perf-record.txt 17.8 KB
Newer Older
1
perf-record(1)
2
==============
3 4 5

NAME
----
6
perf-record - Run a command and record its profile into perf.data
7 8 9 10 11

SYNOPSIS
--------
[verse]
'perf record' [-e <EVENT> | --event=EVENT] [-l] [-a] <command>
12
'perf record' [-e <EVENT> | --event=EVENT] [-l] [-a] -- <command> [<options>]
13 14 15 16

DESCRIPTION
-----------
This command runs a command and gathers a performance counter profile
17
from it, into perf.data - without displaying anything.
18 19 20 21 22 23 24 25 26 27 28

This file can then be inspected later on, using 'perf report'.


OPTIONS
-------
<command>...::
	Any command you can specify in a shell.

-e::
--event=::
29
	Select the PMU event. Selection can be:
30

31 32 33 34 35
        - a symbolic event name	(use 'perf list' to list all events)

        - a raw PMU event (eventsel+umask) in the form of rNNN where NNN is a
	  hexadecimal event descriptor.

36 37
	- a symbolically formed PMU event like 'pmu/param1=0x3,param2/' where
	  'param1', 'param2', etc are defined as formats for the PMU in
38
	  /sys/bus/event_source/devices/<pmu>/format/*.
39 40 41 42 43

	- a symbolically formed event like 'pmu/config=M,config1=N,config3=K/'

          where M, N, K are numbers (in decimal, hex, octal format). Acceptable
          values for each of 'config', 'config1' and 'config2' are defined by
44
          corresponding entries in /sys/bus/event_source/devices/<pmu>/format/*
45
          param1 and param2 are defined as formats for the PMU in:
46
          /sys/bus/event_source/devices/<pmu>/format/*
47

48
	  There are also some parameters which are not defined in .../<pmu>/format/*.
49
	  These params can be used to overload default config values per event.
50
	  Here are some common parameters:
51
	  - 'period': Set event sampling period
52
	  - 'freq': Set event sampling frequency
K
Kan Liang 已提交
53 54 55
	  - 'time': Disable/enable time stamping. Acceptable values are 1 for
		    enabling time stamping. 0 for disabling time stamping.
		    The default is 1.
56
	  - 'call-graph': Disable/enable callgraph. Acceptable str are "fp" for
57 58
			 FP mode, "dwarf" for DWARF mode, "lbr" for LBR mode and
			 "no" for disable callgraph.
59
	  - 'stack-size': user stack size for dwarf mode
60 61 62

          See the linkperf:perf-list[1] man page for more parameters.

63
	  Note: If user explicitly sets options which conflict with the params,
64
	  the value set by the parameters will be overridden.
65

66 67 68 69 70 71 72 73 74 75 76 77
	  Also not defined in .../<pmu>/format/* are PMU driver specific
	  configuration parameters.  Any configuration parameter preceded by
	  the letter '@' is not interpreted in user space and sent down directly
	  to the PMU driver.  For example:

	  perf record -e some_event/@cfg1,@cfg2=config/ ...

	  will see 'cfg1' and 'cfg2=config' pushed to the PMU driver associated
	  with the event for further processing.  There is no restriction on
	  what the configuration parameters are, as long as their semantic is
	  understood and supported by the PMU driver.

78
        - a hardware breakpoint event in the form of '\mem:addr[/len][:access]'
79 80
          where addr is the address in memory you want to break in.
          Access is the memory access type (read, write, execute) it can
81 82
          be passed as follows: '\mem:addr[:[r][w][x]]'. len is the range,
          number of bytes from specified addr, which the breakpoint will cover.
83 84
          If you want to profile read-write accesses in 0x1000, just set
          'mem:0x1000:rw'.
85 86
          If you want to profile write accesses in [0x1000~1008), just set
          'mem:0x1000/8:w'.
87

88 89 90 91 92
	- a group of events surrounded by a pair of brace ("{event1,event2,...}").
	  Each event is separated by commas and the group should be quoted to
	  prevent the shell interpretation.  You also need to use --group on
	  "perf report" to view group events together.

93
--filter=<filter>::
94
        Event filter. This option should follow a event selector (-e) which
95 96 97 98 99 100
	selects either tracepoint event(s) or a hardware trace PMU
	(e.g. Intel PT or CoreSight).

	- tracepoint filters

	In the case of tracepoints, multiple '--filter' options are combined
101
	using '&&'.
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149

	- address filters

	A hardware trace PMU advertises its ability to accept a number of
	address filters	by specifying a non-zero value in
	/sys/bus/event_source/devices/<pmu>/nr_addr_filters.

	Address filters have the format:

	filter|start|stop|tracestop <start> [/ <size>] [@<file name>]

	Where:
	- 'filter': defines a region that will be traced.
	- 'start': defines an address at which tracing will begin.
	- 'stop': defines an address at which tracing will stop.
	- 'tracestop': defines a region in which tracing will stop.

	<file name> is the name of the object file, <start> is the offset to the
	code to trace in that file, and <size> is the size of the region to
	trace. 'start' and 'stop' filters need not specify a <size>.

	If no object file is specified then the kernel is assumed, in which case
	the start address must be a current kernel memory address.

	<start> can also be specified by providing the name of a symbol. If the
	symbol name is not unique, it can be disambiguated by inserting #n where
	'n' selects the n'th symbol in address order. Alternately #0, #g or #G
	select only a global symbol. <size> can also be specified by providing
	the name of a symbol, in which case the size is calculated to the end
	of that symbol. For 'filter' and 'tracestop' filters, if <size> is
	omitted and <start> is a symbol, then the size is calculated to the end
	of that symbol.

	If <size> is omitted and <start> is '*', then the start and size will
	be calculated from the first and last symbols, i.e. to trace the whole
	file.

	If symbol names (or '*') are provided, they must be surrounded by white
	space.

	The filter passed to the kernel is not necessarily the same as entered.
	To see the filter that is passed, use the -v option.

	The kernel may not be able to configure a trace region if it is not
	within a single mapping.  MMAP events (or /proc/<pid>/maps) can be
	examined to determine if that is a possibility.

	Multiple filters can be separated with space or comma.
150 151 152 153 154 155 156

--exclude-perf::
	Don't record events issued by perf itself. This option should follow
	a event selector (-e) which selects tracepoint event(s). It adds a
	filter expression 'common_pid != $PERFPID' to filters. If other
	'--filter' exists, the new filter expression will be combined with
	them by '&&'.
157

158
-a::
159
--all-cpus::
160
        System-wide collection from all CPUs (default if no target is specified).
161

162 163
-p::
--pid=::
164
	Record events on existing process ID (comma separated list).
165 166 167

-t::
--tid=::
168
        Record events on existing thread ID (comma separated list).
169 170
        This option also disables inheritance by default.  Enable it by adding
        --inherit.
171

172 173 174 175
-u::
--uid=::
        Record events in threads owned by uid. Name or number.

176 177 178
-r::
--realtime=::
	Collect data with this RT SCHED_FIFO priority.
179

180
--no-buffering::
181
	Collect data without buffering.
182 183 184 185 186 187 188 189 190 191

-c::
--count=::
	Event period to sample.

-o::
--output=::
	Output file name.

-i::
192 193
--no-inherit::
	Child tasks do not inherit counters.
194 195 196 197 198 199
-F::
--freq=::
	Profile at this frequency.

-m::
--mmap-pages=::
200 201 202
	Number of mmap data pages (must be a power of two) or size
	specification with appended unit character - B/K/M/G. The
	size is rounded up to have nearest pages power of two value.
203 204
	Also, by adding a comma, the number of mmap pages for AUX
	area tracing can be specified.
205

206 207 208 209
--group::
	Put all events in a single event group.  This precedes the --event
	option and remains only for backward compatibility.  See --event.

210
-g::
J
Jiri Olsa 已提交
211 212
	Enables call-graph (stack chain/backtrace) recording.

213
--call-graph::
J
Jiri Olsa 已提交
214
	Setup and enable call-graph (stack chain/backtrace) recording,
215
	implies -g.  Default is "fp".
J
Jiri Olsa 已提交
216 217

	Allows specifying "fp" (frame pointer) or "dwarf"
218 219
	(DWARF's CFI - Call Frame Information) or "lbr"
	(Hardware Last Branch Record facility) as the method to collect
J
Jiri Olsa 已提交
220 221 222 223 224
	the information used to show the call graphs.

	In some systems, where binaries are build with gcc
	--fomit-frame-pointer, using the "fp" method will produce bogus
	call graphs, using "dwarf", if available (perf tools linked to
225
	the libunwind or libdw library) should be used instead.
226 227
	Using the "lbr" method doesn't require any compiler options. It
	will produce call graphs from the hardware LBR registers. The
K
Kim Phillips 已提交
228
	main limitation is that it is only available on new Intel
229 230
	platforms, such as Haswell. It can only get user call chain. It
	doesn't work with branch stack sampling at the same time.
231

232 233 234 235 236
	When "dwarf" recording is used, perf also records (user) stack dump
	when sampled.  Default size of the stack dump is 8192 (bytes).
	User can change the size by passing the size after comma like
	"--call-graph dwarf,4096".

237 238 239 240
-q::
--quiet::
	Don't print any message, useful for scripting.

241 242 243 244 245 246
-v::
--verbose::
	Be more verbose (show counter open errors, etc).

-s::
--stat::
247 248
	Record per-thread event counts.  Use it with 'perf report -T' to see
	the values.
249 250 251

-d::
--data::
252 253 254 255
	Record the sample virtual addresses.

--phys-data::
	Record the sample physical addresses.
256

257 258
-T::
--timestamp::
259 260 261 262 263 264
	Record the sample timestamps. Use it with 'perf report -D' to see the
	timestamps, for instance.

-P::
--period::
	Record the sample period.
265

J
Jiri Olsa 已提交
266 267 268
--sample-cpu::
	Record the sample cpu.

269 270 271
-n::
--no-samples::
	Don't sample.
272

273 274
-R::
--raw-samples::
275
Collect raw sample records from all opened counters (default for tracepoint counters).
276

277 278
-C::
--cpu::
279 280
Collect samples only on the list of CPUs provided. Multiple CPUs can be provided as a
comma-separated list with no space: 0,1. Ranges of CPUs are specified with -: 0-2.
281 282 283
In per-thread mode with inheritance mode on (default), samples are captured only when
the thread executes on the designated CPUs. Default is to monitor all CPUs.

284 285 286 287 288 289 290 291 292 293 294
-B::
--no-buildid::
Do not save the build ids of binaries in the perf.data files. This skips
post processing after recording, which sometimes makes the final step in
the recording process to take a long time, as it needs to process all
events looking for mmap records. The downside is that it can misresolve
symbols if the workload binaries used when recording get locally rebuilt
or upgraded, because the only key available in this case is the
pathname. You can also set the "record.build-id" config variable to
'skip to have this behaviour permanently.

295 296
-N::
--no-buildid-cache::
297
Do not update the buildid cache. This saves some overhead in situations
298
where the information in the perf.data file (which includes buildids)
299 300
is sufficient.  You can also set the "record.build-id" config variable to
'no-cache' to have the same effect.
301

S
Stephane Eranian 已提交
302 303 304 305 306 307 308 309 310 311 312
-G name,...::
--cgroup name,...::
monitor only in the container (cgroup) called "name". This option is available only
in per-cpu mode. The cgroup filesystem must be mounted. All threads belonging to
container "name" are monitored when they run on the monitored CPUs. Multiple cgroups
can be provided. Each cgroup is applied to the corresponding event, i.e., first cgroup
to first event, second cgroup to second event and so on. It is possible to provide
an empty cgroup (monitor all the time) using, e.g., -G foo,,bar. Cgroups must have
corresponding events, i.e., they always refer to events defined earlier on the command
line.

313
-b::
314 315 316 317 318 319
--branch-any::
Enable taken branch stack sampling. Any type of taken branch may be sampled.
This is a shortcut for --branch-filter any. See --branch-filter for more infos.

-j::
--branch-filter::
320 321 322 323 324 325
Enable taken branch stack sampling. Each sample captures a series of consecutive
taken branches. The number of branches captured with each sample depends on the
underlying hardware, the type of branches of interest, and the executed code.
It is possible to select the types of branches captured by enabling filters. The
following filters are defined:

326
        - any:  any type of branches
327 328
        - any_call: any function call or system call
        - any_ret: any function return or system call return
329
        - ind_call: any indirect branch
330
        - call: direct calls, including far (to/from kernel) calls
331 332 333
        - u:  only when the branch target is at the user level
        - k: only when the branch target is in the kernel
        - hv: only when the target is at the hypervisor level
334 335 336
	- in_tx: only when the target is in a hardware transaction
	- no_tx: only when the target is not in a hardware transaction
	- abort_tx: only when the target is a hardware transaction abort
337
	- cond: conditional branches
338
	- save_type: save branch type during sampling in case binary is not available later
339 340

+
341
The option requires at least one branch type among any, any_call, any_ret, ind_call, cond.
342
The privilege levels may be omitted, in which case, the privilege levels of the associated
343 344 345 346 347
event are applied to the branch filter. Both kernel (k) and hypervisor (hv) privilege
levels are subject to permissions.  When sampling on multiple events, branch stack sampling
is enabled for all the sampling events. The sampled branch type is the same for all events.
The various filters must be specified as a comma separated list: --branch-filter any_ret,u,k
Note that this feature may not be available on all processors.
348

349 350 351 352 353
--weight::
Enable weightened sampling. An additional weight is recorded per sample and can be
displayed with the weight and local_weight sort keys.  This currently works for TSX
abort events and some memory events in precise mode on modern Intel CPUs.

354 355 356
--namespaces::
Record events of type PERF_RECORD_NAMESPACES.

357 358 359
--transaction::
Record transaction flags for transaction related events.

360 361 362 363 364
--per-thread::
Use per-thread mmaps.  By default per-cpu mmaps are created.  This option
overrides that and uses per-thread mmaps.  A side-effect of that is that
inheritance is automatically disabled.  --per-thread is ignored with a warning
if combined with -a or -C options.
365

366 367
-D::
--delay=::
368 369 370
After starting the program, wait msecs before measuring. This is useful to
filter out the startup phase of the program, which is often very different.

371 372 373 374
-I::
--intr-regs::
Capture machine state (registers) at interrupt, i.e., on counter overflows for
each sample. List of captured registers depends on the architecture. This option
375 376 377 378 379
is off by default. It is possible to select the registers to sample using their
symbolic names, e.g. on x86, ax, si. To list the available registers use
--intr-regs=\?. To name registers, pass a comma separated list such as
--intr-regs=ax,bx. The list of register is architecture dependent.

380

381 382 383
--running-time::
Record running and enabled time for read events (:S)

384 385 386 387 388 389 390
-k::
--clockid::
Sets the clock id to use for the various time fields in the perf_event_type
records. See clock_gettime(). In particular CLOCK_MONOTONIC and
CLOCK_MONOTONIC_RAW are supported, some events might also allow
CLOCK_BOOTTIME, CLOCK_REALTIME and CLOCK_TAI.

391 392 393 394 395 396 397
-S::
--snapshot::
Select AUX area tracing Snapshot Mode. This option is valid only with an
AUX area tracing event. Optionally the number of bytes to capture per
snapshot can be specified. In Snapshot Mode, trace data is captured only when
signal SIGUSR2 is received.

398 399 400 401 402
--proc-map-timeout::
When processing pre-existing threads /proc/XXX/mmap, it may take a long time,
because the file may be huge. A time out is needed in such cases.
This option sets the time out limit. The default value is 500 ms.

403 404 405 406
--switch-events::
Record context switch events i.e. events of type PERF_RECORD_SWITCH or
PERF_RECORD_SWITCH_CPU_WIDE.

407
--clang-path=PATH::
408
Path to clang binary to use for compiling BPF scriptlets.
409
(enabled when BPF support is on)
410

411
--clang-opt=OPTIONS::
412
Options passed to clang when compiling BPF scriptlets.
413 414 415 416 417
(enabled when BPF support is on)

--vmlinux=PATH::
Specify vmlinux path which has debuginfo.
(enabled when BPF prologue is on)
418

419 420 421
--buildid-all::
Record build-id of all DSOs regardless whether it's actually hit or not.

422 423 424 425 426 427
--all-kernel::
Configure all used events to run in kernel space.

--all-user::
Configure all used events to run in user space.

428 429 430
--timestamp-filename
Append timestamp to output file name.

431
--switch-output[=mode]::
432
Generate multiple perf.data files, timestamp prefixed, switching to a new one
433 434 435 436
based on 'mode' value:
  "signal" - when receiving a SIGUSR2 (default value) or
  <size>   - when reaching the size threshold, size is expected to
             be a number with appended unit character - B/K/M/G
437 438
  <time>   - when reaching the time threshold, size is expected to
             be a number with appended unit character - s/m/h/d
439 440 441 442 443

             Note: the precision of  the size  threshold  hugely depends
             on your configuration  - the number and size of  your  ring
             buffers (-m). It is generally more precise for higher sizes
             (like >5M), for lower values expect different sizes.
444 445 446 447 448

A possible use case is to, given an external event, slice the perf.data file
that gets then processed, possibly via a perf script, to decide if that
particular perf.data snapshot should be kept or not.

449
Implies --timestamp-filename, --no-buildid and --no-buildid-cache.
450 451 452 453
The reason for the latter two is to reduce the data file switching
overhead. You can still switch them on with:

  --switch-output --no-no-buildid  --no-no-buildid-cache
454

455 456 457 458 459 460 461
--dry-run::
Parse options then exit. --dry-run can be used to detect errors in cmdline
options.

'perf record --dry-run -e' can act as a BPF script compiler if llvm.dump-obj
in config file is set to true.

462 463 464 465 466 467
--tail-synthesize::
Instead of collecting non-sample events (for example, fork, comm, mmap) at
the beginning of record, collect them during finalizing an output file.
The collected non-sample events reflects the status of the system when
record is finished.

W
Wang Nan 已提交
468 469 470 471 472 473 474 475 476 477 478 479 480 481
--overwrite::
Makes all events use an overwritable ring buffer. An overwritable ring
buffer works like a flight recorder: when it gets full, the kernel will
overwrite the oldest records, that thus will never make it to the
perf.data file.

When '--overwrite' and '--switch-output' are used perf records and drops
events until it receives a signal, meaning that something unusual was
detected that warrants taking a snapshot of the most current events,
those fitting in the ring buffer at that moment.

'overwrite' attribute can also be set or canceled for an event using
config terms. For example: 'cycles/overwrite/' and 'instructions/no-overwrite/'.

482 483
Implies --tail-synthesize.

484 485
SEE ALSO
--------
486
linkperf:perf-stat[1], linkperf:perf-list[1]