fsync.c 7.9 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/fsync.c
3 4 5 6 7 8 9 10 11
 *
 *  Copyright (C) 1993  Stephen Tweedie (sct@redhat.com)
 *  from
 *  Copyright (C) 1992  Remy Card (card@masi.ibp.fr)
 *                      Laboratoire MASI - Institut Blaise Pascal
 *                      Universite Pierre et Marie Curie (Paris VI)
 *  from
 *  linux/fs/minix/truncate.c   Copyright (C) 1991, 1992  Linus Torvalds
 *
12
 *  ext4fs fsync primitive
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
 *
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *
 *  Removed unnecessary code duplication for little endian machines
 *  and excessive __inline__s.
 *        Andi Kleen, 1997
 *
 * Major simplications and cleanup - we only need to do the metadata, because
 * we can depend on generic_block_fdatasync() to sync the data blocks.
 */

#include <linux/time.h>
#include <linux/fs.h>
#include <linux/sched.h>
#include <linux/writeback.h>
29
#include <linux/jbd2.h>
30
#include <linux/blkdev.h>
31

32 33
#include "ext4.h"
#include "ext4_jbd2.h"
34

35 36
#include <trace/events/ext4.h>

37 38
static void dump_completed_IO(struct inode * inode)
{
39
#ifdef	EXT4FS_DEBUG
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
	struct list_head *cur, *before, *after;
	ext4_io_end_t *io, *io0, *io1;
	unsigned long flags;

	if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
		ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
		return;
	}

	ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
	list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
		cur = &io->list;
		before = cur->prev;
		io0 = container_of(before, ext4_io_end_t, list);
		after = cur->next;
		io1 = container_of(after, ext4_io_end_t, list);

		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
			    io, inode->i_ino, io0, io1);
	}
	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
#endif
}

/*
 * This function is called from ext4_sync_file().
 *
 * When IO is completed, the work to convert unwritten extents to
 * written is queued on workqueue but may not get immediately
 * scheduled. When fsync is called, we need to ensure the
 * conversion is complete before fsync returns.
 * The inode keeps track of a list of pending/completed IO that
 * might needs to do the conversion. This function walks through
 * the list and convert the related unwritten extents for completed IO
 * to written.
 * The function return the number of pending IOs on success.
 */
78
int ext4_flush_completed_IO(struct inode *inode)
79 80 81 82 83 84 85 86 87 88 89 90
{
	ext4_io_end_t *io;
	struct ext4_inode_info *ei = EXT4_I(inode);
	unsigned long flags;
	int ret = 0;
	int ret2 = 0;

	dump_completed_IO(inode);
	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	while (!list_empty(&ei->i_completed_io_list)){
		io = list_entry(ei->i_completed_io_list.next,
				ext4_io_end_t, list);
91
		list_del_init(&io->list);
92 93 94 95 96 97 98 99 100 101
		/*
		 * Calling ext4_end_io_nolock() to convert completed
		 * IO to written.
		 *
		 * When ext4_sync_file() is called, run_queue() may already
		 * about to flush the work corresponding to this io structure.
		 * It will be upset if it founds the io structure related
		 * to the work-to-be schedule is freed.
		 *
		 * Thus we need to keep the io structure still valid here after
L
Lucas De Marchi 已提交
102
		 * conversion finished. The io structure has a flag to
103 104 105 106 107 108 109
		 * avoid double converting from both fsync and background work
		 * queue work.
		 */
		spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
		ret = ext4_end_io_nolock(io);
		if (ret < 0)
			ret2 = ret;
110
		spin_lock_irqsave(&ei->i_completed_io_lock, flags);
111 112 113 114 115
	}
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
	return (ret2 < 0) ? ret2 : 0;
}

116 117 118 119 120 121 122 123
/*
 * If we're not journaling and this is a just-created file, we have to
 * sync our parent directory (if it was freshly created) since
 * otherwise it will only be written by writeback, leaving a huge
 * window during which a crash may lose the file.  This may apply for
 * the parent directory's parent as well, and so on recursively, if
 * they are also freshly created.
 */
124
static int ext4_sync_parent(struct inode *inode)
125
{
126
	struct writeback_control wbc;
127
	struct dentry *dentry = NULL;
128
	struct inode *next;
129
	int ret = 0;
130

131 132 133 134
	if (!ext4_test_inode_state(inode, EXT4_STATE_NEWENTRY))
		return 0;
	inode = igrab(inode);
	while (ext4_test_inode_state(inode, EXT4_STATE_NEWENTRY)) {
135
		ext4_clear_inode_state(inode, EXT4_STATE_NEWENTRY);
136 137 138 139 140 141 142 143 144
		dentry = NULL;
		spin_lock(&inode->i_lock);
		if (!list_empty(&inode->i_dentry)) {
			dentry = list_first_entry(&inode->i_dentry,
						  struct dentry, d_alias);
			dget(dentry);
		}
		spin_unlock(&inode->i_lock);
		if (!dentry)
145
			break;
146 147 148 149 150 151
		next = igrab(dentry->d_parent->d_inode);
		dput(dentry);
		if (!next)
			break;
		iput(inode);
		inode = next;
152 153 154 155 156 157 158 159 160
		ret = sync_mapping_buffers(inode->i_mapping);
		if (ret)
			break;
		memset(&wbc, 0, sizeof(wbc));
		wbc.sync_mode = WB_SYNC_ALL;
		wbc.nr_to_write = 0;         /* only write out the inode */
		ret = sync_inode(inode, &wbc);
		if (ret)
			break;
161
	}
162
	iput(inode);
163
	return ret;
164 165
}

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
/**
 * __sync_file - generic_file_fsync without the locking and filemap_write
 * @inode:	inode to sync
 * @datasync:	only sync essential metadata if true
 *
 * This is just generic_file_fsync without the locking.  This is needed for
 * nojournal mode to make sure this inodes data/metadata makes it to disk
 * properly.  The i_mutex should be held already.
 */
static int __sync_inode(struct inode *inode, int datasync)
{
	int err;
	int ret;

	ret = sync_mapping_buffers(inode->i_mapping);
	if (!(inode->i_state & I_DIRTY))
		return ret;
	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
		return ret;

	err = sync_inode_metadata(inode, 1);
	if (ret == 0)
		ret = err;
	return ret;
}

192
/*
193
 * akpm: A new design for ext4_sync_file().
194 195 196 197 198 199 200 201
 *
 * This is only called from sys_fsync(), sys_fdatasync() and sys_msync().
 * There cannot be a transaction open by this task.
 * Another task could have dirtied this inode.  Its data can be in any
 * state in the journalling system.
 *
 * What we do is just kick off a commit and wait on it.  This will snapshot the
 * inode to disk.
202 203
 *
 * i_mutex lock is held when entering and exiting this function
204 205
 */

206
int ext4_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
207
{
208
	struct inode *inode = file->f_mapping->host;
209
	struct ext4_inode_info *ei = EXT4_I(inode);
210
	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
211 212
	int ret;
	tid_t commit_tid;
213
	bool needs_barrier = false;
214

A
Aneesh Kumar K.V 已提交
215
	J_ASSERT(ext4_journal_current_handle() == NULL);
216

217
	trace_ext4_sync_file_enter(file, datasync);
218

219 220 221 222 223
	ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
	if (ret)
		return ret;
	mutex_lock(&inode->i_mutex);

224
	if (inode->i_sb->s_flags & MS_RDONLY)
225
		goto out;
226

227
	ret = ext4_flush_completed_IO(inode);
228
	if (ret < 0)
229
		goto out;
230

231
	if (!journal) {
232
		ret = __sync_inode(inode, datasync);
233
		if (!ret && !list_empty(&inode->i_dentry))
234
			ret = ext4_sync_parent(inode);
235
		goto out;
236
	}
237

238
	/*
239
	 * data=writeback,ordered:
240
	 *  The caller's filemap_fdatawrite()/wait will sync the data.
241 242
	 *  Metadata is in the journal, we wait for proper transaction to
	 *  commit here.
243 244 245
	 *
	 * data=journal:
	 *  filemap_fdatawrite won't do anything (the buffers are clean).
246
	 *  ext4_force_commit will write the file data into the journal and
247 248 249 250 251
	 *  will wait on that.
	 *  filemap_fdatawait() will encounter a ton of newly-dirtied pages
	 *  (they were dirtied by commit).  But that's OK - the blocks are
	 *  safe in-journal, which is all fsync() needs to ensure.
	 */
252 253 254 255
	if (ext4_should_journal_data(inode)) {
		ret = ext4_force_commit(inode->i_sb);
		goto out;
	}
256

257
	commit_tid = datasync ? ei->i_datasync_tid : ei->i_sync_tid;
258 259 260 261 262 263
	if (journal->j_flags & JBD2_BARRIER &&
	    !jbd2_trans_will_send_data_barrier(journal, commit_tid))
		needs_barrier = true;
	jbd2_log_start_commit(journal, commit_tid);
	ret = jbd2_log_wait_commit(journal, commit_tid);
	if (needs_barrier)
264
		blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
265
 out:
266
	mutex_unlock(&inode->i_mutex);
267
	trace_ext4_sync_file_exit(inode, ret);
268 269
	return ret;
}