
}
1398

J
Jim Bride 已提交
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
static struct intel_shared_dpll *
skl_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
	     struct intel_encoder *encoder)
{
	struct intel_shared_dpll *pll;
	int clock = crtc_state->port_clock;
	bool bret;
	struct intel_dpll_hw_state dpll_hw_state;

	memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));

	if (encoder->type == INTEL_OUTPUT_HDMI) {
		bret = skl_ddi_hdmi_pll_dividers(crtc, crtc_state, clock);
		if (!bret) {
			DRM_DEBUG_KMS("Could not get HDMI pll dividers.\n");
			return NULL;
		}
1416
	} else if (encoder->type == INTEL_OUTPUT_DP ||
1417 1418
		   encoder->type == INTEL_OUTPUT_DP_MST ||
		   encoder->type == INTEL_OUTPUT_EDP) {
J
Jim Bride 已提交
1419 1420 1421 1422
		bret = skl_ddi_dp_set_dpll_hw_state(clock, &dpll_hw_state);
		if (!bret) {
			DRM_DEBUG_KMS("Could not set DP dpll HW state.\n");
			return NULL;
1423
		}
J
Jim Bride 已提交
1424
		crtc_state->dpll_hw_state = dpll_hw_state;
1425 1426 1427 1428
	} else {
		return NULL;
	}

1429 1430 1431 1432 1433 1434 1435 1436
	if (encoder->type == INTEL_OUTPUT_EDP)
		pll = intel_find_shared_dpll(crtc, crtc_state,
					     DPLL_ID_SKL_DPLL0,
					     DPLL_ID_SKL_DPLL0);
	else
		pll = intel_find_shared_dpll(crtc, crtc_state,
					     DPLL_ID_SKL_DPLL1,
					     DPLL_ID_SKL_DPLL3);
1437 1438 1439 1440
	if (!pll)
		return NULL;

	intel_reference_shared_dpll(pll, crtc_state);
1441 1442 1443 1444

	return pll;
}

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
static void skl_dump_hw_state(struct drm_i915_private *dev_priv,
			      struct intel_dpll_hw_state *hw_state)
{
	DRM_DEBUG_KMS("dpll_hw_state: "
		      "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
		      hw_state->ctrl1,
		      hw_state->cfgcr1,
		      hw_state->cfgcr2);
}

1455 1456 1457 1458
static const struct intel_shared_dpll_funcs skl_ddi_pll_funcs = {
	.enable = skl_ddi_pll_enable,
	.disable = skl_ddi_pll_disable,
	.get_hw_state = skl_ddi_pll_get_hw_state,
1459 1460
};

1461 1462 1463 1464 1465 1466
static const struct intel_shared_dpll_funcs skl_ddi_dpll0_funcs = {
	.enable = skl_ddi_dpll0_enable,
	.disable = skl_ddi_dpll0_disable,
	.get_hw_state = skl_ddi_dpll0_get_hw_state,
};

1467 1468 1469 1470 1471
static void bxt_ddi_pll_enable(struct drm_i915_private *dev_priv,
				struct intel_shared_dpll *pll)
{
	uint32_t temp;
	enum port port = (enum port)pll->id;	/* 1:1 port->PLL mapping */
1472 1473 1474
	enum dpio_phy phy;
	enum dpio_channel ch;

1475
	bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
1476 1477

	/* Non-SSC reference */
1478 1479
	temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
	temp |= PORT_PLL_REF_SEL;
1480 1481
	I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);

1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
	if (IS_GEMINILAKE(dev_priv)) {
		temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
		temp |= PORT_PLL_POWER_ENABLE;
		I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);

		if (wait_for_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) &
				 PORT_PLL_POWER_STATE), 200))
			DRM_ERROR("Power state not set for PLL:%d\n", port);
	}

1492
	/* Disable 10 bit clock */
1493
	temp = I915_READ(BXT_PORT_PLL_EBB_4(phy, ch));
1494
	temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
1495
	I915_WRITE(BXT_PORT_PLL_EBB_4(phy, ch), temp);
1496 1497

	/* Write P1 & P2 */
1498
	temp = I915_READ(BXT_PORT_PLL_EBB_0(phy, ch));
1499
	temp &= ~(PORT_PLL_P1_MASK | PORT_PLL_P2_MASK);
1500
	temp |= pll->state.hw_state.ebb0;
1501
	I915_WRITE(BXT_PORT_PLL_EBB_0(phy, ch), temp);
1502 1503

	/* Write M2 integer */
1504
	temp = I915_READ(BXT_PORT_PLL(phy, ch, 0));
1505
	temp &= ~PORT_PLL_M2_MASK;
1506
	temp |= pll->state.hw_state.pll0;
1507
	I915_WRITE(BXT_PORT_PLL(phy, ch, 0), temp);
1508 1509

	/* Write N */
1510
	temp = I915_READ(BXT_PORT_PLL(phy, ch, 1));
1511
	temp &= ~PORT_PLL_N_MASK;
1512
	temp |= pll->state.hw_state.pll1;
1513
	I915_WRITE(BXT_PORT_PLL(phy, ch, 1), temp);
1514 1515

	/* Write M2 fraction */
1516
	temp = I915_READ(BXT_PORT_PLL(phy, ch, 2));
1517
	temp &= ~PORT_PLL_M2_FRAC_MASK;
1518
	temp |= pll->state.hw_state.pll2;
1519
	I915_WRITE(BXT_PORT_PLL(phy, ch, 2), temp);
1520 1521

	/* Write M2 fraction enable */
1522
	temp = I915_READ(BXT_PORT_PLL(phy, ch, 3));
1523
	temp &= ~PORT_PLL_M2_FRAC_ENABLE;
1524
	temp |= pll->state.hw_state.pll3;
1525
	I915_WRITE(BXT_PORT_PLL(phy, ch, 3), temp);
1526 1527

	/* Write coeff */
1528
	temp = I915_READ(BXT_PORT_PLL(phy, ch, 6));
1529 1530 1531
	temp &= ~PORT_PLL_PROP_COEFF_MASK;
	temp &= ~PORT_PLL_INT_COEFF_MASK;
	temp &= ~PORT_PLL_GAIN_CTL_MASK;
1532
	temp |= pll->state.hw_state.pll6;
1533
	I915_WRITE(BXT_PORT_PLL(phy, ch, 6), temp);
1534 1535

	/* Write calibration val */
1536
	temp = I915_READ(BXT_PORT_PLL(phy, ch, 8));
1537
	temp &= ~PORT_PLL_TARGET_CNT_MASK;
1538
	temp |= pll->state.hw_state.pll8;
1539
	I915_WRITE(BXT_PORT_PLL(phy, ch, 8), temp);
1540

1541
	temp = I915_READ(BXT_PORT_PLL(phy, ch, 9));
1542
	temp &= ~PORT_PLL_LOCK_THRESHOLD_MASK;
1543
	temp |= pll->state.hw_state.pll9;
1544
	I915_WRITE(BXT_PORT_PLL(phy, ch, 9), temp);
1545

1546
	temp = I915_READ(BXT_PORT_PLL(phy, ch, 10));
1547 1548
	temp &= ~PORT_PLL_DCO_AMP_OVR_EN_H;
	temp &= ~PORT_PLL_DCO_AMP_MASK;
1549
	temp |= pll->state.hw_state.pll10;
1550
	I915_WRITE(BXT_PORT_PLL(phy, ch, 10), temp);
1551 1552

	/* Recalibrate with new settings */
1553
	temp = I915_READ(BXT_PORT_PLL_EBB_4(phy, ch));
1554
	temp |= PORT_PLL_RECALIBRATE;
1555
	I915_WRITE(BXT_PORT_PLL_EBB_4(phy, ch), temp);
1556
	temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
1557
	temp |= pll->state.hw_state.ebb4;
1558
	I915_WRITE(BXT_PORT_PLL_EBB_4(phy, ch), temp);
1559 1560 1561 1562 1563 1564 1565

	/* Enable PLL */
	temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
	temp |= PORT_PLL_ENABLE;
	I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
	POSTING_READ(BXT_PORT_PLL_ENABLE(port));

1566 1567
	if (wait_for_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) & PORT_PLL_LOCK),
			200))
1568 1569
		DRM_ERROR("PLL %d not locked\n", port);

1570 1571 1572 1573 1574 1575
	if (IS_GEMINILAKE(dev_priv)) {
		temp = I915_READ(BXT_PORT_TX_DW5_LN0(phy, ch));
		temp |= DCC_DELAY_RANGE_2;
		I915_WRITE(BXT_PORT_TX_DW5_GRP(phy, ch), temp);
	}

1576 1577 1578 1579
	/*
	 * While we write to the group register to program all lanes at once we
	 * can read only lane registers and we pick lanes 0/1 for that.
	 */
1580
	temp = I915_READ(BXT_PORT_PCS_DW12_LN01(phy, ch));
1581 1582
	temp &= ~LANE_STAGGER_MASK;
	temp &= ~LANESTAGGER_STRAP_OVRD;
1583
	temp |= pll->state.hw_state.pcsdw12;
1584
	I915_WRITE(BXT_PORT_PCS_DW12_GRP(phy, ch), temp);
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
}

static void bxt_ddi_pll_disable(struct drm_i915_private *dev_priv,
					struct intel_shared_dpll *pll)
{
	enum port port = (enum port)pll->id;	/* 1:1 port->PLL mapping */
	uint32_t temp;

	temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
	temp &= ~PORT_PLL_ENABLE;
	I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
	POSTING_READ(BXT_PORT_PLL_ENABLE(port));
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606

	if (IS_GEMINILAKE(dev_priv)) {
		temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
		temp &= ~PORT_PLL_POWER_ENABLE;
		I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);

		if (wait_for_us(!(I915_READ(BXT_PORT_PLL_ENABLE(port)) &
				PORT_PLL_POWER_STATE), 200))
			DRM_ERROR("Power state not reset for PLL:%d\n", port);
	}
1607 1608 1609 1610 1611 1612 1613 1614 1615
}

static bool bxt_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
					struct intel_shared_dpll *pll,
					struct intel_dpll_hw_state *hw_state)
{
	enum port port = (enum port)pll->id;	/* 1:1 port->PLL mapping */
	uint32_t val;
	bool ret;
1616 1617 1618
	enum dpio_phy phy;
	enum dpio_channel ch;

1619
	bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629

	if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
		return false;

	ret = false;

	val = I915_READ(BXT_PORT_PLL_ENABLE(port));
	if (!(val & PORT_PLL_ENABLE))
		goto out;

1630
	hw_state->ebb0 = I915_READ(BXT_PORT_PLL_EBB_0(phy, ch));
1631 1632
	hw_state->ebb0 &= PORT_PLL_P1_MASK | PORT_PLL_P2_MASK;

1633
	hw_state->ebb4 = I915_READ(BXT_PORT_PLL_EBB_4(phy, ch));
1634 1635
	hw_state->ebb4 &= PORT_PLL_10BIT_CLK_ENABLE;

1636
	hw_state->pll0 = I915_READ(BXT_PORT_PLL(phy, ch, 0));
1637 1638
	hw_state->pll0 &= PORT_PLL_M2_MASK;

1639
	hw_state->pll1 = I915_READ(BXT_PORT_PLL(phy, ch, 1));
1640 1641
	hw_state->pll1 &= PORT_PLL_N_MASK;

1642
	hw_state->pll2 = I915_READ(BXT_PORT_PLL(phy, ch, 2));
1643 1644
	hw_state->pll2 &= PORT_PLL_M2_FRAC_MASK;

1645
	hw_state->pll3 = I915_READ(BXT_PORT_PLL(phy, ch, 3));
1646 1647
	hw_state->pll3 &= PORT_PLL_M2_FRAC_ENABLE;

1648
	hw_state->pll6 = I915_READ(BXT_PORT_PLL(phy, ch, 6));
1649 1650 1651 1652
	hw_state->pll6 &= PORT_PLL_PROP_COEFF_MASK |
			  PORT_PLL_INT_COEFF_MASK |
			  PORT_PLL_GAIN_CTL_MASK;

1653
	hw_state->pll8 = I915_READ(BXT_PORT_PLL(phy, ch, 8));
1654 1655
	hw_state->pll8 &= PORT_PLL_TARGET_CNT_MASK;

1656
	hw_state->pll9 = I915_READ(BXT_PORT_PLL(phy, ch, 9));
1657 1658
	hw_state->pll9 &= PORT_PLL_LOCK_THRESHOLD_MASK;

1659
	hw_state->pll10 = I915_READ(BXT_PORT_PLL(phy, ch, 10));
1660 1661 1662 1663 1664 1665 1666 1667
	hw_state->pll10 &= PORT_PLL_DCO_AMP_OVR_EN_H |
			   PORT_PLL_DCO_AMP_MASK;

	/*
	 * While we write to the group register to program all lanes at once we
	 * can read only lane registers. We configure all lanes the same way, so
	 * here just read out lanes 0/1 and output a note if lanes 2/3 differ.
	 */
1668 1669
	hw_state->pcsdw12 = I915_READ(BXT_PORT_PCS_DW12_LN01(phy, ch));
	if (I915_READ(BXT_PORT_PCS_DW12_LN23(phy, ch)) != hw_state->pcsdw12)
1670 1671
		DRM_DEBUG_DRIVER("lane stagger config different for lane 01 (%08x) and 23 (%08x)\n",
				 hw_state->pcsdw12,
1672
				 I915_READ(BXT_PORT_PCS_DW12_LN23(phy, ch)));
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
	hw_state->pcsdw12 &= LANE_STAGGER_MASK | LANESTAGGER_STRAP_OVRD;

	ret = true;

out:
	intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);

	return ret;
}

1683 1684 1685 1686 1687 1688 1689 1690 1691
/* bxt clock parameters */
struct bxt_clk_div {
	int clock;
	uint32_t p1;
	uint32_t p2;
	uint32_t m2_int;
	uint32_t m2_frac;
	bool m2_frac_en;
	uint32_t n;
1692 1693

	int vco;
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
};

/* pre-calculated values for DP linkrates */
static const struct bxt_clk_div bxt_dp_clk_val[] = {
	{162000, 4, 2, 32, 1677722, 1, 1},
	{270000, 4, 1, 27,       0, 0, 1},
	{540000, 2, 1, 27,       0, 0, 1},
	{216000, 3, 2, 32, 1677722, 1, 1},
	{243000, 4, 1, 24, 1258291, 1, 1},
	{324000, 4, 1, 32, 1677722, 1, 1},
	{432000, 3, 1, 32, 1677722, 1, 1}
};

1707 1708 1709 1710
static bool
bxt_ddi_hdmi_pll_dividers(struct intel_crtc *intel_crtc,
			  struct intel_crtc_state *crtc_state, int clock,
			  struct bxt_clk_div *clk_div)
1711
{
1712
	struct dpll best_clock;
1713

1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
	/* Calculate HDMI div */
	/*
	 * FIXME: tie the following calculation into
	 * i9xx_crtc_compute_clock
	 */
	if (!bxt_find_best_dpll(crtc_state, clock, &best_clock)) {
		DRM_DEBUG_DRIVER("no PLL dividers found for clock %d pipe %c\n",
				 clock, pipe_name(intel_crtc->pipe));
		return false;
	}
1724

1725 1726 1727 1728 1729 1730 1731
	clk_div->p1 = best_clock.p1;
	clk_div->p2 = best_clock.p2;
	WARN_ON(best_clock.m1 != 2);
	clk_div->n = best_clock.n;
	clk_div->m2_int = best_clock.m2 >> 22;
	clk_div->m2_frac = best_clock.m2 & ((1 << 22) - 1);
	clk_div->m2_frac_en = clk_div->m2_frac != 0;
1732

1733
	clk_div->vco = best_clock.vco;
1734

1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
	return true;
}

static void bxt_ddi_dp_pll_dividers(int clock, struct bxt_clk_div *clk_div)
{
	int i;

	*clk_div = bxt_dp_clk_val[0];
	for (i = 0; i < ARRAY_SIZE(bxt_dp_clk_val); ++i) {
		if (bxt_dp_clk_val[i].clock == clock) {
			*clk_div = bxt_dp_clk_val[i];
			break;
1747 1748 1749
		}
	}

1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
	clk_div->vco = clock * 10 / 2 * clk_div->p1 * clk_div->p2;
}

static bool bxt_ddi_set_dpll_hw_state(int clock,
			  struct bxt_clk_div *clk_div,
			  struct intel_dpll_hw_state *dpll_hw_state)
{
	int vco = clk_div->vco;
	uint32_t prop_coef, int_coef, gain_ctl, targ_cnt;
	uint32_t lanestagger;

1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
	if (vco >= 6200000 && vco <= 6700000) {
		prop_coef = 4;
		int_coef = 9;
		gain_ctl = 3;
		targ_cnt = 8;
	} else if ((vco > 5400000 && vco < 6200000) ||
			(vco >= 4800000 && vco < 5400000)) {
		prop_coef = 5;
		int_coef = 11;
		gain_ctl = 3;
		targ_cnt = 9;
	} else if (vco == 5400000) {
		prop_coef = 3;
		int_coef = 8;
		gain_ctl = 1;
		targ_cnt = 9;
	} else {
		DRM_ERROR("Invalid VCO\n");
1779
		return false;
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
	}

	if (clock > 270000)
		lanestagger = 0x18;
	else if (clock > 135000)
		lanestagger = 0x0d;
	else if (clock > 67000)
		lanestagger = 0x07;
	else if (clock > 33000)
		lanestagger = 0x04;
	else
		lanestagger = 0x02;

1793 1794 1795 1796
	dpll_hw_state->ebb0 = PORT_PLL_P1(clk_div->p1) | PORT_PLL_P2(clk_div->p2);
	dpll_hw_state->pll0 = clk_div->m2_int;
	dpll_hw_state->pll1 = PORT_PLL_N(clk_div->n);
	dpll_hw_state->pll2 = clk_div->m2_frac;
1797

1798 1799
	if (clk_div->m2_frac_en)
		dpll_hw_state->pll3 = PORT_PLL_M2_FRAC_ENABLE;
1800

1801 1802
	dpll_hw_state->pll6 = prop_coef | PORT_PLL_INT_COEFF(int_coef);
	dpll_hw_state->pll6 |= PORT_PLL_GAIN_CTL(gain_ctl);
1803

1804
	dpll_hw_state->pll8 = targ_cnt;
1805

1806
	dpll_hw_state->pll9 = 5 << PORT_PLL_LOCK_THRESHOLD_SHIFT;
1807

1808
	dpll_hw_state->pll10 =
1809 1810 1811
		PORT_PLL_DCO_AMP(PORT_PLL_DCO_AMP_DEFAULT)
		| PORT_PLL_DCO_AMP_OVR_EN_H;

1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
	dpll_hw_state->ebb4 = PORT_PLL_10BIT_CLK_ENABLE;

	dpll_hw_state->pcsdw12 = LANESTAGGER_STRAP_OVRD | lanestagger;

	return true;
}

bool bxt_ddi_dp_set_dpll_hw_state(int clock,
			  struct intel_dpll_hw_state *dpll_hw_state)
{
	struct bxt_clk_div clk_div = {0};

	bxt_ddi_dp_pll_dividers(clock, &clk_div);

	return bxt_ddi_set_dpll_hw_state(clock, &clk_div, dpll_hw_state);
}

1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
static bool
bxt_ddi_hdmi_set_dpll_hw_state(struct intel_crtc *intel_crtc,
			       struct intel_crtc_state *crtc_state, int clock,
			       struct intel_dpll_hw_state *dpll_hw_state)
{
	struct bxt_clk_div clk_div = { };

	bxt_ddi_hdmi_pll_dividers(intel_crtc, crtc_state, clock, &clk_div);

	return bxt_ddi_set_dpll_hw_state(clock, &clk_div, dpll_hw_state);
}

1841 1842 1843 1844 1845
static struct intel_shared_dpll *
bxt_get_dpll(struct intel_crtc *crtc,
		struct intel_crtc_state *crtc_state,
		struct intel_encoder *encoder)
{
1846
	struct intel_dpll_hw_state dpll_hw_state = { };
1847 1848 1849 1850 1851
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_digital_port *intel_dig_port;
	struct intel_shared_dpll *pll;
	int i, clock = crtc_state->port_clock;

1852 1853 1854
	if (encoder->type == INTEL_OUTPUT_HDMI &&
	    !bxt_ddi_hdmi_set_dpll_hw_state(crtc, crtc_state, clock,
					    &dpll_hw_state))
1855
		return NULL;
1856 1857 1858 1859

	if ((encoder->type == INTEL_OUTPUT_DP ||
	     encoder->type == INTEL_OUTPUT_EDP) &&
	    !bxt_ddi_dp_set_dpll_hw_state(clock, &dpll_hw_state))
1860
		return NULL;
1861 1862 1863

	memset(&crtc_state->dpll_hw_state, 0,
	       sizeof(crtc_state->dpll_hw_state));
1864

1865
	crtc_state->dpll_hw_state = dpll_hw_state;
1866

1867 1868 1869 1870 1871 1872
	if (encoder->type == INTEL_OUTPUT_DP_MST) {
		struct intel_dp_mst_encoder *intel_mst = enc_to_mst(&encoder->base);

		intel_dig_port = intel_mst->primary;
	} else
		intel_dig_port = enc_to_dig_port(&encoder->base);
1873

1874
	/* 1:1 mapping between ports and PLLs */
1875 1876 1877
	i = (enum intel_dpll_id) intel_dig_port->port;
	pll = intel_get_shared_dpll_by_id(dev_priv, i);

1878 1879
	DRM_DEBUG_KMS("[CRTC:%d:%s] using pre-allocated %s\n",
		      crtc->base.base.id, crtc->base.name, pll->name);
1880 1881 1882 1883 1884 1885

	intel_reference_shared_dpll(pll, crtc_state);

	return pll;
}

1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
static void bxt_dump_hw_state(struct drm_i915_private *dev_priv,
			      struct intel_dpll_hw_state *hw_state)
{
	DRM_DEBUG_KMS("dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
		      "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
		      "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
		      hw_state->ebb0,
		      hw_state->ebb4,
		      hw_state->pll0,
		      hw_state->pll1,
		      hw_state->pll2,
		      hw_state->pll3,
		      hw_state->pll6,
		      hw_state->pll8,
		      hw_state->pll9,
		      hw_state->pll10,
		      hw_state->pcsdw12);
}

1905 1906 1907 1908 1909
static const struct intel_shared_dpll_funcs bxt_ddi_pll_funcs = {
	.enable = bxt_ddi_pll_enable,
	.disable = bxt_ddi_pll_disable,
	.get_hw_state = bxt_ddi_pll_get_hw_state,
};
1910 1911 1912

static void intel_ddi_pll_init(struct drm_device *dev)
{
1913
	struct drm_i915_private *dev_priv = to_i915(dev);
1914

1915 1916
	if (INTEL_GEN(dev_priv) < 9) {
		uint32_t val = I915_READ(LCPLL_CTL);
1917

1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
		/*
		 * The LCPLL register should be turned on by the BIOS. For now
		 * let's just check its state and print errors in case
		 * something is wrong.  Don't even try to turn it on.
		 */

		if (val & LCPLL_CD_SOURCE_FCLK)
			DRM_ERROR("CDCLK source is not LCPLL\n");

		if (val & LCPLL_PLL_DISABLE)
			DRM_ERROR("LCPLL is disabled\n");
	}
}

1932 1933 1934 1935
struct dpll_info {
	const char *name;
	const int id;
	const struct intel_shared_dpll_funcs *funcs;
1936
	uint32_t flags;
1937 1938
};

1939 1940 1941 1942
struct intel_dpll_mgr {
	const struct dpll_info *dpll_info;

	struct intel_shared_dpll *(*get_dpll)(struct intel_crtc *crtc,
1943 1944
					      struct intel_crtc_state *crtc_state,
					      struct intel_encoder *encoder);
1945 1946 1947

	void (*dump_hw_state)(struct drm_i915_private *dev_priv,
			      struct intel_dpll_hw_state *hw_state);
1948 1949
};

1950
static const struct dpll_info pch_plls[] = {
1951 1952 1953
	{ "PCH DPLL A", DPLL_ID_PCH_PLL_A, &ibx_pch_dpll_funcs, 0 },
	{ "PCH DPLL B", DPLL_ID_PCH_PLL_B, &ibx_pch_dpll_funcs, 0 },
	{ NULL, -1, NULL, 0 },
1954 1955
};

1956 1957 1958
static const struct intel_dpll_mgr pch_pll_mgr = {
	.dpll_info = pch_plls,
	.get_dpll = ibx_get_dpll,
1959
	.dump_hw_state = ibx_dump_hw_state,
1960 1961
};

1962
static const struct dpll_info hsw_plls[] = {
1963 1964 1965 1966 1967 1968
	{ "WRPLL 1",    DPLL_ID_WRPLL1,     &hsw_ddi_wrpll_funcs, 0 },
	{ "WRPLL 2",    DPLL_ID_WRPLL2,     &hsw_ddi_wrpll_funcs, 0 },
	{ "SPLL",       DPLL_ID_SPLL,       &hsw_ddi_spll_funcs,  0 },
	{ "LCPLL 810",  DPLL_ID_LCPLL_810,  &hsw_ddi_lcpll_funcs, INTEL_DPLL_ALWAYS_ON },
	{ "LCPLL 1350", DPLL_ID_LCPLL_1350, &hsw_ddi_lcpll_funcs, INTEL_DPLL_ALWAYS_ON },
	{ "LCPLL 2700", DPLL_ID_LCPLL_2700, &hsw_ddi_lcpll_funcs, INTEL_DPLL_ALWAYS_ON },
1969 1970 1971
	{ NULL, -1, NULL, },
};

1972 1973 1974
static const struct intel_dpll_mgr hsw_pll_mgr = {
	.dpll_info = hsw_plls,
	.get_dpll = hsw_get_dpll,
1975
	.dump_hw_state = hsw_dump_hw_state,
1976 1977
};

1978
static const struct dpll_info skl_plls[] = {
1979
	{ "DPLL 0", DPLL_ID_SKL_DPLL0, &skl_ddi_dpll0_funcs, INTEL_DPLL_ALWAYS_ON },
1980 1981 1982
	{ "DPLL 1", DPLL_ID_SKL_DPLL1, &skl_ddi_pll_funcs,   0 },
	{ "DPLL 2", DPLL_ID_SKL_DPLL2, &skl_ddi_pll_funcs,   0 },
	{ "DPLL 3", DPLL_ID_SKL_DPLL3, &skl_ddi_pll_funcs,   0 },
1983 1984 1985
	{ NULL, -1, NULL, },
};

1986 1987 1988
static const struct intel_dpll_mgr skl_pll_mgr = {
	.dpll_info = skl_plls,
	.get_dpll = skl_get_dpll,
1989
	.dump_hw_state = skl_dump_hw_state,
1990 1991
};

1992
static const struct dpll_info bxt_plls[] = {
1993 1994 1995
	{ "PORT PLL A", DPLL_ID_SKL_DPLL0, &bxt_ddi_pll_funcs, 0 },
	{ "PORT PLL B", DPLL_ID_SKL_DPLL1, &bxt_ddi_pll_funcs, 0 },
	{ "PORT PLL C", DPLL_ID_SKL_DPLL2, &bxt_ddi_pll_funcs, 0 },
1996 1997 1998
	{ NULL, -1, NULL, },
};

1999 2000 2001
static const struct intel_dpll_mgr bxt_pll_mgr = {
	.dpll_info = bxt_plls,
	.get_dpll = bxt_get_dpll,
2002
	.dump_hw_state = bxt_dump_hw_state,
2003 2004
};

2005 2006 2007 2008 2009 2010
/**
 * intel_shared_dpll_init - Initialize shared DPLLs
 * @dev: drm device
 *
 * Initialize shared DPLLs for @dev.
 */
2011 2012
void intel_shared_dpll_init(struct drm_device *dev)
{
2013
	struct drm_i915_private *dev_priv = to_i915(dev);
2014 2015
	const struct intel_dpll_mgr *dpll_mgr = NULL;
	const struct dpll_info *dpll_info;
2016
	int i;
2017

2018
	if (IS_GEN9_BC(dev_priv))
2019
		dpll_mgr = &skl_pll_mgr;
2020
	else if (IS_GEN9_LP(dev_priv))
2021
		dpll_mgr = &bxt_pll_mgr;
2022
	else if (HAS_DDI(dev_priv))
2023
		dpll_mgr = &hsw_pll_mgr;
2024
	else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
2025
		dpll_mgr = &pch_pll_mgr;
2026

2027
	if (!dpll_mgr) {
2028
		dev_priv->num_shared_dpll = 0;
2029 2030 2031
		return;
	}

2032 2033
	dpll_info = dpll_mgr->dpll_info;

2034 2035 2036 2037 2038 2039
	for (i = 0; dpll_info[i].id >= 0; i++) {
		WARN_ON(i != dpll_info[i].id);

		dev_priv->shared_dplls[i].id = dpll_info[i].id;
		dev_priv->shared_dplls[i].name = dpll_info[i].name;
		dev_priv->shared_dplls[i].funcs = *dpll_info[i].funcs;
2040
		dev_priv->shared_dplls[i].flags = dpll_info[i].flags;
2041 2042
	}

2043
	dev_priv->dpll_mgr = dpll_mgr;
2044
	dev_priv->num_shared_dpll = i;
2045
	mutex_init(&dev_priv->dpll_lock);
2046 2047

	BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
2048 2049

	/* FIXME: Move this to a more suitable place */
2050
	if (HAS_DDI(dev_priv))
2051
		intel_ddi_pll_init(dev);
2052
}
2053

2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
/**
 * intel_get_shared_dpll - get a shared DPLL for CRTC and encoder combination
 * @crtc: CRTC
 * @crtc_state: atomic state for @crtc
 * @encoder: encoder
 *
 * Find an appropriate DPLL for the given CRTC and encoder combination. A
 * reference from the @crtc to the returned pll is registered in the atomic
 * state. That configuration is made effective by calling
 * intel_shared_dpll_swap_state(). The reference should be released by calling
 * intel_release_shared_dpll().
 *
 * Returns:
 * A shared DPLL to be used by @crtc and @encoder with the given @crtc_state.
 */
2069 2070
struct intel_shared_dpll *
intel_get_shared_dpll(struct intel_crtc *crtc,
2071 2072
		      struct intel_crtc_state *crtc_state,
		      struct intel_encoder *encoder)
2073 2074 2075 2076 2077 2078 2079
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_dpll_mgr *dpll_mgr = dev_priv->dpll_mgr;

	if (WARN_ON(!dpll_mgr))
		return NULL;

2080
	return dpll_mgr->get_dpll(crtc, crtc_state, encoder);
2081
}
2082 2083 2084 2085 2086 2087 2088

/**
 * intel_release_shared_dpll - end use of DPLL by CRTC in atomic state
 * @dpll: dpll in use by @crtc
 * @crtc: crtc
 * @state: atomic state
 *
2089 2090 2091
 * This function releases the reference from @crtc to @dpll from the
 * atomic @state. The new configuration is made effective by calling
 * intel_shared_dpll_swap_state().
2092 2093 2094 2095 2096
 */
void intel_release_shared_dpll(struct intel_shared_dpll *dpll,
			       struct intel_crtc *crtc,
			       struct drm_atomic_state *state)
{
2097
	struct intel_shared_dpll_state *shared_dpll_state;
2098

2099 2100
	shared_dpll_state = intel_atomic_get_shared_dpll_state(state);
	shared_dpll_state[dpll->id].crtc_mask &= ~(1 << crtc->pipe);
2101
}
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126

/**
 * intel_shared_dpll_dump_hw_state - write hw_state to dmesg
 * @dev_priv: i915 drm device
 * @hw_state: hw state to be written to the log
 *
 * Write the relevant values in @hw_state to dmesg using DRM_DEBUG_KMS.
 */
void intel_dpll_dump_hw_state(struct drm_i915_private *dev_priv,
			      struct intel_dpll_hw_state *hw_state)
{
	if (dev_priv->dpll_mgr) {
		dev_priv->dpll_mgr->dump_hw_state(dev_priv, hw_state);
	} else {
		/* fallback for platforms that don't use the shared dpll
		 * infrastructure
		 */
		DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
			      "fp0: 0x%x, fp1: 0x%x\n",
			      hw_state->dpll,
			      hw_state->dpll_md,
			      hw_state->fp0,
			      hw_state->fp1);
	}
}