book3s_hv_rm_mmu.c 20.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * Copyright 2010-2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 */

#include <linux/types.h>
#include <linux/string.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/hugetlb.h>
14
#include <linux/module.h>
15 16 17 18 19 20 21 22 23

#include <asm/tlbflush.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu-hash64.h>
#include <asm/hvcall.h>
#include <asm/synch.h>
#include <asm/ppc-opcode.h>

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
/*
 * Since this file is built in even if KVM is a module, we need
 * a local copy of this function for the case where kvm_main.c is
 * modular.
 */
static struct kvm_memory_slot *builtin_gfn_to_memslot(struct kvm *kvm,
						gfn_t gfn)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots)
		if (gfn >= memslot->base_gfn &&
		      gfn < memslot->base_gfn + memslot->npages)
			return memslot;
	return NULL;
}

43 44 45 46 47 48 49 50 51 52 53 54 55
/* Translate address of a vmalloc'd thing to a linear map address */
static void *real_vmalloc_addr(void *x)
{
	unsigned long addr = (unsigned long) x;
	pte_t *p;

	p = find_linux_pte(swapper_pg_dir, addr);
	if (!p || !pte_present(*p))
		return NULL;
	/* assume we don't have huge pages in vmalloc space... */
	addr = (pte_pfn(*p) << PAGE_SHIFT) | (addr & ~PAGE_MASK);
	return __va(addr);
}
56

57 58 59 60
/*
 * Add this HPTE into the chain for the real page.
 * Must be called with the chain locked; it unlocks the chain.
 */
61
void kvmppc_add_revmap_chain(struct kvm *kvm, struct revmap_entry *rev,
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
			     unsigned long *rmap, long pte_index, int realmode)
{
	struct revmap_entry *head, *tail;
	unsigned long i;

	if (*rmap & KVMPPC_RMAP_PRESENT) {
		i = *rmap & KVMPPC_RMAP_INDEX;
		head = &kvm->arch.revmap[i];
		if (realmode)
			head = real_vmalloc_addr(head);
		tail = &kvm->arch.revmap[head->back];
		if (realmode)
			tail = real_vmalloc_addr(tail);
		rev->forw = i;
		rev->back = head->back;
		tail->forw = pte_index;
		head->back = pte_index;
	} else {
		rev->forw = rev->back = pte_index;
		i = pte_index;
	}
	smp_wmb();
	*rmap = i | KVMPPC_RMAP_REFERENCED | KVMPPC_RMAP_PRESENT; /* unlock */
}
86
EXPORT_SYMBOL_GPL(kvmppc_add_revmap_chain);
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121

/* Remove this HPTE from the chain for a real page */
static void remove_revmap_chain(struct kvm *kvm, long pte_index,
				unsigned long hpte_v)
{
	struct revmap_entry *rev, *next, *prev;
	unsigned long gfn, ptel, head;
	struct kvm_memory_slot *memslot;
	unsigned long *rmap;

	rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
	ptel = rev->guest_rpte;
	gfn = hpte_rpn(ptel, hpte_page_size(hpte_v, ptel));
	memslot = builtin_gfn_to_memslot(kvm, gfn);
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
		return;

	rmap = real_vmalloc_addr(&memslot->rmap[gfn - memslot->base_gfn]);
	lock_rmap(rmap);

	head = *rmap & KVMPPC_RMAP_INDEX;
	next = real_vmalloc_addr(&kvm->arch.revmap[rev->forw]);
	prev = real_vmalloc_addr(&kvm->arch.revmap[rev->back]);
	next->back = rev->back;
	prev->forw = rev->forw;
	if (head == pte_index) {
		head = rev->forw;
		if (head == pte_index)
			*rmap &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
		else
			*rmap = (*rmap & ~KVMPPC_RMAP_INDEX) | head;
	}
	unlock_rmap(rmap);
}

122
static pte_t lookup_linux_pte(struct kvm_vcpu *vcpu, unsigned long hva,
123
			      int writing, unsigned long *pte_sizep)
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
{
	pte_t *ptep;
	unsigned long ps = *pte_sizep;
	unsigned int shift;

	ptep = find_linux_pte_or_hugepte(vcpu->arch.pgdir, hva, &shift);
	if (!ptep)
		return __pte(0);
	if (shift)
		*pte_sizep = 1ul << shift;
	else
		*pte_sizep = PAGE_SIZE;
	if (ps > *pte_sizep)
		return __pte(0);
	if (!pte_present(*ptep))
		return __pte(0);
140
	return kvmppc_read_update_linux_pte(ptep, writing);
141 142
}

143 144 145 146
long kvmppc_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
		    long pte_index, unsigned long pteh, unsigned long ptel)
{
	struct kvm *kvm = vcpu->kvm;
147
	unsigned long i, pa, gpa, gfn, psize;
148
	unsigned long slot_fn, hva;
149
	unsigned long *hpte;
150 151
	struct revmap_entry *rev;
	unsigned long g_ptel = ptel;
152
	struct kvm_memory_slot *memslot;
153
	unsigned long *physp, pte_size;
154
	unsigned long is_io;
155
	unsigned long *rmap;
156
	pte_t pte;
157
	unsigned int writing;
158
	unsigned long mmu_seq;
159 160 161 162
	bool realmode = vcpu->arch.vcore->vcore_state == VCORE_RUNNING;

	psize = hpte_page_size(pteh, ptel);
	if (!psize)
163
		return H_PARAMETER;
164
	writing = hpte_is_writable(ptel);
165
	pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
166

167 168 169 170
	/* used later to detect if we might have been invalidated */
	mmu_seq = kvm->mmu_notifier_seq;
	smp_rmb();

171 172 173
	/* Find the memslot (if any) for this address */
	gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
	gfn = gpa >> PAGE_SHIFT;
174
	memslot = builtin_gfn_to_memslot(kvm, gfn);
175
	pa = 0;
176
	is_io = ~0ul;
177 178 179 180 181 182 183 184 185 186
	rmap = NULL;
	if (!(memslot && !(memslot->flags & KVM_MEMSLOT_INVALID))) {
		/* PPC970 can't do emulated MMIO */
		if (!cpu_has_feature(CPU_FTR_ARCH_206))
			return H_PARAMETER;
		/* Emulated MMIO - mark this with key=31 */
		pteh |= HPTE_V_ABSENT;
		ptel |= HPTE_R_KEY_HI | HPTE_R_KEY_LO;
		goto do_insert;
	}
187 188 189 190

	/* Check if the requested page fits entirely in the memslot. */
	if (!slot_is_aligned(memslot, psize))
		return H_PARAMETER;
191
	slot_fn = gfn - memslot->base_gfn;
192
	rmap = &memslot->rmap[slot_fn];
193

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
	if (!kvm->arch.using_mmu_notifiers) {
		physp = kvm->arch.slot_phys[memslot->id];
		if (!physp)
			return H_PARAMETER;
		physp += slot_fn;
		if (realmode)
			physp = real_vmalloc_addr(physp);
		pa = *physp;
		if (!pa)
			return H_TOO_HARD;
		is_io = pa & (HPTE_R_I | HPTE_R_W);
		pte_size = PAGE_SIZE << (pa & KVMPPC_PAGE_ORDER_MASK);
		pa &= PAGE_MASK;
	} else {
		/* Translate to host virtual address */
		hva = gfn_to_hva_memslot(memslot, gfn);

		/* Look up the Linux PTE for the backing page */
		pte_size = psize;
213
		pte = lookup_linux_pte(vcpu, hva, writing, &pte_size);
214
		if (pte_present(pte)) {
215 216 217
			if (writing && !pte_write(pte))
				/* make the actual HPTE be read-only */
				ptel = hpte_make_readonly(ptel);
218 219 220 221
			is_io = hpte_cache_bits(pte_val(pte));
			pa = pte_pfn(pte) << PAGE_SHIFT;
		}
	}
222 223 224 225 226 227 228
	if (pte_size < psize)
		return H_PARAMETER;
	if (pa && pte_size > psize)
		pa |= gpa & (pte_size - 1);

	ptel &= ~(HPTE_R_PP0 - psize);
	ptel |= pa;
229 230 231 232 233

	if (pa)
		pteh |= HPTE_V_VALID;
	else
		pteh |= HPTE_V_ABSENT;
234

235
	/* Check WIMG */
236
	if (is_io != ~0ul && !hpte_cache_flags_ok(ptel, is_io)) {
237 238 239 240 241 242 243 244 245
		if (is_io)
			return H_PARAMETER;
		/*
		 * Allow guest to map emulated device memory as
		 * uncacheable, but actually make it cacheable.
		 */
		ptel &= ~(HPTE_R_W|HPTE_R_I|HPTE_R_G);
		ptel |= HPTE_R_M;
	}
246

247
	/* Find and lock the HPTEG slot to use */
248
 do_insert:
249
	if (pte_index >= HPT_NPTE)
250 251 252 253
		return H_PARAMETER;
	if (likely((flags & H_EXACT) == 0)) {
		pte_index &= ~7UL;
		hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
254
		for (i = 0; i < 8; ++i) {
255
			if ((*hpte & HPTE_V_VALID) == 0 &&
256 257
			    try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
					  HPTE_V_ABSENT))
258 259 260
				break;
			hpte += 2;
		}
261 262 263 264 265 266 267 268 269 270 271
		if (i == 8) {
			/*
			 * Since try_lock_hpte doesn't retry (not even stdcx.
			 * failures), it could be that there is a free slot
			 * but we transiently failed to lock it.  Try again,
			 * actually locking each slot and checking it.
			 */
			hpte -= 16;
			for (i = 0; i < 8; ++i) {
				while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
					cpu_relax();
272
				if (!(*hpte & (HPTE_V_VALID | HPTE_V_ABSENT)))
273 274 275 276 277 278 279
					break;
				*hpte &= ~HPTE_V_HVLOCK;
				hpte += 2;
			}
			if (i == 8)
				return H_PTEG_FULL;
		}
280
		pte_index += i;
281 282
	} else {
		hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
283 284
		if (!try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
				   HPTE_V_ABSENT)) {
285 286 287
			/* Lock the slot and check again */
			while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
				cpu_relax();
288
			if (*hpte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
289 290 291 292
				*hpte &= ~HPTE_V_HVLOCK;
				return H_PTEG_FULL;
			}
		}
293
	}
294 295

	/* Save away the guest's idea of the second HPTE dword */
296 297 298
	rev = &kvm->arch.revmap[pte_index];
	if (realmode)
		rev = real_vmalloc_addr(rev);
299 300
	if (rev)
		rev->guest_rpte = g_ptel;
301 302

	/* Link HPTE into reverse-map chain */
303 304 305 306
	if (pteh & HPTE_V_VALID) {
		if (realmode)
			rmap = real_vmalloc_addr(rmap);
		lock_rmap(rmap);
307 308 309 310 311 312 313 314 315 316 317
		/* Check for pending invalidations under the rmap chain lock */
		if (kvm->arch.using_mmu_notifiers &&
		    mmu_notifier_retry(vcpu, mmu_seq)) {
			/* inval in progress, write a non-present HPTE */
			pteh |= HPTE_V_ABSENT;
			pteh &= ~HPTE_V_VALID;
			unlock_rmap(rmap);
		} else {
			kvmppc_add_revmap_chain(kvm, rev, rmap, pte_index,
						realmode);
		}
318
	}
319

320
	hpte[1] = ptel;
321 322

	/* Write the first HPTE dword, unlocking the HPTE and making it valid */
323 324 325
	eieio();
	hpte[0] = pteh;
	asm volatile("ptesync" : : : "memory");
326

327
	vcpu->arch.gpr[4] = pte_index;
328 329
	return H_SUCCESS;
}
330
EXPORT_SYMBOL_GPL(kvmppc_h_enter);
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359

#define LOCK_TOKEN	(*(u32 *)(&get_paca()->lock_token))

static inline int try_lock_tlbie(unsigned int *lock)
{
	unsigned int tmp, old;
	unsigned int token = LOCK_TOKEN;

	asm volatile("1:lwarx	%1,0,%2\n"
		     "	cmpwi	cr0,%1,0\n"
		     "	bne	2f\n"
		     "  stwcx.	%3,0,%2\n"
		     "	bne-	1b\n"
		     "  isync\n"
		     "2:"
		     : "=&r" (tmp), "=&r" (old)
		     : "r" (lock), "r" (token)
		     : "cc", "memory");
	return old == 0;
}

long kvmppc_h_remove(struct kvm_vcpu *vcpu, unsigned long flags,
		     unsigned long pte_index, unsigned long avpn,
		     unsigned long va)
{
	struct kvm *kvm = vcpu->kvm;
	unsigned long *hpte;
	unsigned long v, r, rb;

360
	if (pte_index >= HPT_NPTE)
361 362
		return H_PARAMETER;
	hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
363
	while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
364
		cpu_relax();
365
	if ((hpte[0] & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
366 367 368 369 370 371 372 373 374 375
	    ((flags & H_AVPN) && (hpte[0] & ~0x7fUL) != avpn) ||
	    ((flags & H_ANDCOND) && (hpte[0] & avpn) != 0)) {
		hpte[0] &= ~HPTE_V_HVLOCK;
		return H_NOT_FOUND;
	}
	if (atomic_read(&kvm->online_vcpus) == 1)
		flags |= H_LOCAL;
	vcpu->arch.gpr[4] = v = hpte[0] & ~HPTE_V_HVLOCK;
	vcpu->arch.gpr[5] = r = hpte[1];
	rb = compute_tlbie_rb(v, r, pte_index);
376 377
	if (v & HPTE_V_VALID)
		remove_revmap_chain(kvm, pte_index, v);
378
	smp_wmb();
379
	hpte[0] = 0;
380 381
	if (!(v & HPTE_V_VALID))
		return H_SUCCESS;
382
	if (!(flags & H_LOCAL)) {
383
		while (!try_lock_tlbie(&kvm->arch.tlbie_lock))
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
			cpu_relax();
		asm volatile("ptesync" : : : "memory");
		asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
			     : : "r" (rb), "r" (kvm->arch.lpid));
		asm volatile("ptesync" : : : "memory");
		kvm->arch.tlbie_lock = 0;
	} else {
		asm volatile("ptesync" : : : "memory");
		asm volatile("tlbiel %0" : : "r" (rb));
		asm volatile("ptesync" : : : "memory");
	}
	return H_SUCCESS;
}

long kvmppc_h_bulk_remove(struct kvm_vcpu *vcpu)
{
	struct kvm *kvm = vcpu->kvm;
	unsigned long *args = &vcpu->arch.gpr[4];
	unsigned long *hp, tlbrb[4];
	long int i, found;
	long int n_inval = 0;
	unsigned long flags, req, pte_index;
	long int local = 0;
	long int ret = H_SUCCESS;

	if (atomic_read(&kvm->online_vcpus) == 1)
		local = 1;
	for (i = 0; i < 4; ++i) {
		pte_index = args[i * 2];
		flags = pte_index >> 56;
		pte_index &= ((1ul << 56) - 1);
		req = flags >> 6;
		flags &= 3;
		if (req == 3)
			break;
		if (req != 1 || flags == 3 ||
420
		    pte_index >= HPT_NPTE) {
421 422 423 424 425 426
			/* parameter error */
			args[i * 2] = ((0xa0 | flags) << 56) + pte_index;
			ret = H_PARAMETER;
			break;
		}
		hp = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
427
		while (!try_lock_hpte(hp, HPTE_V_HVLOCK))
428 429
			cpu_relax();
		found = 0;
430
		if (hp[0] & (HPTE_V_ABSENT | HPTE_V_VALID)) {
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
			switch (flags & 3) {
			case 0:		/* absolute */
				found = 1;
				break;
			case 1:		/* andcond */
				if (!(hp[0] & args[i * 2 + 1]))
					found = 1;
				break;
			case 2:		/* AVPN */
				if ((hp[0] & ~0x7fUL) == args[i * 2 + 1])
					found = 1;
				break;
			}
		}
		if (!found) {
			hp[0] &= ~HPTE_V_HVLOCK;
			args[i * 2] = ((0x90 | flags) << 56) + pte_index;
			continue;
		}
		/* insert R and C bits from PTE */
		flags |= (hp[1] >> 5) & 0x0c;
		args[i * 2] = ((0x80 | flags) << 56) + pte_index;
453 454 455 456
		if (hp[0] & HPTE_V_VALID) {
			tlbrb[n_inval++] = compute_tlbie_rb(hp[0], hp[1], pte_index);
			remove_revmap_chain(kvm, pte_index, hp[0]);
		}
457
		smp_wmb();
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
		hp[0] = 0;
	}
	if (n_inval == 0)
		return ret;

	if (!local) {
		while(!try_lock_tlbie(&kvm->arch.tlbie_lock))
			cpu_relax();
		asm volatile("ptesync" : : : "memory");
		for (i = 0; i < n_inval; ++i)
			asm volatile(PPC_TLBIE(%1,%0)
				     : : "r" (tlbrb[i]), "r" (kvm->arch.lpid));
		asm volatile("eieio; tlbsync; ptesync" : : : "memory");
		kvm->arch.tlbie_lock = 0;
	} else {
		asm volatile("ptesync" : : : "memory");
		for (i = 0; i < n_inval; ++i)
			asm volatile("tlbiel %0" : : "r" (tlbrb[i]));
		asm volatile("ptesync" : : : "memory");
	}
	return ret;
}

long kvmppc_h_protect(struct kvm_vcpu *vcpu, unsigned long flags,
		      unsigned long pte_index, unsigned long avpn,
		      unsigned long va)
{
	struct kvm *kvm = vcpu->kvm;
	unsigned long *hpte;
487 488
	struct revmap_entry *rev;
	unsigned long v, r, rb, mask, bits;
489

490
	if (pte_index >= HPT_NPTE)
491
		return H_PARAMETER;
492

493
	hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
494
	while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
495
		cpu_relax();
496
	if ((hpte[0] & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
497 498 499 500
	    ((flags & H_AVPN) && (hpte[0] & ~0x7fUL) != avpn)) {
		hpte[0] &= ~HPTE_V_HVLOCK;
		return H_NOT_FOUND;
	}
501

502 503 504
	if (atomic_read(&kvm->online_vcpus) == 1)
		flags |= H_LOCAL;
	v = hpte[0];
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
	bits = (flags << 55) & HPTE_R_PP0;
	bits |= (flags << 48) & HPTE_R_KEY_HI;
	bits |= flags & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO);

	/* Update guest view of 2nd HPTE dword */
	mask = HPTE_R_PP0 | HPTE_R_PP | HPTE_R_N |
		HPTE_R_KEY_HI | HPTE_R_KEY_LO;
	rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
	if (rev) {
		r = (rev->guest_rpte & ~mask) | bits;
		rev->guest_rpte = r;
	}
	r = (hpte[1] & ~mask) | bits;

	/* Update HPTE */
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
	if (v & HPTE_V_VALID) {
		rb = compute_tlbie_rb(v, r, pte_index);
		hpte[0] = v & ~HPTE_V_VALID;
		if (!(flags & H_LOCAL)) {
			while(!try_lock_tlbie(&kvm->arch.tlbie_lock))
				cpu_relax();
			asm volatile("ptesync" : : : "memory");
			asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
				     : : "r" (rb), "r" (kvm->arch.lpid));
			asm volatile("ptesync" : : : "memory");
			kvm->arch.tlbie_lock = 0;
		} else {
			asm volatile("ptesync" : : : "memory");
			asm volatile("tlbiel %0" : : "r" (rb));
			asm volatile("ptesync" : : : "memory");
		}
536 537 538 539 540 541 542 543 544 545 546 547
	}
	hpte[1] = r;
	eieio();
	hpte[0] = v & ~HPTE_V_HVLOCK;
	asm volatile("ptesync" : : : "memory");
	return H_SUCCESS;
}

long kvmppc_h_read(struct kvm_vcpu *vcpu, unsigned long flags,
		   unsigned long pte_index)
{
	struct kvm *kvm = vcpu->kvm;
548
	unsigned long *hpte, v, r;
549
	int i, n = 1;
550
	struct revmap_entry *rev = NULL;
551

552
	if (pte_index >= HPT_NPTE)
553 554 555 556 557
		return H_PARAMETER;
	if (flags & H_READ_4) {
		pte_index &= ~3;
		n = 4;
	}
558 559
	if (flags & H_R_XLATE)
		rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
560 561
	for (i = 0; i < n; ++i, ++pte_index) {
		hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
562
		v = hpte[0] & ~HPTE_V_HVLOCK;
563
		r = hpte[1];
564 565 566 567 568
		if (v & HPTE_V_ABSENT) {
			v &= ~HPTE_V_ABSENT;
			v |= HPTE_V_VALID;
		}
		if (v & HPTE_V_VALID) {
569 570 571 572 573
			if (rev)
				r = rev[i].guest_rpte;
			else
				r = hpte[1] | HPTE_R_RPN;
		}
574
		vcpu->arch.gpr[4 + i * 2] = v;
575 576 577 578
		vcpu->arch.gpr[5 + i * 2] = r;
	}
	return H_SUCCESS;
}
579

580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
void kvmppc_invalidate_hpte(struct kvm *kvm, unsigned long *hptep,
			unsigned long pte_index)
{
	unsigned long rb;

	hptep[0] &= ~HPTE_V_VALID;
	rb = compute_tlbie_rb(hptep[0], hptep[1], pte_index);
	while (!try_lock_tlbie(&kvm->arch.tlbie_lock))
		cpu_relax();
	asm volatile("ptesync" : : : "memory");
	asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
		     : : "r" (rb), "r" (kvm->arch.lpid));
	asm volatile("ptesync" : : : "memory");
	kvm->arch.tlbie_lock = 0;
}
EXPORT_SYMBOL_GPL(kvmppc_invalidate_hpte);

597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
static int slb_base_page_shift[4] = {
	24,	/* 16M */
	16,	/* 64k */
	34,	/* 16G */
	20,	/* 1M, unsupported */
};

long kvmppc_hv_find_lock_hpte(struct kvm *kvm, gva_t eaddr, unsigned long slb_v,
			      unsigned long valid)
{
	unsigned int i;
	unsigned int pshift;
	unsigned long somask;
	unsigned long vsid, hash;
	unsigned long avpn;
	unsigned long *hpte;
	unsigned long mask, val;
	unsigned long v, r;

	/* Get page shift, work out hash and AVPN etc. */
	mask = SLB_VSID_B | HPTE_V_AVPN | HPTE_V_SECONDARY;
	val = 0;
	pshift = 12;
	if (slb_v & SLB_VSID_L) {
		mask |= HPTE_V_LARGE;
		val |= HPTE_V_LARGE;
		pshift = slb_base_page_shift[(slb_v & SLB_VSID_LP) >> 4];
	}
	if (slb_v & SLB_VSID_B_1T) {
		somask = (1UL << 40) - 1;
		vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T;
		vsid ^= vsid << 25;
	} else {
		somask = (1UL << 28) - 1;
		vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT;
	}
	hash = (vsid ^ ((eaddr & somask) >> pshift)) & HPT_HASH_MASK;
	avpn = slb_v & ~(somask >> 16);	/* also includes B */
	avpn |= (eaddr & somask) >> 16;

	if (pshift >= 24)
		avpn &= ~((1UL << (pshift - 16)) - 1);
	else
		avpn &= ~0x7fUL;
	val |= avpn;

	for (;;) {
		hpte = (unsigned long *)(kvm->arch.hpt_virt + (hash << 7));

		for (i = 0; i < 16; i += 2) {
			/* Read the PTE racily */
			v = hpte[i] & ~HPTE_V_HVLOCK;

			/* Check valid/absent, hash, segment size and AVPN */
			if (!(v & valid) || (v & mask) != val)
				continue;

			/* Lock the PTE and read it under the lock */
			while (!try_lock_hpte(&hpte[i], HPTE_V_HVLOCK))
				cpu_relax();
			v = hpte[i] & ~HPTE_V_HVLOCK;
			r = hpte[i+1];

			/*
			 * Check the HPTE again, including large page size
			 * Since we don't currently allow any MPSS (mixed
			 * page-size segment) page sizes, it is sufficient
			 * to check against the actual page size.
			 */
			if ((v & valid) && (v & mask) == val &&
			    hpte_page_size(v, r) == (1ul << pshift))
				/* Return with the HPTE still locked */
				return (hash << 3) + (i >> 1);

			/* Unlock and move on */
			hpte[i] = v;
		}

		if (val & HPTE_V_SECONDARY)
			break;
		val |= HPTE_V_SECONDARY;
		hash = hash ^ HPT_HASH_MASK;
	}
	return -1;
}
EXPORT_SYMBOL(kvmppc_hv_find_lock_hpte);

/*
 * Called in real mode to check whether an HPTE not found fault
686 687 688
 * is due to accessing a paged-out page or an emulated MMIO page,
 * or if a protection fault is due to accessing a page that the
 * guest wanted read/write access to but which we made read-only.
689 690 691
 * Returns a possibly modified status (DSISR) value if not
 * (i.e. pass the interrupt to the guest),
 * -1 to pass the fault up to host kernel mode code, -2 to do that
692
 * and also load the instruction word (for MMIO emulation),
693 694 695
 * or 0 if we should make the guest retry the access.
 */
long kvmppc_hpte_hv_fault(struct kvm_vcpu *vcpu, unsigned long addr,
696
			  unsigned long slb_v, unsigned int status, bool data)
697 698 699 700 701 702 703 704 705
{
	struct kvm *kvm = vcpu->kvm;
	long int index;
	unsigned long v, r, gr;
	unsigned long *hpte;
	unsigned long valid;
	struct revmap_entry *rev;
	unsigned long pp, key;

706 707 708 709
	/* For protection fault, expect to find a valid HPTE */
	valid = HPTE_V_VALID;
	if (status & DSISR_NOHPTE)
		valid |= HPTE_V_ABSENT;
710

711
	index = kvmppc_hv_find_lock_hpte(kvm, addr, slb_v, valid);
712 713 714 715 716
	if (index < 0) {
		if (status & DSISR_NOHPTE)
			return status;	/* there really was no HPTE */
		return 0;		/* for prot fault, HPTE disappeared */
	}
717 718 719 720 721 722 723 724 725 726
	hpte = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
	v = hpte[0] & ~HPTE_V_HVLOCK;
	r = hpte[1];
	rev = real_vmalloc_addr(&kvm->arch.revmap[index]);
	gr = rev->guest_rpte;

	/* Unlock the HPTE */
	asm volatile("lwsync" : : : "memory");
	hpte[0] = v;

727 728
	/* For not found, if the HPTE is valid by now, retry the instruction */
	if ((status & DSISR_NOHPTE) && (v & HPTE_V_VALID))
729 730 731 732 733
		return 0;

	/* Check access permissions to the page */
	pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
	key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
734 735 736 737 738 739 740
	status &= ~DSISR_NOHPTE;	/* DSISR_NOHPTE == SRR1_ISI_NOPT */
	if (!data) {
		if (gr & (HPTE_R_N | HPTE_R_G))
			return status | SRR1_ISI_N_OR_G;
		if (!hpte_read_permission(pp, slb_v & key))
			return status | SRR1_ISI_PROT;
	} else if (status & DSISR_ISSTORE) {
741 742
		/* check write permission */
		if (!hpte_write_permission(pp, slb_v & key))
743
			return status | DSISR_PROTFAULT;
744 745
	} else {
		if (!hpte_read_permission(pp, slb_v & key))
746
			return status | DSISR_PROTFAULT;
747 748 749
	}

	/* Check storage key, if applicable */
750
	if (data && (vcpu->arch.shregs.msr & MSR_DR)) {
751 752 753 754
		unsigned int perm = hpte_get_skey_perm(gr, vcpu->arch.amr);
		if (status & DSISR_ISSTORE)
			perm >>= 1;
		if (perm & 1)
755
			return status | DSISR_KEYFAULT;
756 757 758 759 760 761 762 763
	}

	/* Save HPTE info for virtual-mode handler */
	vcpu->arch.pgfault_addr = addr;
	vcpu->arch.pgfault_index = index;
	vcpu->arch.pgfault_hpte[0] = v;
	vcpu->arch.pgfault_hpte[1] = r;

764 765 766 767
	/* Check the storage key to see if it is possibly emulated MMIO */
	if (data && (vcpu->arch.shregs.msr & MSR_IR) &&
	    (r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) ==
	    (HPTE_R_KEY_HI | HPTE_R_KEY_LO))
768 769 770 771
		return -2;	/* MMIO emulation - load instr word */

	return -1;		/* send fault up to host kernel mode */
}