intel_gt.c 9.7 KB
Newer Older
1 2 3 4 5
// SPDX-License-Identifier: MIT
/*
 * Copyright © 2019 Intel Corporation
 */

6
#include "i915_drv.h"
7
#include "intel_gt.h"
8
#include "intel_gt_pm.h"
9
#include "intel_gt_requests.h"
10
#include "intel_mocs.h"
11
#include "intel_rc6.h"
12
#include "intel_rps.h"
13
#include "intel_uncore.h"
14
#include "intel_pm.h"
15

16
void intel_gt_init_early(struct intel_gt *gt, struct drm_i915_private *i915)
17
{
18 19 20
	gt->i915 = i915;
	gt->uncore = &i915->uncore;

21 22 23
	spin_lock_init(&gt->irq_lock);

	INIT_LIST_HEAD(&gt->closed_vma);
24
	spin_lock_init(&gt->closed_lock);
25

26
	intel_gt_init_reset(gt);
27
	intel_gt_init_requests(gt);
28
	intel_gt_init_timelines(gt);
29
	intel_gt_pm_init_early(gt);
30 31

	intel_rps_init_early(&gt->rps);
32
	intel_uc_init_early(&gt->uc);
33
}
34

35
void intel_gt_init_hw_early(struct intel_gt *gt, struct i915_ggtt *ggtt)
36
{
37 38 39
	gt->ggtt = ggtt;

	intel_gt_sanitize(gt, false);
40 41
}

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
static void init_unused_ring(struct intel_gt *gt, u32 base)
{
	struct intel_uncore *uncore = gt->uncore;

	intel_uncore_write(uncore, RING_CTL(base), 0);
	intel_uncore_write(uncore, RING_HEAD(base), 0);
	intel_uncore_write(uncore, RING_TAIL(base), 0);
	intel_uncore_write(uncore, RING_START(base), 0);
}

static void init_unused_rings(struct intel_gt *gt)
{
	struct drm_i915_private *i915 = gt->i915;

	if (IS_I830(i915)) {
		init_unused_ring(gt, PRB1_BASE);
		init_unused_ring(gt, SRB0_BASE);
		init_unused_ring(gt, SRB1_BASE);
		init_unused_ring(gt, SRB2_BASE);
		init_unused_ring(gt, SRB3_BASE);
	} else if (IS_GEN(i915, 2)) {
		init_unused_ring(gt, SRB0_BASE);
		init_unused_ring(gt, SRB1_BASE);
	} else if (IS_GEN(i915, 3)) {
		init_unused_ring(gt, PRB1_BASE);
		init_unused_ring(gt, PRB2_BASE);
	}
}

int intel_gt_init_hw(struct intel_gt *gt)
{
	struct drm_i915_private *i915 = gt->i915;
	struct intel_uncore *uncore = gt->uncore;
	int ret;

	BUG_ON(!i915->kernel_context);
	ret = intel_gt_terminally_wedged(gt);
	if (ret)
		return ret;

	gt->last_init_time = ktime_get();

	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);

	if (HAS_EDRAM(i915) && INTEL_GEN(i915) < 9)
		intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf));

	if (IS_HASWELL(i915))
		intel_uncore_write(uncore,
				   MI_PREDICATE_RESULT_2,
				   IS_HSW_GT3(i915) ?
				   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);

	/* Apply the GT workarounds... */
	intel_gt_apply_workarounds(gt);
	/* ...and determine whether they are sticking. */
	intel_gt_verify_workarounds(gt, "init");

	intel_gt_init_swizzling(gt);

	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(gt);

	ret = i915_ppgtt_init_hw(gt);
	if (ret) {
		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
		goto out;
	}

	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(&gt->uc);
	if (ret) {
		i915_probe_error(i915, "Enabling uc failed (%d)\n", ret);
		goto out;
	}

	intel_mocs_init(gt);

out:
	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
	return ret;
}

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
static void rmw_set(struct intel_uncore *uncore, i915_reg_t reg, u32 set)
{
	intel_uncore_rmw(uncore, reg, 0, set);
}

static void rmw_clear(struct intel_uncore *uncore, i915_reg_t reg, u32 clr)
{
	intel_uncore_rmw(uncore, reg, clr, 0);
}

static void clear_register(struct intel_uncore *uncore, i915_reg_t reg)
{
	intel_uncore_rmw(uncore, reg, 0, 0);
}

static void gen8_clear_engine_error_register(struct intel_engine_cs *engine)
{
	GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0);
	GEN6_RING_FAULT_REG_POSTING_READ(engine);
}

void
intel_gt_clear_error_registers(struct intel_gt *gt,
			       intel_engine_mask_t engine_mask)
{
	struct drm_i915_private *i915 = gt->i915;
	struct intel_uncore *uncore = gt->uncore;
	u32 eir;

	if (!IS_GEN(i915, 2))
		clear_register(uncore, PGTBL_ER);

	if (INTEL_GEN(i915) < 4)
		clear_register(uncore, IPEIR(RENDER_RING_BASE));
	else
		clear_register(uncore, IPEIR_I965);

	clear_register(uncore, EIR);
	eir = intel_uncore_read(uncore, EIR);
	if (eir) {
		/*
		 * some errors might have become stuck,
		 * mask them.
		 */
		DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
		rmw_set(uncore, EMR, eir);
		intel_uncore_write(uncore, GEN2_IIR,
				   I915_MASTER_ERROR_INTERRUPT);
	}

181 182 183 184
	if (INTEL_GEN(i915) >= 12) {
		rmw_clear(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID);
		intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG);
	} else if (INTEL_GEN(i915) >= 8) {
185 186 187 188 189 190
		rmw_clear(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID);
		intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG);
	} else if (INTEL_GEN(i915) >= 6) {
		struct intel_engine_cs *engine;
		enum intel_engine_id id;

191
		for_each_engine_masked(engine, gt, engine_mask, id)
192 193 194 195 196 197 198 199 200 201
			gen8_clear_engine_error_register(engine);
	}
}

static void gen6_check_faults(struct intel_gt *gt)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	u32 fault;

202
	for_each_engine(engine, gt, id) {
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
		fault = GEN6_RING_FAULT_REG_READ(engine);
		if (fault & RING_FAULT_VALID) {
			DRM_DEBUG_DRIVER("Unexpected fault\n"
					 "\tAddr: 0x%08lx\n"
					 "\tAddress space: %s\n"
					 "\tSource ID: %d\n"
					 "\tType: %d\n",
					 fault & PAGE_MASK,
					 fault & RING_FAULT_GTTSEL_MASK ?
					 "GGTT" : "PPGTT",
					 RING_FAULT_SRCID(fault),
					 RING_FAULT_FAULT_TYPE(fault));
		}
	}
}

static void gen8_check_faults(struct intel_gt *gt)
{
	struct intel_uncore *uncore = gt->uncore;
222 223 224 225 226 227 228 229 230 231 232 233
	i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg;
	u32 fault;

	if (INTEL_GEN(gt->i915) >= 12) {
		fault_reg = GEN12_RING_FAULT_REG;
		fault_data0_reg = GEN12_FAULT_TLB_DATA0;
		fault_data1_reg = GEN12_FAULT_TLB_DATA1;
	} else {
		fault_reg = GEN8_RING_FAULT_REG;
		fault_data0_reg = GEN8_FAULT_TLB_DATA0;
		fault_data1_reg = GEN8_FAULT_TLB_DATA1;
	}
234

235
	fault = intel_uncore_read(uncore, fault_reg);
236 237 238 239
	if (fault & RING_FAULT_VALID) {
		u32 fault_data0, fault_data1;
		u64 fault_addr;

240 241 242
		fault_data0 = intel_uncore_read(uncore, fault_data0_reg);
		fault_data1 = intel_uncore_read(uncore, fault_data1_reg);

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
			     ((u64)fault_data0 << 12);

		DRM_DEBUG_DRIVER("Unexpected fault\n"
				 "\tAddr: 0x%08x_%08x\n"
				 "\tAddress space: %s\n"
				 "\tEngine ID: %d\n"
				 "\tSource ID: %d\n"
				 "\tType: %d\n",
				 upper_32_bits(fault_addr),
				 lower_32_bits(fault_addr),
				 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
				 GEN8_RING_FAULT_ENGINE_ID(fault),
				 RING_FAULT_SRCID(fault),
				 RING_FAULT_FAULT_TYPE(fault));
	}
}

void intel_gt_check_and_clear_faults(struct intel_gt *gt)
{
	struct drm_i915_private *i915 = gt->i915;

	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
	if (INTEL_GEN(i915) >= 8)
		gen8_check_faults(gt);
	else if (INTEL_GEN(i915) >= 6)
		gen6_check_faults(gt);
	else
		return;

	intel_gt_clear_error_registers(gt, ALL_ENGINES);
}
275 276 277

void intel_gt_flush_ggtt_writes(struct intel_gt *gt)
{
278
	struct intel_uncore *uncore = gt->uncore;
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
	intel_wakeref_t wakeref;

	/*
	 * No actual flushing is required for the GTT write domain for reads
	 * from the GTT domain. Writes to it "immediately" go to main memory
	 * as far as we know, so there's no chipset flush. It also doesn't
	 * land in the GPU render cache.
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour, until Cannonlake
	 * that was!).
	 */

	wmb();

302
	if (INTEL_INFO(gt->i915)->has_coherent_ggtt)
303 304
		return;

305
	intel_gt_chipset_flush(gt);
306

307
	with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) {
308
		unsigned long flags;
309

310
		spin_lock_irqsave(&uncore->lock, flags);
311 312
		intel_uncore_posting_read_fw(uncore,
					     RING_HEAD(RENDER_RING_BASE));
313
		spin_unlock_irqrestore(&uncore->lock, flags);
314 315
	}
}
316 317 318 319 320 321 322

void intel_gt_chipset_flush(struct intel_gt *gt)
{
	wmb();
	if (INTEL_GEN(gt->i915) < 6)
		intel_gtt_chipset_flush();
}
323

324 325
void intel_gt_driver_register(struct intel_gt *gt)
{
326
	intel_rps_driver_register(&gt->rps);
327 328 329
}

static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size)
330 331 332 333 334 335 336
{
	struct drm_i915_private *i915 = gt->i915;
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int ret;

	obj = i915_gem_object_create_stolen(i915, size);
337
	if (IS_ERR(obj))
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
		obj = i915_gem_object_create_internal(i915, size);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate scratch page\n");
		return PTR_ERR(obj);
	}

	vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err_unref;
	}

	ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
	if (ret)
		goto err_unref;

354 355
	gt->scratch = i915_vma_make_unshrinkable(vma);

356 357 358 359 360 361 362
	return 0;

err_unref:
	i915_gem_object_put(obj);
	return ret;
}

363
static void intel_gt_fini_scratch(struct intel_gt *gt)
364 365 366
{
	i915_vma_unpin_and_release(&gt->scratch, 0);
}
367

368 369 370 371 372 373 374 375
int intel_gt_init(struct intel_gt *gt)
{
	int err;

	err = intel_gt_init_scratch(gt, IS_GEN(gt->i915, 2) ? SZ_256K : SZ_4K);
	if (err)
		return err;

376 377
	intel_gt_pm_init(gt);

378 379 380 381 382 383 384 385 386 387
	return 0;
}

void intel_gt_driver_remove(struct intel_gt *gt)
{
	GEM_BUG_ON(gt->awake);
}

void intel_gt_driver_unregister(struct intel_gt *gt)
{
388
	intel_rps_driver_unregister(&gt->rps);
389 390 391 392
}

void intel_gt_driver_release(struct intel_gt *gt)
{
393
	intel_gt_pm_fini(gt);
394 395 396
	intel_gt_fini_scratch(gt);
}

397
void intel_gt_driver_late_release(struct intel_gt *gt)
398
{
399
	intel_uc_driver_late_release(&gt->uc);
400
	intel_gt_fini_requests(gt);
401
	intel_gt_fini_reset(gt);
402
	intel_gt_fini_timelines(gt);
403
}