pgtable.h 44.0 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
2 3
#ifndef _LINUX_PGTABLE_H
#define _LINUX_PGTABLE_H
L
Linus Torvalds 已提交
4

5
#include <linux/pfn.h>
6
#include <asm/pgtable.h>
7

8
#ifndef __ASSEMBLY__
9
#ifdef CONFIG_MMU
10

11
#include <linux/mm_types.h>
12
#include <linux/bug.h>
13
#include <linux/errno.h>
14
#include <asm-generic/pgtable_uffd.h>
15

16 17 18
#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
	defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
19 20
#endif

21 22 23 24 25 26 27 28 29
/*
 * On almost all architectures and configurations, 0 can be used as the
 * upper ceiling to free_pgtables(): on many architectures it has the same
 * effect as using TASK_SIZE.  However, there is one configuration which
 * must impose a more careful limit, to avoid freeing kernel pgtables.
 */
#ifndef USER_PGTABLES_CEILING
#define USER_PGTABLES_CEILING	0UL
#endif
30 31 32 33 34 35 36 37 38

/*
 * This defines the first usable user address. Platforms
 * can override its value with custom FIRST_USER_ADDRESS
 * defined in their respective <asm/pgtable.h>.
 */
#ifndef FIRST_USER_ADDRESS
#define FIRST_USER_ADDRESS	0UL
#endif
39 40 41 42 43 44 45 46 47

/*
 * This defines the generic helper for accessing PMD page
 * table page. Although platforms can still override this
 * via their respective <asm/pgtable.h>.
 */
#ifndef pmd_pgtable
#define pmd_pgtable(pmd) pmd_page(pmd)
#endif
48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
/*
 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
 *
 * The pXx_index() functions return the index of the entry in the page
 * table page which would control the given virtual address
 *
 * As these functions may be used by the same code for different levels of
 * the page table folding, they are always available, regardless of
 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
 * because in such cases PTRS_PER_PxD equals 1.
 */

static inline unsigned long pte_index(unsigned long address)
{
	return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
}
65
#define pte_index pte_index
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109

#ifndef pmd_index
static inline unsigned long pmd_index(unsigned long address)
{
	return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
}
#define pmd_index pmd_index
#endif

#ifndef pud_index
static inline unsigned long pud_index(unsigned long address)
{
	return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
}
#define pud_index pud_index
#endif

#ifndef pgd_index
/* Must be a compile-time constant, so implement it as a macro */
#define pgd_index(a)  (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
#endif

#ifndef pte_offset_kernel
static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
{
	return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
}
#define pte_offset_kernel pte_offset_kernel
#endif

#if defined(CONFIG_HIGHPTE)
#define pte_offset_map(dir, address)				\
	((pte_t *)kmap_atomic(pmd_page(*(dir))) +		\
	 pte_index((address)))
#define pte_unmap(pte) kunmap_atomic((pte))
#else
#define pte_offset_map(dir, address)	pte_offset_kernel((dir), (address))
#define pte_unmap(pte) ((void)(pte))	/* NOP */
#endif

/* Find an entry in the second-level page table.. */
#ifndef pmd_offset
static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
{
110
	return pud_pgtable(*pud) + pmd_index(address);
111 112 113 114 115 116 117
}
#define pmd_offset pmd_offset
#endif

#ifndef pud_offset
static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
{
118
	return p4d_pgtable(*p4d) + pud_index(address);
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
}
#define pud_offset pud_offset
#endif

static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
{
	return (pgd + pgd_index(address));
};

/*
 * a shortcut to get a pgd_t in a given mm
 */
#ifndef pgd_offset
#define pgd_offset(mm, address)		pgd_offset_pgd((mm)->pgd, (address))
#endif

/*
 * a shortcut which implies the use of the kernel's pgd, instead
 * of a process's
 */
139
#ifndef pgd_offset_k
140
#define pgd_offset_k(address)		pgd_offset(&init_mm, (address))
141
#endif
142

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
/*
 * In many cases it is known that a virtual address is mapped at PMD or PTE
 * level, so instead of traversing all the page table levels, we can get a
 * pointer to the PMD entry in user or kernel page table or translate a virtual
 * address to the pointer in the PTE in the kernel page tables with simple
 * helpers.
 */
static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
{
	return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
}

static inline pmd_t *pmd_off_k(unsigned long va)
{
	return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
}

static inline pte_t *virt_to_kpte(unsigned long vaddr)
{
	pmd_t *pmd = pmd_off_k(vaddr);

	return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
}

L
Linus Torvalds 已提交
167
#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
168 169 170 171 172 173
extern int ptep_set_access_flags(struct vm_area_struct *vma,
				 unsigned long address, pte_t *ptep,
				 pte_t entry, int dirty);
#endif

#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
174
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
175 176 177
extern int pmdp_set_access_flags(struct vm_area_struct *vma,
				 unsigned long address, pmd_t *pmdp,
				 pmd_t entry, int dirty);
178 179 180
extern int pudp_set_access_flags(struct vm_area_struct *vma,
				 unsigned long address, pud_t *pudp,
				 pud_t entry, int dirty);
181 182 183 184 185 186 187 188
#else
static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
					unsigned long address, pmd_t *pmdp,
					pmd_t entry, int dirty)
{
	BUILD_BUG();
	return 0;
}
189 190 191 192 193 194 195
static inline int pudp_set_access_flags(struct vm_area_struct *vma,
					unsigned long address, pud_t *pudp,
					pud_t entry, int dirty)
{
	BUILD_BUG();
	return 0;
}
196
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
L
Linus Torvalds 已提交
197 198 199
#endif

#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
					    unsigned long address,
					    pte_t *ptep)
{
	pte_t pte = *ptep;
	int r = 1;
	if (!pte_young(pte))
		r = 0;
	else
		set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
	return r;
}
#endif

#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
					    unsigned long address,
					    pmd_t *pmdp)
{
	pmd_t pmd = *pmdp;
	int r = 1;
	if (!pmd_young(pmd))
		r = 0;
	else
		set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
	return r;
}
228
#else
229 230 231 232
static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
					    unsigned long address,
					    pmd_t *pmdp)
{
233
	BUILD_BUG();
234 235 236
	return 0;
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
L
Linus Torvalds 已提交
237 238 239
#endif

#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
240 241 242 243 244
int ptep_clear_flush_young(struct vm_area_struct *vma,
			   unsigned long address, pte_t *ptep);
#endif

#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
				  unsigned long address, pmd_t *pmdp);
#else
/*
 * Despite relevant to THP only, this API is called from generic rmap code
 * under PageTransHuge(), hence needs a dummy implementation for !THP
 */
static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
					 unsigned long address, pmd_t *pmdp)
{
	BUILD_BUG();
	return 0;
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
L
Linus Torvalds 已提交
260 261
#endif

262 263 264 265 266 267 268 269
#ifndef __HAVE_ARCH_PTEP_CLEAR
static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
			      pte_t *ptep)
{
	pte_clear(mm, addr, ptep);
}
#endif

L
Linus Torvalds 已提交
270
#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
271 272 273 274 275 276 277 278 279 280
static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
				       unsigned long address,
				       pte_t *ptep)
{
	pte_t pte = *ptep;
	pte_clear(mm, address, ptep);
	return pte;
}
#endif

281 282 283 284 285 286 287
#ifndef __HAVE_ARCH_PTEP_GET
static inline pte_t ptep_get(pte_t *ptep)
{
	return READ_ONCE(*ptep);
}
#endif

288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
#ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
/*
 * WARNING: only to be used in the get_user_pages_fast() implementation.
 *
 * With get_user_pages_fast(), we walk down the pagetables without taking any
 * locks.  For this we would like to load the pointers atomically, but sometimes
 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE).  What
 * we do have is the guarantee that a PTE will only either go from not present
 * to present, or present to not present or both -- it will not switch to a
 * completely different present page without a TLB flush in between; something
 * that we are blocking by holding interrupts off.
 *
 * Setting ptes from not present to present goes:
 *
 *   ptep->pte_high = h;
 *   smp_wmb();
 *   ptep->pte_low = l;
 *
 * And present to not present goes:
 *
 *   ptep->pte_low = 0;
 *   smp_wmb();
 *   ptep->pte_high = 0;
 *
 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
 * We load pte_high *after* loading pte_low, which ensures we don't see an older
 * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
 * picked up a changed pte high. We might have gotten rubbish values from
 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
 * operates on present ptes we're safe.
 */
static inline pte_t ptep_get_lockless(pte_t *ptep)
{
	pte_t pte;

	do {
		pte.pte_low = ptep->pte_low;
		smp_rmb();
		pte.pte_high = ptep->pte_high;
		smp_rmb();
	} while (unlikely(pte.pte_low != ptep->pte_low));

	return pte;
}
#else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
/*
 * We require that the PTE can be read atomically.
 */
static inline pte_t ptep_get_lockless(pte_t *ptep)
{
	return ptep_get(ptep);
}
#endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */

343
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
344
#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
345 346 347
static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
					    unsigned long address,
					    pmd_t *pmdp)
348 349
{
	pmd_t pmd = *pmdp;
350
	pmd_clear(pmdp);
351
	return pmd;
352
}
353 354 355 356 357 358 359 360 361 362 363 364
#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
					    unsigned long address,
					    pud_t *pudp)
{
	pud_t pud = *pudp;

	pud_clear(pudp);
	return pud;
}
#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
365
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
L
Linus Torvalds 已提交
366

367
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
368
#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
369
static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
370 371 372
					    unsigned long address, pmd_t *pmdp,
					    int full)
{
373
	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
374 375 376
}
#endif

377 378 379 380 381 382 383 384 385 386
#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
					    unsigned long address, pud_t *pudp,
					    int full)
{
	return pudp_huge_get_and_clear(mm, address, pudp);
}
#endif
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

387
#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
388 389 390 391 392 393 394 395
static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
					    unsigned long address, pte_t *ptep,
					    int full)
{
	pte_t pte;
	pte = ptep_get_and_clear(mm, address, ptep);
	return pte;
}
396 397
#endif

398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414

/*
 * If two threads concurrently fault at the same page, the thread that
 * won the race updates the PTE and its local TLB/Cache. The other thread
 * gives up, simply does nothing, and continues; on architectures where
 * software can update TLB,  local TLB can be updated here to avoid next page
 * fault. This function updates TLB only, do nothing with cache or others.
 * It is the difference with function update_mmu_cache.
 */
#ifndef __HAVE_ARCH_UPDATE_MMU_TLB
static inline void update_mmu_tlb(struct vm_area_struct *vma,
				unsigned long address, pte_t *ptep)
{
}
#define __HAVE_ARCH_UPDATE_MMU_TLB
#endif

415 416 417 418 419 420
/*
 * Some architectures may be able to avoid expensive synchronization
 * primitives when modifications are made to PTE's which are already
 * not present, or in the process of an address space destruction.
 */
#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
421 422 423 424 425 426 427
static inline void pte_clear_not_present_full(struct mm_struct *mm,
					      unsigned long address,
					      pte_t *ptep,
					      int full)
{
	pte_clear(mm, address, ptep);
}
428 429
#endif

L
Linus Torvalds 已提交
430
#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
431 432 433 434 435
extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
			      unsigned long address,
			      pte_t *ptep);
#endif

436 437
#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
438 439
			      unsigned long address,
			      pmd_t *pmdp);
440 441 442
extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
			      unsigned long address,
			      pud_t *pudp);
L
Linus Torvalds 已提交
443 444 445
#endif

#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
446
struct mm_struct;
L
Linus Torvalds 已提交
447 448 449 450 451 452 453
static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
{
	pte_t old_pte = *ptep;
	set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
}
#endif

454 455
/*
 * On some architectures hardware does not set page access bit when accessing
456
 * memory page, it is responsibility of software setting this bit. It brings
457 458 459 460 461
 * out extra page fault penalty to track page access bit. For optimization page
 * access bit can be set during all page fault flow on these arches.
 * To be differentiate with macro pte_mkyoung, this macro is used on platforms
 * where software maintains page access bit.
 */
462 463 464 465 466 467 468 469
#ifndef pte_sw_mkyoung
static inline pte_t pte_sw_mkyoung(pte_t pte)
{
	return pte;
}
#define pte_sw_mkyoung	pte_sw_mkyoung
#endif

470 471 472 473 474 475 476 477
#ifndef pte_savedwrite
#define pte_savedwrite pte_write
#endif

#ifndef pte_mk_savedwrite
#define pte_mk_savedwrite pte_mkwrite
#endif

478 479 480 481
#ifndef pte_clear_savedwrite
#define pte_clear_savedwrite pte_wrprotect
#endif

482 483 484 485 486 487 488 489
#ifndef pmd_savedwrite
#define pmd_savedwrite pmd_write
#endif

#ifndef pmd_mk_savedwrite
#define pmd_mk_savedwrite pmd_mkwrite
#endif

490 491 492 493
#ifndef pmd_clear_savedwrite
#define pmd_clear_savedwrite pmd_wrprotect
#endif

494 495 496 497 498 499 500 501
#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static inline void pmdp_set_wrprotect(struct mm_struct *mm,
				      unsigned long address, pmd_t *pmdp)
{
	pmd_t old_pmd = *pmdp;
	set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
}
502
#else
503 504 505
static inline void pmdp_set_wrprotect(struct mm_struct *mm,
				      unsigned long address, pmd_t *pmdp)
{
506
	BUILD_BUG();
507 508 509
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#endif
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
static inline void pudp_set_wrprotect(struct mm_struct *mm,
				      unsigned long address, pud_t *pudp)
{
	pud_t old_pud = *pudp;

	set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
}
#else
static inline void pudp_set_wrprotect(struct mm_struct *mm,
				      unsigned long address, pud_t *pudp)
{
	BUILD_BUG();
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
#endif
527

528 529
#ifndef pmdp_collapse_flush
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
530 531
extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
				 unsigned long address, pmd_t *pmdp);
532 533 534 535 536 537 538 539 540 541 542 543
#else
static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
					unsigned long address,
					pmd_t *pmdp)
{
	BUILD_BUG();
	return *pmdp;
}
#define pmdp_collapse_flush pmdp_collapse_flush
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#endif

544
#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
545 546
extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
				       pgtable_t pgtable);
547 548 549
#endif

#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
550
extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
551 552
#endif

553 554 555 556
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * This is an implementation of pmdp_establish() that is only suitable for an
 * architecture that doesn't have hardware dirty/accessed bits. In this case we
557
 * can't race with CPU which sets these bits and non-atomic approach is fine.
558 559 560 561 562 563 564 565 566 567
 */
static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
		unsigned long address, pmd_t *pmdp, pmd_t pmd)
{
	pmd_t old_pmd = *pmdp;
	set_pmd_at(vma->vm_mm, address, pmdp, pmd);
	return old_pmd;
}
#endif

G
Gerald Schaefer 已提交
568
#ifndef __HAVE_ARCH_PMDP_INVALIDATE
569
extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
G
Gerald Schaefer 已提交
570 571 572
			    pmd_t *pmdp);
#endif

L
Linus Torvalds 已提交
573
#ifndef __HAVE_ARCH_PTE_SAME
574 575 576 577 578 579
static inline int pte_same(pte_t pte_a, pte_t pte_b)
{
	return pte_val(pte_a) == pte_val(pte_b);
}
#endif

580 581 582 583 584 585 586 587 588 589 590 591 592
#ifndef __HAVE_ARCH_PTE_UNUSED
/*
 * Some architectures provide facilities to virtualization guests
 * so that they can flag allocated pages as unused. This allows the
 * host to transparently reclaim unused pages. This function returns
 * whether the pte's page is unused.
 */
static inline int pte_unused(pte_t pte)
{
	return 0;
}
#endif

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
#ifndef pte_access_permitted
#define pte_access_permitted(pte, write) \
	(pte_present(pte) && (!(write) || pte_write(pte)))
#endif

#ifndef pmd_access_permitted
#define pmd_access_permitted(pmd, write) \
	(pmd_present(pmd) && (!(write) || pmd_write(pmd)))
#endif

#ifndef pud_access_permitted
#define pud_access_permitted(pud, write) \
	(pud_present(pud) && (!(write) || pud_write(pud)))
#endif

#ifndef p4d_access_permitted
#define p4d_access_permitted(p4d, write) \
	(p4d_present(p4d) && (!(write) || p4d_write(p4d)))
#endif

#ifndef pgd_access_permitted
#define pgd_access_permitted(pgd, write) \
	(pgd_present(pgd) && (!(write) || pgd_write(pgd)))
#endif

618 619 620 621 622
#ifndef __HAVE_ARCH_PMD_SAME
static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
{
	return pmd_val(pmd_a) == pmd_val(pmd_b);
}
623 624 625 626 627

static inline int pud_same(pud_t pud_a, pud_t pud_b)
{
	return pud_val(pud_a) == pud_val(pud_b);
}
L
Linus Torvalds 已提交
628 629
#endif

630 631 632 633 634 635 636 637 638 639 640 641 642 643
#ifndef __HAVE_ARCH_P4D_SAME
static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
{
	return p4d_val(p4d_a) == p4d_val(p4d_b);
}
#endif

#ifndef __HAVE_ARCH_PGD_SAME
static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
{
	return pgd_val(pgd_a) == pgd_val(pgd_b);
}
#endif

644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
/*
 * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
 * TLB flush will be required as a result of the "set". For example, use
 * in scenarios where it is known ahead of time that the routine is
 * setting non-present entries, or re-setting an existing entry to the
 * same value. Otherwise, use the typical "set" helpers and flush the
 * TLB.
 */
#define set_pte_safe(ptep, pte) \
({ \
	WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
	set_pte(ptep, pte); \
})

#define set_pmd_safe(pmdp, pmd) \
({ \
	WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
	set_pmd(pmdp, pmd); \
})

#define set_pud_safe(pudp, pud) \
({ \
	WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
	set_pud(pudp, pud); \
})

#define set_p4d_safe(p4dp, p4d) \
({ \
	WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
	set_p4d(p4dp, p4d); \
})

#define set_pgd_safe(pgdp, pgd) \
({ \
	WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
	set_pgd(pgdp, pgd); \
})

682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
#ifndef __HAVE_ARCH_DO_SWAP_PAGE
/*
 * Some architectures support metadata associated with a page. When a
 * page is being swapped out, this metadata must be saved so it can be
 * restored when the page is swapped back in. SPARC M7 and newer
 * processors support an ADI (Application Data Integrity) tag for the
 * page as metadata for the page. arch_do_swap_page() can restore this
 * metadata when a page is swapped back in.
 */
static inline void arch_do_swap_page(struct mm_struct *mm,
				     struct vm_area_struct *vma,
				     unsigned long addr,
				     pte_t pte, pte_t oldpte)
{

}
#endif

#ifndef __HAVE_ARCH_UNMAP_ONE
/*
 * Some architectures support metadata associated with a page. When a
 * page is being swapped out, this metadata must be saved so it can be
 * restored when the page is swapped back in. SPARC M7 and newer
 * processors support an ADI (Application Data Integrity) tag for the
 * page as metadata for the page. arch_unmap_one() can save this
 * metadata on a swap-out of a page.
 */
static inline int arch_unmap_one(struct mm_struct *mm,
				  struct vm_area_struct *vma,
				  unsigned long addr,
				  pte_t orig_pte)
{
	return 0;
}
#endif

718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
/*
 * Allow architectures to preserve additional metadata associated with
 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
 * prototypes must be defined in the arch-specific asm/pgtable.h file.
 */
#ifndef __HAVE_ARCH_PREPARE_TO_SWAP
static inline int arch_prepare_to_swap(struct page *page)
{
	return 0;
}
#endif

#ifndef __HAVE_ARCH_SWAP_INVALIDATE
static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
{
}

static inline void arch_swap_invalidate_area(int type)
{
}
#endif

#ifndef __HAVE_ARCH_SWAP_RESTORE
static inline void arch_swap_restore(swp_entry_t entry, struct page *page)
{
}
#endif

L
Linus Torvalds 已提交
746 747 748 749
#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
#define pgd_offset_gate(mm, addr)	pgd_offset(mm, addr)
#endif

750
#ifndef __HAVE_ARCH_MOVE_PTE
751 752 753
#define move_pte(pte, prot, old_addr, new_addr)	(pte)
#endif

R
Rik van Riel 已提交
754
#ifndef pte_accessible
755
# define pte_accessible(mm, pte)	((void)(pte), 1)
R
Rik van Riel 已提交
756 757
#endif

758 759 760 761
#ifndef flush_tlb_fix_spurious_fault
#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
#endif

L
Linus Torvalds 已提交
762
/*
763 764 765
 * When walking page tables, get the address of the next boundary,
 * or the end address of the range if that comes earlier.  Although no
 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
L
Linus Torvalds 已提交
766 767 768 769 770 771 772
 */

#define pgd_addr_end(addr, end)						\
({	unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;	\
	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
})

773 774 775 776 777 778 779
#ifndef p4d_addr_end
#define p4d_addr_end(addr, end)						\
({	unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK;	\
	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
})
#endif

L
Linus Torvalds 已提交
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
#ifndef pud_addr_end
#define pud_addr_end(addr, end)						\
({	unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;	\
	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
})
#endif

#ifndef pmd_addr_end
#define pmd_addr_end(addr, end)						\
({	unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;	\
	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
})
#endif

/*
 * When walking page tables, we usually want to skip any p?d_none entries;
 * and any p?d_bad entries - reporting the error before resetting to none.
 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
 */
void pgd_clear_bad(pgd_t *);
800 801

#ifndef __PAGETABLE_P4D_FOLDED
802
void p4d_clear_bad(p4d_t *);
803 804 805 806 807
#else
#define p4d_clear_bad(p4d)        do { } while (0)
#endif

#ifndef __PAGETABLE_PUD_FOLDED
L
Linus Torvalds 已提交
808
void pud_clear_bad(pud_t *);
809 810 811 812
#else
#define pud_clear_bad(p4d)        do { } while (0)
#endif

L
Linus Torvalds 已提交
813 814 815 816 817 818 819 820 821 822 823 824 825
void pmd_clear_bad(pmd_t *);

static inline int pgd_none_or_clear_bad(pgd_t *pgd)
{
	if (pgd_none(*pgd))
		return 1;
	if (unlikely(pgd_bad(*pgd))) {
		pgd_clear_bad(pgd);
		return 1;
	}
	return 0;
}

826 827 828 829 830 831 832 833 834 835 836
static inline int p4d_none_or_clear_bad(p4d_t *p4d)
{
	if (p4d_none(*p4d))
		return 1;
	if (unlikely(p4d_bad(*p4d))) {
		p4d_clear_bad(p4d);
		return 1;
	}
	return 0;
}

L
Linus Torvalds 已提交
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
static inline int pud_none_or_clear_bad(pud_t *pud)
{
	if (pud_none(*pud))
		return 1;
	if (unlikely(pud_bad(*pud))) {
		pud_clear_bad(pud);
		return 1;
	}
	return 0;
}

static inline int pmd_none_or_clear_bad(pmd_t *pmd)
{
	if (pmd_none(*pmd))
		return 1;
	if (unlikely(pmd_bad(*pmd))) {
		pmd_clear_bad(pmd);
		return 1;
	}
	return 0;
}
858

859
static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
860 861 862 863 864 865 866 867
					     unsigned long addr,
					     pte_t *ptep)
{
	/*
	 * Get the current pte state, but zero it out to make it
	 * non-present, preventing the hardware from asynchronously
	 * updating it.
	 */
868
	return ptep_get_and_clear(vma->vm_mm, addr, ptep);
869 870
}

871
static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
872 873 874 875 876 877 878
					     unsigned long addr,
					     pte_t *ptep, pte_t pte)
{
	/*
	 * The pte is non-present, so there's no hardware state to
	 * preserve.
	 */
879
	set_pte_at(vma->vm_mm, addr, ptep, pte);
880 881 882 883 884 885 886 887 888 889
}

#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
/*
 * Start a pte protection read-modify-write transaction, which
 * protects against asynchronous hardware modifications to the pte.
 * The intention is not to prevent the hardware from making pte
 * updates, but to prevent any updates it may make from being lost.
 *
 * This does not protect against other software modifications of the
890
 * pte; the appropriate pte lock must be held over the transaction.
891 892 893 894 895 896
 *
 * Note that this interface is intended to be batchable, meaning that
 * ptep_modify_prot_commit may not actually update the pte, but merely
 * queue the update to be done at some later time.  The update must be
 * actually committed before the pte lock is released, however.
 */
897
static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
898 899 900
					   unsigned long addr,
					   pte_t *ptep)
{
901
	return __ptep_modify_prot_start(vma, addr, ptep);
902 903 904 905 906 907
}

/*
 * Commit an update to a pte, leaving any hardware-controlled bits in
 * the PTE unmodified.
 */
908
static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
909
					   unsigned long addr,
910
					   pte_t *ptep, pte_t old_pte, pte_t pte)
911
{
912
	__ptep_modify_prot_commit(vma, addr, ptep, pte);
913 914
}
#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
915
#endif /* CONFIG_MMU */
916

917 918
/*
 * No-op macros that just return the current protection value. Defined here
919
 * because these macros can be used even if CONFIG_MMU is not defined.
920
 */
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941

#ifndef pgprot_nx
#define pgprot_nx(prot)	(prot)
#endif

#ifndef pgprot_noncached
#define pgprot_noncached(prot)	(prot)
#endif

#ifndef pgprot_writecombine
#define pgprot_writecombine pgprot_noncached
#endif

#ifndef pgprot_writethrough
#define pgprot_writethrough pgprot_noncached
#endif

#ifndef pgprot_device
#define pgprot_device pgprot_noncached
#endif

942 943 944 945
#ifndef pgprot_mhp
#define pgprot_mhp(prot)	(prot)
#endif

946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
#ifdef CONFIG_MMU
#ifndef pgprot_modify
#define pgprot_modify pgprot_modify
static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
{
	if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
		newprot = pgprot_noncached(newprot);
	if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
		newprot = pgprot_writecombine(newprot);
	if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
		newprot = pgprot_device(newprot);
	return newprot;
}
#endif
#endif /* CONFIG_MMU */

962 963 964 965 966 967 968 969
#ifndef pgprot_encrypted
#define pgprot_encrypted(prot)	(prot)
#endif

#ifndef pgprot_decrypted
#define pgprot_decrypted(prot)	(prot)
#endif

970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
/*
 * A facility to provide lazy MMU batching.  This allows PTE updates and
 * page invalidations to be delayed until a call to leave lazy MMU mode
 * is issued.  Some architectures may benefit from doing this, and it is
 * beneficial for both shadow and direct mode hypervisors, which may batch
 * the PTE updates which happen during this window.  Note that using this
 * interface requires that read hazards be removed from the code.  A read
 * hazard could result in the direct mode hypervisor case, since the actual
 * write to the page tables may not yet have taken place, so reads though
 * a raw PTE pointer after it has been modified are not guaranteed to be
 * up to date.  This mode can only be entered and left under the protection of
 * the page table locks for all page tables which may be modified.  In the UP
 * case, this is required so that preemption is disabled, and in the SMP case,
 * it must synchronize the delayed page table writes properly on other CPUs.
 */
#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
#define arch_enter_lazy_mmu_mode()	do {} while (0)
#define arch_leave_lazy_mmu_mode()	do {} while (0)
#define arch_flush_lazy_mmu_mode()	do {} while (0)
#endif

/*
992 993 994 995 996 997 998 999 1000
 * A facility to provide batching of the reload of page tables and
 * other process state with the actual context switch code for
 * paravirtualized guests.  By convention, only one of the batched
 * update (lazy) modes (CPU, MMU) should be active at any given time,
 * entry should never be nested, and entry and exits should always be
 * paired.  This is for sanity of maintaining and reasoning about the
 * kernel code.  In this case, the exit (end of the context switch) is
 * in architecture-specific code, and so doesn't need a generic
 * definition.
1001
 */
1002
#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
1003
#define arch_start_context_switch(prev)	do {} while (0)
1004 1005
#endif

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
{
	return pmd;
}

static inline int pmd_swp_soft_dirty(pmd_t pmd)
{
	return 0;
}

static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
{
	return pmd;
}
#endif
#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
static inline int pte_soft_dirty(pte_t pte)
{
	return 0;
}

static inline int pmd_soft_dirty(pmd_t pmd)
{
	return 0;
}

static inline pte_t pte_mksoft_dirty(pte_t pte)
{
	return pte;
}

static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
{
	return pmd;
}
1043

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
static inline pte_t pte_clear_soft_dirty(pte_t pte)
{
	return pte;
}

static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
{
	return pmd;
}

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
{
	return pte;
}

static inline int pte_swp_soft_dirty(pte_t pte)
{
	return 0;
}

static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
{
	return pte;
}
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082

static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
{
	return pmd;
}

static inline int pmd_swp_soft_dirty(pmd_t pmd)
{
	return 0;
}

static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
{
	return pmd;
}
1083 1084
#endif

1085 1086
#ifndef __HAVE_PFNMAP_TRACKING
/*
1087 1088
 * Interfaces that can be used by architecture code to keep track of
 * memory type of pfn mappings specified by the remap_pfn_range,
1089
 * vmf_insert_pfn.
1090 1091 1092 1093 1094
 */

/*
 * track_pfn_remap is called when a _new_ pfn mapping is being established
 * by remap_pfn_range() for physical range indicated by pfn and size.
1095
 */
1096
static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1097 1098
				  unsigned long pfn, unsigned long addr,
				  unsigned long size)
1099 1100 1101 1102 1103
{
	return 0;
}

/*
1104
 * track_pfn_insert is called when a _new_ single pfn is established
1105
 * by vmf_insert_pfn().
1106
 */
1107 1108
static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
				    pfn_t pfn)
1109 1110 1111 1112 1113
{
}

/*
 * track_pfn_copy is called when vma that is covering the pfnmap gets
1114 1115
 * copied through copy_page_range().
 */
1116
static inline int track_pfn_copy(struct vm_area_struct *vma)
1117 1118 1119 1120 1121
{
	return 0;
}

/*
1122
 * untrack_pfn is called while unmapping a pfnmap for a region.
1123
 * untrack can be called for a specific region indicated by pfn and size or
1124
 * can be for the entire vma (in which case pfn, size are zero).
1125
 */
1126 1127
static inline void untrack_pfn(struct vm_area_struct *vma,
			       unsigned long pfn, unsigned long size)
1128 1129
{
}
1130 1131 1132 1133 1134 1135 1136

/*
 * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
 */
static inline void untrack_pfn_moved(struct vm_area_struct *vma)
{
}
1137
#else
1138
extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1139 1140
			   unsigned long pfn, unsigned long addr,
			   unsigned long size);
1141 1142
extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
			     pfn_t pfn);
1143 1144 1145
extern int track_pfn_copy(struct vm_area_struct *vma);
extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
			unsigned long size);
1146
extern void untrack_pfn_moved(struct vm_area_struct *vma);
1147 1148
#endif

1149
#ifdef CONFIG_MMU
1150 1151 1152 1153 1154 1155 1156 1157
#ifdef __HAVE_COLOR_ZERO_PAGE
static inline int is_zero_pfn(unsigned long pfn)
{
	extern unsigned long zero_pfn;
	unsigned long offset_from_zero_pfn = pfn - zero_pfn;
	return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
}

1158 1159
#define my_zero_pfn(addr)	page_to_pfn(ZERO_PAGE(addr))

1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
#else
static inline int is_zero_pfn(unsigned long pfn)
{
	extern unsigned long zero_pfn;
	return pfn == zero_pfn;
}

static inline unsigned long my_zero_pfn(unsigned long addr)
{
	extern unsigned long zero_pfn;
	return zero_pfn;
}
#endif
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
#else
static inline int is_zero_pfn(unsigned long pfn)
{
	return 0;
}

static inline unsigned long my_zero_pfn(unsigned long addr)
{
	return 0;
}
#endif /* CONFIG_MMU */
1184

1185 1186
#ifdef CONFIG_MMU

1187 1188 1189 1190 1191
#ifndef CONFIG_TRANSPARENT_HUGEPAGE
static inline int pmd_trans_huge(pmd_t pmd)
{
	return 0;
}
1192
#ifndef pmd_write
1193 1194 1195 1196 1197
static inline int pmd_write(pmd_t pmd)
{
	BUG();
	return 0;
}
1198
#endif /* pmd_write */
1199 1200
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

1201 1202 1203 1204 1205 1206 1207 1208
#ifndef pud_write
static inline int pud_write(pud_t pud)
{
	BUG();
	return 0;
}
#endif /* pud_write */

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
static inline int pmd_devmap(pmd_t pmd)
{
	return 0;
}
static inline int pud_devmap(pud_t pud)
{
	return 0;
}
static inline int pgd_devmap(pgd_t pgd)
{
	return 0;
}
#endif

1224 1225 1226 1227 1228 1229 1230 1231 1232
#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
	(defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
	 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD))
static inline int pud_trans_huge(pud_t pud)
{
	return 0;
}
#endif

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
/* See pmd_none_or_trans_huge_or_clear_bad for discussion. */
static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud)
{
	pud_t pudval = READ_ONCE(*pud);

	if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
		return 1;
	if (unlikely(pud_bad(pudval))) {
		pud_clear_bad(pud);
		return 1;
	}
	return 0;
}

/* See pmd_trans_unstable for discussion. */
static inline int pud_trans_unstable(pud_t *pud)
{
#if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
	return pud_none_or_trans_huge_or_dev_or_clear_bad(pud);
#else
	return 0;
#endif
}

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
#ifndef pmd_read_atomic
static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
{
	/*
	 * Depend on compiler for an atomic pmd read. NOTE: this is
	 * only going to work, if the pmdval_t isn't larger than
	 * an unsigned long.
	 */
	return *pmdp;
}
#endif

1270 1271 1272
#ifndef arch_needs_pgtable_deposit
#define arch_needs_pgtable_deposit() (false)
#endif
1273 1274
/*
 * This function is meant to be used by sites walking pagetables with
1275
 * the mmap_lock held in read mode to protect against MADV_DONTNEED and
1276 1277 1278
 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
 * into a null pmd and the transhuge page fault can convert a null pmd
 * into an hugepmd or into a regular pmd (if the hugepage allocation
1279
 * fails). While holding the mmap_lock in read mode the pmd becomes
1280 1281 1282 1283 1284 1285
 * stable and stops changing under us only if it's not null and not a
 * transhuge pmd. When those races occurs and this function makes a
 * difference vs the standard pmd_none_or_clear_bad, the result is
 * undefined so behaving like if the pmd was none is safe (because it
 * can return none anyway). The compiler level barrier() is critically
 * important to compute the two checks atomically on the same pmdval.
1286 1287 1288
 *
 * For 32bit kernels with a 64bit large pmd_t this automatically takes
 * care of reading the pmd atomically to avoid SMP race conditions
1289
 * against pmd_populate() when the mmap_lock is hold for reading by the
1290 1291 1292
 * caller (a special atomic read not done by "gcc" as in the generic
 * version above, is also needed when THP is disabled because the page
 * fault can populate the pmd from under us).
1293 1294 1295
 */
static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
{
1296
	pmd_t pmdval = pmd_read_atomic(pmd);
1297 1298 1299
	/*
	 * The barrier will stabilize the pmdval in a register or on
	 * the stack so that it will stop changing under the code.
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
	 *
	 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
	 * pmd_read_atomic is allowed to return a not atomic pmdval
	 * (for example pointing to an hugepage that has never been
	 * mapped in the pmd). The below checks will only care about
	 * the low part of the pmd with 32bit PAE x86 anyway, with the
	 * exception of pmd_none(). So the important thing is that if
	 * the low part of the pmd is found null, the high part will
	 * be also null or the pmd_none() check below would be
	 * confused.
1310 1311 1312 1313
	 */
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	barrier();
#endif
1314 1315 1316 1317 1318
	/*
	 * !pmd_present() checks for pmd migration entries
	 *
	 * The complete check uses is_pmd_migration_entry() in linux/swapops.h
	 * But using that requires moving current function and pmd_trans_unstable()
1319
	 * to linux/swapops.h to resolve dependency, which is too much code move.
1320 1321 1322 1323 1324
	 *
	 * !pmd_present() is equivalent to is_pmd_migration_entry() currently,
	 * because !pmd_present() pages can only be under migration not swapped
	 * out.
	 *
1325
	 * pmd_none() is preserved for future condition checks on pmd migration
1326 1327 1328 1329 1330
	 * entries and not confusing with this function name, although it is
	 * redundant with !pmd_present().
	 */
	if (pmd_none(pmdval) || pmd_trans_huge(pmdval) ||
		(IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval)))
1331 1332
		return 1;
	if (unlikely(pmd_bad(pmdval))) {
1333
		pmd_clear_bad(pmd);
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
		return 1;
	}
	return 0;
}

/*
 * This is a noop if Transparent Hugepage Support is not built into
 * the kernel. Otherwise it is equivalent to
 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
 * places that already verified the pmd is not none and they want to
 * walk ptes while holding the mmap sem in read mode (write mode don't
 * need this). If THP is not enabled, the pmd can't go away under the
 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
 * run a pmd_trans_unstable before walking the ptes after
1348 1349
 * split_huge_pmd returns (because it may have run when the pmd become
 * null, but then a page fault can map in a THP and not a regular page).
1350 1351 1352 1353 1354 1355 1356
 */
static inline int pmd_trans_unstable(pmd_t *pmd)
{
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	return pmd_none_or_trans_huge_or_clear_bad(pmd);
#else
	return 0;
1357
#endif
1358 1359
}

1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
/*
 * the ordering of these checks is important for pmds with _page_devmap set.
 * if we check pmd_trans_unstable() first we will trip the bad_pmd() check
 * inside of pmd_none_or_trans_huge_or_clear_bad(). this will end up correctly
 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
 */
static inline int pmd_devmap_trans_unstable(pmd_t *pmd)
{
	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
}

1371 1372 1373 1374 1375
#ifndef CONFIG_NUMA_BALANCING
/*
 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
 * the only case the kernel cares is for NUMA balancing and is only ever set
 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
1376
 * _PAGE_PROTNONE so by default, implement the helper as "always no". It
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
 * is the responsibility of the caller to distinguish between PROT_NONE
 * protections and NUMA hinting fault protections.
 */
static inline int pte_protnone(pte_t pte)
{
	return 0;
}

static inline int pmd_protnone(pmd_t pmd)
{
	return 0;
}
#endif /* CONFIG_NUMA_BALANCING */

1391
#endif /* CONFIG_MMU */
1392

1393
#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408

#ifndef __PAGETABLE_P4D_FOLDED
int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
int p4d_clear_huge(p4d_t *p4d);
#else
static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
{
	return 0;
}
static inline int p4d_clear_huge(p4d_t *p4d)
{
	return 0;
}
#endif /* !__PAGETABLE_P4D_FOLDED */

1409
int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1410
int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1411
int pud_clear_huge(pud_t *pud);
1412
int pmd_clear_huge(pmd_t *pmd);
1413
int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1414 1415
int pud_free_pmd_page(pud_t *pud, unsigned long addr);
int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1416
#else	/* !CONFIG_HAVE_ARCH_HUGE_VMAP */
1417 1418 1419 1420
static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
{
	return 0;
}
1421 1422 1423 1424 1425 1426 1427 1428
static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
{
	return 0;
}
static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
{
	return 0;
}
1429 1430 1431 1432
static inline int p4d_clear_huge(p4d_t *p4d)
{
	return 0;
}
1433 1434 1435 1436 1437 1438 1439 1440
static inline int pud_clear_huge(pud_t *pud)
{
	return 0;
}
static inline int pmd_clear_huge(pmd_t *pmd)
{
	return 0;
}
1441 1442 1443 1444
static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
{
	return 0;
}
1445
static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1446 1447 1448
{
	return 0;
}
1449
static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1450 1451 1452
{
	return 0;
}
1453 1454
#endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */

1455 1456 1457 1458 1459
#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * ARCHes with special requirements for evicting THP backing TLB entries can
 * implement this. Otherwise also, it can help optimize normal TLB flush in
1460 1461 1462 1463
 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
 * entire TLB if flush span is greater than a threshold, which will
 * likely be true for a single huge page. Thus a single THP flush will
 * invalidate the entire TLB which is not desirable.
1464 1465 1466
 * e.g. see arch/arc: flush_pmd_tlb_range
 */
#define flush_pmd_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1467
#define flush_pud_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1468 1469
#else
#define flush_pmd_tlb_range(vma, addr, end)	BUILD_BUG()
1470
#define flush_pud_tlb_range(vma, addr, end)	BUILD_BUG()
1471 1472 1473
#endif
#endif

1474 1475 1476
struct file;
int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
			unsigned long size, pgprot_t *vma_prot);
1477 1478 1479 1480 1481

#ifndef CONFIG_X86_ESPFIX64
static inline void init_espfix_bsp(void) { }
#endif

1482
extern void __init pgtable_cache_init(void);
1483

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
{
	return true;
}

static inline bool arch_has_pfn_modify_check(void)
{
	return false;
}
#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */

1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
/*
 * Architecture PAGE_KERNEL_* fallbacks
 *
 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
 * because they really don't support them, or the port needs to be updated to
 * reflect the required functionality. Below are a set of relatively safe
 * fallbacks, as best effort, which we can count on in lieu of the architectures
 * not defining them on their own yet.
 */

#ifndef PAGE_KERNEL_RO
# define PAGE_KERNEL_RO PAGE_KERNEL
#endif

1510 1511 1512 1513
#ifndef PAGE_KERNEL_EXEC
# define PAGE_KERNEL_EXEC PAGE_KERNEL
#endif

1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
/*
 * Page Table Modification bits for pgtbl_mod_mask.
 *
 * These are used by the p?d_alloc_track*() set of functions an in the generic
 * vmalloc/ioremap code to track at which page-table levels entries have been
 * modified. Based on that the code can better decide when vmalloc and ioremap
 * mapping changes need to be synchronized to other page-tables in the system.
 */
#define		__PGTBL_PGD_MODIFIED	0
#define		__PGTBL_P4D_MODIFIED	1
#define		__PGTBL_PUD_MODIFIED	2
#define		__PGTBL_PMD_MODIFIED	3
#define		__PGTBL_PTE_MODIFIED	4

#define		PGTBL_PGD_MODIFIED	BIT(__PGTBL_PGD_MODIFIED)
#define		PGTBL_P4D_MODIFIED	BIT(__PGTBL_P4D_MODIFIED)
#define		PGTBL_PUD_MODIFIED	BIT(__PGTBL_PUD_MODIFIED)
#define		PGTBL_PMD_MODIFIED	BIT(__PGTBL_PMD_MODIFIED)
#define		PGTBL_PTE_MODIFIED	BIT(__PGTBL_PTE_MODIFIED)

/* Page-Table Modification Mask */
typedef unsigned int pgtbl_mod_mask;

L
Linus Torvalds 已提交
1537 1538
#endif /* !__ASSEMBLY__ */

1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
#if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
#ifdef CONFIG_PHYS_ADDR_T_64BIT
/*
 * ZSMALLOC needs to know the highest PFN on 32-bit architectures
 * with physical address space extension, but falls back to
 * BITS_PER_LONG otherwise.
 */
#error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
#else
#define MAX_POSSIBLE_PHYSMEM_BITS 32
#endif
#endif

1552 1553 1554 1555 1556 1557 1558 1559
#ifndef has_transparent_hugepage
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#define has_transparent_hugepage() 1
#else
#define has_transparent_hugepage() 0
#endif
#endif

1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
/*
 * On some architectures it depends on the mm if the p4d/pud or pmd
 * layer of the page table hierarchy is folded or not.
 */
#ifndef mm_p4d_folded
#define mm_p4d_folded(mm)	__is_defined(__PAGETABLE_P4D_FOLDED)
#endif

#ifndef mm_pud_folded
#define mm_pud_folded(mm)	__is_defined(__PAGETABLE_PUD_FOLDED)
#endif

#ifndef mm_pmd_folded
#define mm_pmd_folded(mm)	__is_defined(__PAGETABLE_PMD_FOLDED)
#endif

1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
#ifndef p4d_offset_lockless
#define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
#endif
#ifndef pud_offset_lockless
#define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
#endif
#ifndef pmd_offset_lockless
#define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
#endif

S
Steven Price 已提交
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
/*
 * p?d_leaf() - true if this entry is a final mapping to a physical address.
 * This differs from p?d_huge() by the fact that they are always available (if
 * the architecture supports large pages at the appropriate level) even
 * if CONFIG_HUGETLB_PAGE is not defined.
 * Only meaningful when called on a valid entry.
 */
#ifndef pgd_leaf
#define pgd_leaf(x)	0
#endif
#ifndef p4d_leaf
#define p4d_leaf(x)	0
#endif
#ifndef pud_leaf
#define pud_leaf(x)	0
#endif
#ifndef pmd_leaf
#define pmd_leaf(x)	0
#endif

P
Peter Zijlstra 已提交
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
#ifndef pgd_leaf_size
#define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
#endif
#ifndef p4d_leaf_size
#define p4d_leaf_size(x) P4D_SIZE
#endif
#ifndef pud_leaf_size
#define pud_leaf_size(x) PUD_SIZE
#endif
#ifndef pmd_leaf_size
#define pmd_leaf_size(x) PMD_SIZE
#endif
#ifndef pte_leaf_size
#define pte_leaf_size(x) PAGE_SIZE
#endif

1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
/*
 * Some architectures have MMUs that are configurable or selectable at boot
 * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
 * helps to have a static maximum value.
 */

#ifndef MAX_PTRS_PER_PTE
#define MAX_PTRS_PER_PTE PTRS_PER_PTE
#endif

#ifndef MAX_PTRS_PER_PMD
#define MAX_PTRS_PER_PMD PTRS_PER_PMD
#endif

#ifndef MAX_PTRS_PER_PUD
#define MAX_PTRS_PER_PUD PTRS_PER_PUD
#endif

#ifndef MAX_PTRS_PER_P4D
#define MAX_PTRS_PER_P4D PTRS_PER_P4D
#endif

1644
#endif /* _LINUX_PGTABLE_H */