memblock.c 54.4 KB
Newer Older
Y
Yinghai Lu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Procedures for maintaining information about logical memory blocks.
 *
 * Peter Bergner, IBM Corp.	June 2001.
 * Copyright (C) 2001 Peter Bergner.
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */

#include <linux/kernel.h>
14
#include <linux/slab.h>
Y
Yinghai Lu 已提交
15 16
#include <linux/init.h>
#include <linux/bitops.h>
17
#include <linux/poison.h>
18
#include <linux/pfn.h>
19
#include <linux/debugfs.h>
20
#include <linux/kmemleak.h>
21
#include <linux/seq_file.h>
Y
Yinghai Lu 已提交
22
#include <linux/memblock.h>
23
#include <linux/bootmem.h>
Y
Yinghai Lu 已提交
24

25
#include <asm/sections.h>
26 27 28
#include <linux/io.h>

#include "internal.h"
29

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
/**
 * DOC: memblock overview
 *
 * Memblock is a method of managing memory regions during the early
 * boot period when the usual kernel memory allocators are not up and
 * running.
 *
 * Memblock views the system memory as collections of contiguous
 * regions. There are several types of these collections:
 *
 * * ``memory`` - describes the physical memory available to the
 *   kernel; this may differ from the actual physical memory installed
 *   in the system, for instance when the memory is restricted with
 *   ``mem=`` command line parameter
 * * ``reserved`` - describes the regions that were allocated
 * * ``physmap`` - describes the actual physical memory regardless of
 *   the possible restrictions; the ``physmap`` type is only available
 *   on some architectures.
 *
 * Each region is represented by :c:type:`struct memblock_region` that
 * defines the region extents, its attributes and NUMA node id on NUMA
 * systems. Every memory type is described by the :c:type:`struct
 * memblock_type` which contains an array of memory regions along with
 * the allocator metadata. The memory types are nicely wrapped with
 * :c:type:`struct memblock`. This structure is statically initialzed
 * at build time. The region arrays for the "memory" and "reserved"
 * types are initially sized to %INIT_MEMBLOCK_REGIONS and for the
 * "physmap" type to %INIT_PHYSMEM_REGIONS.
 * The :c:func:`memblock_allow_resize` enables automatic resizing of
 * the region arrays during addition of new regions. This feature
 * should be used with care so that memory allocated for the region
 * array will not overlap with areas that should be reserved, for
 * example initrd.
 *
 * The early architecture setup should tell memblock what the physical
 * memory layout is by using :c:func:`memblock_add` or
 * :c:func:`memblock_add_node` functions. The first function does not
 * assign the region to a NUMA node and it is appropriate for UMA
 * systems. Yet, it is possible to use it on NUMA systems as well and
 * assign the region to a NUMA node later in the setup process using
 * :c:func:`memblock_set_node`. The :c:func:`memblock_add_node`
 * performs such an assignment directly.
 *
 * Once memblock is setup the memory can be allocated using either
 * memblock or bootmem APIs.
 *
 * As the system boot progresses, the architecture specific
 * :c:func:`mem_init` function frees all the memory to the buddy page
 * allocator.
 *
 * If an architecure enables %CONFIG_ARCH_DISCARD_MEMBLOCK, the
 * memblock data structures will be discarded after the system
 * initialization compltes.
 */

T
Tejun Heo 已提交
85 86
static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
87 88 89
#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
#endif
T
Tejun Heo 已提交
90 91 92 93 94

struct memblock memblock __initdata_memblock = {
	.memory.regions		= memblock_memory_init_regions,
	.memory.cnt		= 1,	/* empty dummy entry */
	.memory.max		= INIT_MEMBLOCK_REGIONS,
95
	.memory.name		= "memory",
T
Tejun Heo 已提交
96 97 98 99

	.reserved.regions	= memblock_reserved_init_regions,
	.reserved.cnt		= 1,	/* empty dummy entry */
	.reserved.max		= INIT_MEMBLOCK_REGIONS,
100
	.reserved.name		= "reserved",
T
Tejun Heo 已提交
101

102 103 104 105
#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
	.physmem.regions	= memblock_physmem_init_regions,
	.physmem.cnt		= 1,	/* empty dummy entry */
	.physmem.max		= INIT_PHYSMEM_REGIONS,
106
	.physmem.name		= "physmem",
107 108
#endif

109
	.bottom_up		= false,
T
Tejun Heo 已提交
110 111
	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
};
Y
Yinghai Lu 已提交
112

113
int memblock_debug __initdata_memblock;
114
static bool system_has_some_mirror __initdata_memblock = false;
115
static int memblock_can_resize __initdata_memblock;
116 117
static int memblock_memory_in_slab __initdata_memblock = 0;
static int memblock_reserved_in_slab __initdata_memblock = 0;
Y
Yinghai Lu 已提交
118

119
enum memblock_flags __init_memblock choose_memblock_flags(void)
120 121 122 123
{
	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
}

124 125 126
/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
{
127
	return *size = min(*size, PHYS_ADDR_MAX - base);
128 129
}

130 131 132
/*
 * Address comparison utilities
 */
133
static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
134
				       phys_addr_t base2, phys_addr_t size2)
Y
Yinghai Lu 已提交
135 136 137 138
{
	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
}

139
bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
140
					phys_addr_t base, phys_addr_t size)
141 142 143
{
	unsigned long i;

144 145 146
	for (i = 0; i < type->cnt; i++)
		if (memblock_addrs_overlap(base, size, type->regions[i].base,
					   type->regions[i].size))
147
			break;
148
	return i < type->cnt;
149 150
}

151
/**
152 153
 * __memblock_find_range_bottom_up - find free area utility in bottom-up
 * @start: start of candidate range
154 155
 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 *       %MEMBLOCK_ALLOC_ACCESSIBLE
156 157
 * @size: size of free area to find
 * @align: alignment of free area to find
158
 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
159
 * @flags: pick from blocks based on memory attributes
160 161 162
 *
 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
 *
163
 * Return:
164 165 166 167
 * Found address on success, 0 on failure.
 */
static phys_addr_t __init_memblock
__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
168
				phys_addr_t size, phys_addr_t align, int nid,
169
				enum memblock_flags flags)
170 171 172 173
{
	phys_addr_t this_start, this_end, cand;
	u64 i;

174
	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
175 176 177 178 179 180 181 182 183 184 185
		this_start = clamp(this_start, start, end);
		this_end = clamp(this_end, start, end);

		cand = round_up(this_start, align);
		if (cand < this_end && this_end - cand >= size)
			return cand;
	}

	return 0;
}

186
/**
187
 * __memblock_find_range_top_down - find free area utility, in top-down
188
 * @start: start of candidate range
189 190
 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 *       %MEMBLOCK_ALLOC_ACCESSIBLE
191 192
 * @size: size of free area to find
 * @align: alignment of free area to find
193
 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
194
 * @flags: pick from blocks based on memory attributes
195
 *
196
 * Utility called from memblock_find_in_range_node(), find free area top-down.
197
 *
198
 * Return:
199
 * Found address on success, 0 on failure.
200
 */
201 202
static phys_addr_t __init_memblock
__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
203
			       phys_addr_t size, phys_addr_t align, int nid,
204
			       enum memblock_flags flags)
205 206 207 208
{
	phys_addr_t this_start, this_end, cand;
	u64 i;

209 210
	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
					NULL) {
211 212 213 214 215 216 217 218 219 220
		this_start = clamp(this_start, start, end);
		this_end = clamp(this_end, start, end);

		if (this_end < size)
			continue;

		cand = round_down(this_end - size, align);
		if (cand >= this_start)
			return cand;
	}
221

222 223
	return 0;
}
224

225 226 227 228
/**
 * memblock_find_in_range_node - find free area in given range and node
 * @size: size of free area to find
 * @align: alignment of free area to find
229
 * @start: start of candidate range
230 231
 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 *       %MEMBLOCK_ALLOC_ACCESSIBLE
232
 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
233
 * @flags: pick from blocks based on memory attributes
234 235 236
 *
 * Find @size free area aligned to @align in the specified range and node.
 *
237 238 239 240 241 242 243 244
 * When allocation direction is bottom-up, the @start should be greater
 * than the end of the kernel image. Otherwise, it will be trimmed. The
 * reason is that we want the bottom-up allocation just near the kernel
 * image so it is highly likely that the allocated memory and the kernel
 * will reside in the same node.
 *
 * If bottom-up allocation failed, will try to allocate memory top-down.
 *
245
 * Return:
246
 * Found address on success, 0 on failure.
247
 */
248 249
phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
					phys_addr_t align, phys_addr_t start,
250 251
					phys_addr_t end, int nid,
					enum memblock_flags flags)
252
{
253
	phys_addr_t kernel_end, ret;
254

255 256 257 258 259 260 261
	/* pump up @end */
	if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
		end = memblock.current_limit;

	/* avoid allocating the first page */
	start = max_t(phys_addr_t, start, PAGE_SIZE);
	end = max(start, end);
262 263 264 265 266 267 268 269 270 271 272 273 274 275
	kernel_end = __pa_symbol(_end);

	/*
	 * try bottom-up allocation only when bottom-up mode
	 * is set and @end is above the kernel image.
	 */
	if (memblock_bottom_up() && end > kernel_end) {
		phys_addr_t bottom_up_start;

		/* make sure we will allocate above the kernel */
		bottom_up_start = max(start, kernel_end);

		/* ok, try bottom-up allocation first */
		ret = __memblock_find_range_bottom_up(bottom_up_start, end,
276
						      size, align, nid, flags);
277 278 279 280 281 282 283 284 285 286 287 288 289
		if (ret)
			return ret;

		/*
		 * we always limit bottom-up allocation above the kernel,
		 * but top-down allocation doesn't have the limit, so
		 * retrying top-down allocation may succeed when bottom-up
		 * allocation failed.
		 *
		 * bottom-up allocation is expected to be fail very rarely,
		 * so we use WARN_ONCE() here to see the stack trace if
		 * fail happens.
		 */
290 291
		WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE),
			  "memblock: bottom-up allocation failed, memory hotremove may be affected\n");
292
	}
293

294 295
	return __memblock_find_range_top_down(start, end, size, align, nid,
					      flags);
296 297
}

298 299 300
/**
 * memblock_find_in_range - find free area in given range
 * @start: start of candidate range
301 302
 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 *       %MEMBLOCK_ALLOC_ACCESSIBLE
303 304 305 306 307
 * @size: size of free area to find
 * @align: alignment of free area to find
 *
 * Find @size free area aligned to @align in the specified range.
 *
308
 * Return:
309
 * Found address on success, 0 on failure.
310
 */
311 312 313
phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
					phys_addr_t end, phys_addr_t size,
					phys_addr_t align)
314
{
315
	phys_addr_t ret;
316
	enum memblock_flags flags = choose_memblock_flags();
317 318 319 320 321 322 323 324 325 326 327 328 329

again:
	ret = memblock_find_in_range_node(size, align, start, end,
					    NUMA_NO_NODE, flags);

	if (!ret && (flags & MEMBLOCK_MIRROR)) {
		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
			&size);
		flags &= ~MEMBLOCK_MIRROR;
		goto again;
	}

	return ret;
330 331
}

332
static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
Y
Yinghai Lu 已提交
333
{
334
	type->total_size -= type->regions[r].size;
T
Tejun Heo 已提交
335 336
	memmove(&type->regions[r], &type->regions[r + 1],
		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
337
	type->cnt--;
Y
Yinghai Lu 已提交
338

339 340
	/* Special case for empty arrays */
	if (type->cnt == 0) {
341
		WARN_ON(type->total_size != 0);
342 343 344
		type->cnt = 1;
		type->regions[0].base = 0;
		type->regions[0].size = 0;
345
		type->regions[0].flags = 0;
T
Tejun Heo 已提交
346
		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
347
	}
Y
Yinghai Lu 已提交
348 349
}

350
#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
P
Pavel Tatashin 已提交
351
/**
352
 * memblock_discard - discard memory and reserved arrays if they were allocated
P
Pavel Tatashin 已提交
353 354
 */
void __init memblock_discard(void)
355
{
P
Pavel Tatashin 已提交
356
	phys_addr_t addr, size;
357

P
Pavel Tatashin 已提交
358 359 360 361 362 363
	if (memblock.reserved.regions != memblock_reserved_init_regions) {
		addr = __pa(memblock.reserved.regions);
		size = PAGE_ALIGN(sizeof(struct memblock_region) *
				  memblock.reserved.max);
		__memblock_free_late(addr, size);
	}
364

365
	if (memblock.memory.regions != memblock_memory_init_regions) {
P
Pavel Tatashin 已提交
366 367 368 369 370
		addr = __pa(memblock.memory.regions);
		size = PAGE_ALIGN(sizeof(struct memblock_region) *
				  memblock.memory.max);
		__memblock_free_late(addr, size);
	}
371 372 373
}
#endif

374 375 376 377 378 379 380 381
/**
 * memblock_double_array - double the size of the memblock regions array
 * @type: memblock type of the regions array being doubled
 * @new_area_start: starting address of memory range to avoid overlap with
 * @new_area_size: size of memory range to avoid overlap with
 *
 * Double the size of the @type regions array. If memblock is being used to
 * allocate memory for a new reserved regions array and there is a previously
382
 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
383 384 385
 * waiting to be reserved, ensure the memory used by the new array does
 * not overlap.
 *
386
 * Return:
387 388 389 390 391
 * 0 on success, -1 on failure.
 */
static int __init_memblock memblock_double_array(struct memblock_type *type,
						phys_addr_t new_area_start,
						phys_addr_t new_area_size)
392 393
{
	struct memblock_region *new_array, *old_array;
394
	phys_addr_t old_alloc_size, new_alloc_size;
395
	phys_addr_t old_size, new_size, addr, new_end;
396
	int use_slab = slab_is_available();
397
	int *in_slab;
398 399 400 401 402 403 404 405 406 407

	/* We don't allow resizing until we know about the reserved regions
	 * of memory that aren't suitable for allocation
	 */
	if (!memblock_can_resize)
		return -1;

	/* Calculate new doubled size */
	old_size = type->max * sizeof(struct memblock_region);
	new_size = old_size << 1;
408 409 410 411 412 413
	/*
	 * We need to allocated new one align to PAGE_SIZE,
	 *   so we can free them completely later.
	 */
	old_alloc_size = PAGE_ALIGN(old_size);
	new_alloc_size = PAGE_ALIGN(new_size);
414

415 416 417 418 419 420
	/* Retrieve the slab flag */
	if (type == &memblock.memory)
		in_slab = &memblock_memory_in_slab;
	else
		in_slab = &memblock_reserved_in_slab;

421 422 423
	/* Try to find some space for it.
	 *
	 * WARNING: We assume that either slab_is_available() and we use it or
424 425 426
	 * we use MEMBLOCK for allocations. That means that this is unsafe to
	 * use when bootmem is currently active (unless bootmem itself is
	 * implemented on top of MEMBLOCK which isn't the case yet)
427 428
	 *
	 * This should however not be an issue for now, as we currently only
429 430
	 * call into MEMBLOCK while it's still active, or much later when slab
	 * is active for memory hotplug operations
431 432 433
	 */
	if (use_slab) {
		new_array = kmalloc(new_size, GFP_KERNEL);
T
Tejun Heo 已提交
434
		addr = new_array ? __pa(new_array) : 0;
435
	} else {
436 437 438 439 440 441
		/* only exclude range when trying to double reserved.regions */
		if (type != &memblock.reserved)
			new_area_start = new_area_size = 0;

		addr = memblock_find_in_range(new_area_start + new_area_size,
						memblock.current_limit,
442
						new_alloc_size, PAGE_SIZE);
443 444
		if (!addr && new_area_size)
			addr = memblock_find_in_range(0,
445 446
				min(new_area_start, memblock.current_limit),
				new_alloc_size, PAGE_SIZE);
447

448
		new_array = addr ? __va(addr) : NULL;
449
	}
T
Tejun Heo 已提交
450
	if (!addr) {
451
		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
452
		       type->name, type->max, type->max * 2);
453 454 455
		return -1;
	}

456 457 458
	new_end = addr + new_size - 1;
	memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
			type->name, type->max * 2, &addr, &new_end);
459

460 461 462 463
	/*
	 * Found space, we now need to move the array over before we add the
	 * reserved region since it may be our reserved array itself that is
	 * full.
464 465 466 467 468 469 470
	 */
	memcpy(new_array, type->regions, old_size);
	memset(new_array + type->max, 0, old_size);
	old_array = type->regions;
	type->regions = new_array;
	type->max <<= 1;

471
	/* Free old array. We needn't free it if the array is the static one */
472 473 474 475
	if (*in_slab)
		kfree(old_array);
	else if (old_array != memblock_memory_init_regions &&
		 old_array != memblock_reserved_init_regions)
476
		memblock_free(__pa(old_array), old_alloc_size);
477

478 479 480
	/*
	 * Reserve the new array if that comes from the memblock.  Otherwise, we
	 * needn't do it
481 482
	 */
	if (!use_slab)
483
		BUG_ON(memblock_reserve(addr, new_alloc_size));
484 485 486 487

	/* Update slab flag */
	*in_slab = use_slab;

488 489 490
	return 0;
}

491 492 493 494 495 496 497
/**
 * memblock_merge_regions - merge neighboring compatible regions
 * @type: memblock type to scan
 *
 * Scan @type and merge neighboring compatible regions.
 */
static void __init_memblock memblock_merge_regions(struct memblock_type *type)
Y
Yinghai Lu 已提交
498
{
499
	int i = 0;
Y
Yinghai Lu 已提交
500

501 502 503 504
	/* cnt never goes below 1 */
	while (i < type->cnt - 1) {
		struct memblock_region *this = &type->regions[i];
		struct memblock_region *next = &type->regions[i + 1];
Y
Yinghai Lu 已提交
505

T
Tejun Heo 已提交
506 507
		if (this->base + this->size != next->base ||
		    memblock_get_region_node(this) !=
508 509
		    memblock_get_region_node(next) ||
		    this->flags != next->flags) {
510 511 512
			BUG_ON(this->base + this->size > next->base);
			i++;
			continue;
513 514
		}

515
		this->size += next->size;
516 517
		/* move forward from next + 1, index of which is i + 2 */
		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
518
		type->cnt--;
Y
Yinghai Lu 已提交
519
	}
520
}
Y
Yinghai Lu 已提交
521

522 523
/**
 * memblock_insert_region - insert new memblock region
524 525 526 527 528
 * @type:	memblock type to insert into
 * @idx:	index for the insertion point
 * @base:	base address of the new region
 * @size:	size of the new region
 * @nid:	node id of the new region
529
 * @flags:	flags of the new region
530
 *
531
 * Insert new memblock region [@base, @base + @size) into @type at @idx.
532
 * @type must already have extra room to accommodate the new region.
533 534 535
 */
static void __init_memblock memblock_insert_region(struct memblock_type *type,
						   int idx, phys_addr_t base,
536
						   phys_addr_t size,
537 538
						   int nid,
						   enum memblock_flags flags)
539 540 541 542 543 544 545
{
	struct memblock_region *rgn = &type->regions[idx];

	BUG_ON(type->cnt >= type->max);
	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
	rgn->base = base;
	rgn->size = size;
546
	rgn->flags = flags;
T
Tejun Heo 已提交
547
	memblock_set_region_node(rgn, nid);
548
	type->cnt++;
549
	type->total_size += size;
550 551 552
}

/**
553
 * memblock_add_range - add new memblock region
554 555 556
 * @type: memblock type to add new region into
 * @base: base address of the new region
 * @size: size of the new region
557
 * @nid: nid of the new region
558
 * @flags: flags of the new region
559
 *
560
 * Add new memblock region [@base, @base + @size) into @type.  The new region
561 562 563 564
 * is allowed to overlap with existing ones - overlaps don't affect already
 * existing regions.  @type is guaranteed to be minimal (all neighbouring
 * compatible regions are merged) after the addition.
 *
565
 * Return:
566 567
 * 0 on success, -errno on failure.
 */
568
int __init_memblock memblock_add_range(struct memblock_type *type,
569
				phys_addr_t base, phys_addr_t size,
570
				int nid, enum memblock_flags flags)
571 572
{
	bool insert = false;
573 574
	phys_addr_t obase = base;
	phys_addr_t end = base + memblock_cap_size(base, &size);
575 576
	int idx, nr_new;
	struct memblock_region *rgn;
577

578 579 580
	if (!size)
		return 0;

581 582
	/* special case for empty array */
	if (type->regions[0].size == 0) {
583
		WARN_ON(type->cnt != 1 || type->total_size);
584 585
		type->regions[0].base = base;
		type->regions[0].size = size;
586
		type->regions[0].flags = flags;
587
		memblock_set_region_node(&type->regions[0], nid);
588
		type->total_size = size;
589
		return 0;
Y
Yinghai Lu 已提交
590
	}
591 592 593 594
repeat:
	/*
	 * The following is executed twice.  Once with %false @insert and
	 * then with %true.  The first counts the number of regions needed
595
	 * to accommodate the new area.  The second actually inserts them.
596
	 */
597 598
	base = obase;
	nr_new = 0;
Y
Yinghai Lu 已提交
599

600
	for_each_memblock_type(idx, type, rgn) {
601 602 603 604
		phys_addr_t rbase = rgn->base;
		phys_addr_t rend = rbase + rgn->size;

		if (rbase >= end)
Y
Yinghai Lu 已提交
605
			break;
606 607 608 609 610 611 612
		if (rend <= base)
			continue;
		/*
		 * @rgn overlaps.  If it separates the lower part of new
		 * area, insert that portion.
		 */
		if (rbase > base) {
613 614 615
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
			WARN_ON(nid != memblock_get_region_node(rgn));
#endif
616
			WARN_ON(flags != rgn->flags);
617 618
			nr_new++;
			if (insert)
619
				memblock_insert_region(type, idx++, base,
620 621
						       rbase - base, nid,
						       flags);
Y
Yinghai Lu 已提交
622
		}
623 624
		/* area below @rend is dealt with, forget about it */
		base = min(rend, end);
Y
Yinghai Lu 已提交
625
	}
626 627 628 629 630

	/* insert the remaining portion */
	if (base < end) {
		nr_new++;
		if (insert)
631
			memblock_insert_region(type, idx, base, end - base,
632
					       nid, flags);
Y
Yinghai Lu 已提交
633 634
	}

635 636 637
	if (!nr_new)
		return 0;

638 639 640
	/*
	 * If this was the first round, resize array and repeat for actual
	 * insertions; otherwise, merge and return.
641
	 */
642 643
	if (!insert) {
		while (type->cnt + nr_new > type->max)
644
			if (memblock_double_array(type, obase, size) < 0)
645 646 647 648 649 650
				return -ENOMEM;
		insert = true;
		goto repeat;
	} else {
		memblock_merge_regions(type);
		return 0;
651
	}
Y
Yinghai Lu 已提交
652 653
}

654 655 656 657 658 659 660 661 662 663 664 665
/**
 * memblock_add_node - add new memblock region within a NUMA node
 * @base: base address of the new region
 * @size: size of the new region
 * @nid: nid of the new region
 *
 * Add new memblock region [@base, @base + @size) to the "memory"
 * type. See memblock_add_range() description for mode details
 *
 * Return:
 * 0 on success, -errno on failure.
 */
666 667 668
int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
				       int nid)
{
669
	return memblock_add_range(&memblock.memory, base, size, nid, 0);
670 671
}

672 673 674 675 676 677 678 679 680 681 682
/**
 * memblock_add - add new memblock region
 * @base: base address of the new region
 * @size: size of the new region
 *
 * Add new memblock region [@base, @base + @size) to the "memory"
 * type. See memblock_add_range() description for mode details
 *
 * Return:
 * 0 on success, -errno on failure.
 */
683
int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
684
{
685 686 687 688
	phys_addr_t end = base + size - 1;

	memblock_dbg("memblock_add: [%pa-%pa] %pF\n",
		     &base, &end, (void *)_RET_IP_);
689

690
	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
Y
Yinghai Lu 已提交
691 692
}

693 694 695 696 697 698 699 700 701
/**
 * memblock_isolate_range - isolate given range into disjoint memblocks
 * @type: memblock type to isolate range for
 * @base: base of range to isolate
 * @size: size of range to isolate
 * @start_rgn: out parameter for the start of isolated region
 * @end_rgn: out parameter for the end of isolated region
 *
 * Walk @type and ensure that regions don't cross the boundaries defined by
702
 * [@base, @base + @size).  Crossing regions are split at the boundaries,
703 704 705
 * which may create at most two more regions.  The index of the first
 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
 *
706
 * Return:
707 708 709 710 711 712
 * 0 on success, -errno on failure.
 */
static int __init_memblock memblock_isolate_range(struct memblock_type *type,
					phys_addr_t base, phys_addr_t size,
					int *start_rgn, int *end_rgn)
{
713
	phys_addr_t end = base + memblock_cap_size(base, &size);
714 715
	int idx;
	struct memblock_region *rgn;
716 717 718

	*start_rgn = *end_rgn = 0;

719 720 721
	if (!size)
		return 0;

722 723
	/* we'll create at most two more regions */
	while (type->cnt + 2 > type->max)
724
		if (memblock_double_array(type, base, size) < 0)
725 726
			return -ENOMEM;

727
	for_each_memblock_type(idx, type, rgn) {
728 729 730 731 732 733 734 735 736 737 738 739 740 741
		phys_addr_t rbase = rgn->base;
		phys_addr_t rend = rbase + rgn->size;

		if (rbase >= end)
			break;
		if (rend <= base)
			continue;

		if (rbase < base) {
			/*
			 * @rgn intersects from below.  Split and continue
			 * to process the next region - the new top half.
			 */
			rgn->base = base;
742 743
			rgn->size -= base - rbase;
			type->total_size -= base - rbase;
744
			memblock_insert_region(type, idx, rbase, base - rbase,
745 746
					       memblock_get_region_node(rgn),
					       rgn->flags);
747 748 749 750 751 752
		} else if (rend > end) {
			/*
			 * @rgn intersects from above.  Split and redo the
			 * current region - the new bottom half.
			 */
			rgn->base = end;
753 754
			rgn->size -= end - rbase;
			type->total_size -= end - rbase;
755
			memblock_insert_region(type, idx--, rbase, end - rbase,
756 757
					       memblock_get_region_node(rgn),
					       rgn->flags);
758 759 760
		} else {
			/* @rgn is fully contained, record it */
			if (!*end_rgn)
761 762
				*start_rgn = idx;
			*end_rgn = idx + 1;
763 764 765 766 767 768
		}
	}

	return 0;
}

769
static int __init_memblock memblock_remove_range(struct memblock_type *type,
770
					  phys_addr_t base, phys_addr_t size)
Y
Yinghai Lu 已提交
771
{
772 773
	int start_rgn, end_rgn;
	int i, ret;
Y
Yinghai Lu 已提交
774

775 776 777
	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
	if (ret)
		return ret;
Y
Yinghai Lu 已提交
778

779 780
	for (i = end_rgn - 1; i >= start_rgn; i--)
		memblock_remove_region(type, i);
781
	return 0;
Y
Yinghai Lu 已提交
782 783
}

784
int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
Y
Yinghai Lu 已提交
785
{
M
Minchan Kim 已提交
786 787 788 789 790
	phys_addr_t end = base + size - 1;

	memblock_dbg("memblock_remove: [%pa-%pa] %pS\n",
		     &base, &end, (void *)_RET_IP_);

791
	return memblock_remove_range(&memblock.memory, base, size);
Y
Yinghai Lu 已提交
792 793
}

794

795
int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
Y
Yinghai Lu 已提交
796
{
797 798 799 800
	phys_addr_t end = base + size - 1;

	memblock_dbg("   memblock_free: [%pa-%pa] %pF\n",
		     &base, &end, (void *)_RET_IP_);
801

802
	kmemleak_free_part_phys(base, size);
803
	return memblock_remove_range(&memblock.reserved, base, size);
Y
Yinghai Lu 已提交
804 805
}

806
int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
Y
Yinghai Lu 已提交
807
{
808 809 810 811
	phys_addr_t end = base + size - 1;

	memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n",
		     &base, &end, (void *)_RET_IP_);
Y
Yinghai Lu 已提交
812

813
	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
Y
Yinghai Lu 已提交
814 815
}

816
/**
817 818 819 820 821
 * memblock_setclr_flag - set or clear flag for a memory region
 * @base: base address of the region
 * @size: size of the region
 * @set: set or clear the flag
 * @flag: the flag to udpate
822
 *
823
 * This function isolates region [@base, @base + @size), and sets/clears flag
824
 *
825
 * Return: 0 on success, -errno on failure.
826
 */
827 828
static int __init_memblock memblock_setclr_flag(phys_addr_t base,
				phys_addr_t size, int set, int flag)
829 830 831 832 833 834 835 836 837
{
	struct memblock_type *type = &memblock.memory;
	int i, ret, start_rgn, end_rgn;

	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
	if (ret)
		return ret;

	for (i = start_rgn; i < end_rgn; i++)
838 839 840 841
		if (set)
			memblock_set_region_flags(&type->regions[i], flag);
		else
			memblock_clear_region_flags(&type->regions[i], flag);
842 843 844 845 846 847

	memblock_merge_regions(type);
	return 0;
}

/**
848
 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
849 850 851
 * @base: the base phys addr of the region
 * @size: the size of the region
 *
852
 * Return: 0 on success, -errno on failure.
853 854 855 856 857 858 859 860 861 862
 */
int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
{
	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
}

/**
 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
 * @base: the base phys addr of the region
 * @size: the size of the region
863
 *
864
 * Return: 0 on success, -errno on failure.
865 866 867
 */
int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
{
868
	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
869 870
}

871 872 873 874 875
/**
 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
 * @base: the base phys addr of the region
 * @size: the size of the region
 *
876
 * Return: 0 on success, -errno on failure.
877 878 879 880 881 882 883 884
 */
int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
{
	system_has_some_mirror = true;

	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
}

885 886 887 888 889
/**
 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
 * @base: the base phys addr of the region
 * @size: the size of the region
 *
890
 * Return: 0 on success, -errno on failure.
891 892 893 894 895
 */
int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
{
	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
}
896

897 898 899 900 901
/**
 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
 * @base: the base phys addr of the region
 * @size: the size of the region
 *
902
 * Return: 0 on success, -errno on failure.
903 904 905 906 907 908
 */
int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
{
	return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
}

909 910 911 912 913 914 915 916 917 918 919 920
/**
 * __next_reserved_mem_region - next function for for_each_reserved_region()
 * @idx: pointer to u64 loop variable
 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
 *
 * Iterate over all reserved memory regions.
 */
void __init_memblock __next_reserved_mem_region(u64 *idx,
					   phys_addr_t *out_start,
					   phys_addr_t *out_end)
{
921
	struct memblock_type *type = &memblock.reserved;
922

923
	if (*idx < type->cnt) {
924
		struct memblock_region *r = &type->regions[*idx];
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
		phys_addr_t base = r->base;
		phys_addr_t size = r->size;

		if (out_start)
			*out_start = base;
		if (out_end)
			*out_end = base + size - 1;

		*idx += 1;
		return;
	}

	/* signal end of iteration */
	*idx = ULLONG_MAX;
}

941
/**
942
 * __next__mem_range - next function for for_each_free_mem_range() etc.
943
 * @idx: pointer to u64 loop variable
944
 * @nid: node selector, %NUMA_NO_NODE for all nodes
945
 * @flags: pick from blocks based on memory attributes
946 947
 * @type_a: pointer to memblock_type from where the range is taken
 * @type_b: pointer to memblock_type which excludes memory from being taken
W
Wanpeng Li 已提交
948 949 950
 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
 * @out_nid: ptr to int for nid of the range, can be %NULL
951
 *
952
 * Find the first area from *@idx which matches @nid, fill the out
953
 * parameters, and update *@idx for the next iteration.  The lower 32bit of
954 955
 * *@idx contains index into type_a and the upper 32bit indexes the
 * areas before each region in type_b.	For example, if type_b regions
956 957 958 959 960 961 962 963 964 965 966
 * look like the following,
 *
 *	0:[0-16), 1:[32-48), 2:[128-130)
 *
 * The upper 32bit indexes the following regions.
 *
 *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
 *
 * As both region arrays are sorted, the function advances the two indices
 * in lockstep and returns each intersection.
 */
967 968
void __init_memblock __next_mem_range(u64 *idx, int nid,
				      enum memblock_flags flags,
969 970 971 972
				      struct memblock_type *type_a,
				      struct memblock_type *type_b,
				      phys_addr_t *out_start,
				      phys_addr_t *out_end, int *out_nid)
973
{
974 975
	int idx_a = *idx & 0xffffffff;
	int idx_b = *idx >> 32;
976

977 978
	if (WARN_ONCE(nid == MAX_NUMNODES,
	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
979
		nid = NUMA_NO_NODE;
980

981 982 983
	for (; idx_a < type_a->cnt; idx_a++) {
		struct memblock_region *m = &type_a->regions[idx_a];

984 985
		phys_addr_t m_start = m->base;
		phys_addr_t m_end = m->base + m->size;
986
		int	    m_nid = memblock_get_region_node(m);
987 988

		/* only memory regions are associated with nodes, check it */
989
		if (nid != NUMA_NO_NODE && nid != m_nid)
990 991
			continue;

992 993 994 995
		/* skip hotpluggable memory regions if needed */
		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
			continue;

996 997 998 999
		/* if we want mirror memory skip non-mirror memory regions */
		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
			continue;

1000 1001 1002 1003
		/* skip nomap memory unless we were asked for it explicitly */
		if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
			continue;

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
		if (!type_b) {
			if (out_start)
				*out_start = m_start;
			if (out_end)
				*out_end = m_end;
			if (out_nid)
				*out_nid = m_nid;
			idx_a++;
			*idx = (u32)idx_a | (u64)idx_b << 32;
			return;
		}

		/* scan areas before each reservation */
		for (; idx_b < type_b->cnt + 1; idx_b++) {
			struct memblock_region *r;
			phys_addr_t r_start;
			phys_addr_t r_end;

			r = &type_b->regions[idx_b];
			r_start = idx_b ? r[-1].base + r[-1].size : 0;
			r_end = idx_b < type_b->cnt ?
1025
				r->base : PHYS_ADDR_MAX;
1026

1027 1028 1029 1030
			/*
			 * if idx_b advanced past idx_a,
			 * break out to advance idx_a
			 */
1031 1032 1033 1034 1035
			if (r_start >= m_end)
				break;
			/* if the two regions intersect, we're done */
			if (m_start < r_end) {
				if (out_start)
1036 1037
					*out_start =
						max(m_start, r_start);
1038 1039 1040
				if (out_end)
					*out_end = min(m_end, r_end);
				if (out_nid)
1041
					*out_nid = m_nid;
1042
				/*
1043 1044
				 * The region which ends first is
				 * advanced for the next iteration.
1045 1046
				 */
				if (m_end <= r_end)
1047
					idx_a++;
1048
				else
1049 1050
					idx_b++;
				*idx = (u32)idx_a | (u64)idx_b << 32;
1051 1052 1053 1054 1055 1056 1057 1058 1059
				return;
			}
		}
	}

	/* signal end of iteration */
	*idx = ULLONG_MAX;
}

1060
/**
1061 1062
 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
 *
1063
 * @idx: pointer to u64 loop variable
1064
 * @nid: node selector, %NUMA_NO_NODE for all nodes
1065
 * @flags: pick from blocks based on memory attributes
1066 1067
 * @type_a: pointer to memblock_type from where the range is taken
 * @type_b: pointer to memblock_type which excludes memory from being taken
W
Wanpeng Li 已提交
1068 1069 1070
 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
 * @out_nid: ptr to int for nid of the range, can be %NULL
1071
 *
1072 1073 1074
 * Finds the next range from type_a which is not marked as unsuitable
 * in type_b.
 *
1075
 * Reverse of __next_mem_range().
1076
 */
1077 1078
void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
					  enum memblock_flags flags,
1079 1080 1081 1082
					  struct memblock_type *type_a,
					  struct memblock_type *type_b,
					  phys_addr_t *out_start,
					  phys_addr_t *out_end, int *out_nid)
1083
{
1084 1085
	int idx_a = *idx & 0xffffffff;
	int idx_b = *idx >> 32;
1086

1087 1088
	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
		nid = NUMA_NO_NODE;
1089 1090

	if (*idx == (u64)ULLONG_MAX) {
1091
		idx_a = type_a->cnt - 1;
1092 1093 1094 1095
		if (type_b != NULL)
			idx_b = type_b->cnt;
		else
			idx_b = 0;
1096 1097
	}

1098 1099 1100
	for (; idx_a >= 0; idx_a--) {
		struct memblock_region *m = &type_a->regions[idx_a];

1101 1102
		phys_addr_t m_start = m->base;
		phys_addr_t m_end = m->base + m->size;
1103
		int m_nid = memblock_get_region_node(m);
1104 1105

		/* only memory regions are associated with nodes, check it */
1106
		if (nid != NUMA_NO_NODE && nid != m_nid)
1107 1108
			continue;

1109 1110 1111 1112
		/* skip hotpluggable memory regions if needed */
		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
			continue;

1113 1114 1115 1116
		/* if we want mirror memory skip non-mirror memory regions */
		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
			continue;

1117 1118 1119 1120
		/* skip nomap memory unless we were asked for it explicitly */
		if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
			continue;

1121 1122 1123 1124 1125 1126 1127
		if (!type_b) {
			if (out_start)
				*out_start = m_start;
			if (out_end)
				*out_end = m_end;
			if (out_nid)
				*out_nid = m_nid;
1128
			idx_a--;
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
			*idx = (u32)idx_a | (u64)idx_b << 32;
			return;
		}

		/* scan areas before each reservation */
		for (; idx_b >= 0; idx_b--) {
			struct memblock_region *r;
			phys_addr_t r_start;
			phys_addr_t r_end;

			r = &type_b->regions[idx_b];
			r_start = idx_b ? r[-1].base + r[-1].size : 0;
			r_end = idx_b < type_b->cnt ?
1142
				r->base : PHYS_ADDR_MAX;
1143 1144 1145 1146
			/*
			 * if idx_b advanced past idx_a,
			 * break out to advance idx_a
			 */
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156

			if (r_end <= m_start)
				break;
			/* if the two regions intersect, we're done */
			if (m_end > r_start) {
				if (out_start)
					*out_start = max(m_start, r_start);
				if (out_end)
					*out_end = min(m_end, r_end);
				if (out_nid)
1157
					*out_nid = m_nid;
1158
				if (m_start >= r_start)
1159
					idx_a--;
1160
				else
1161 1162
					idx_b--;
				*idx = (u32)idx_a | (u64)idx_b << 32;
1163 1164 1165 1166
				return;
			}
		}
	}
1167
	/* signal end of iteration */
1168 1169 1170
	*idx = ULLONG_MAX;
}

T
Tejun Heo 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
/*
 * Common iterator interface used to define for_each_mem_range().
 */
void __init_memblock __next_mem_pfn_range(int *idx, int nid,
				unsigned long *out_start_pfn,
				unsigned long *out_end_pfn, int *out_nid)
{
	struct memblock_type *type = &memblock.memory;
	struct memblock_region *r;

	while (++*idx < type->cnt) {
		r = &type->regions[*idx];

		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
			continue;
		if (nid == MAX_NUMNODES || nid == r->nid)
			break;
	}
	if (*idx >= type->cnt) {
		*idx = -1;
		return;
	}

	if (out_start_pfn)
		*out_start_pfn = PFN_UP(r->base);
	if (out_end_pfn)
		*out_end_pfn = PFN_DOWN(r->base + r->size);
	if (out_nid)
		*out_nid = r->nid;
}

/**
 * memblock_set_node - set node ID on memblock regions
 * @base: base of area to set node ID for
 * @size: size of area to set node ID for
1207
 * @type: memblock type to set node ID for
T
Tejun Heo 已提交
1208 1209
 * @nid: node ID to set
 *
1210
 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
T
Tejun Heo 已提交
1211 1212
 * Regions which cross the area boundaries are split as necessary.
 *
1213
 * Return:
T
Tejun Heo 已提交
1214 1215 1216
 * 0 on success, -errno on failure.
 */
int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1217
				      struct memblock_type *type, int nid)
T
Tejun Heo 已提交
1218
{
1219 1220
	int start_rgn, end_rgn;
	int i, ret;
T
Tejun Heo 已提交
1221

1222 1223 1224
	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
	if (ret)
		return ret;
T
Tejun Heo 已提交
1225

1226
	for (i = start_rgn; i < end_rgn; i++)
1227
		memblock_set_region_node(&type->regions[i], nid);
T
Tejun Heo 已提交
1228 1229 1230 1231 1232 1233

	memblock_merge_regions(type);
	return 0;
}
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */

1234 1235
static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
					phys_addr_t align, phys_addr_t start,
1236 1237
					phys_addr_t end, int nid,
					enum memblock_flags flags)
Y
Yinghai Lu 已提交
1238
{
1239
	phys_addr_t found;
Y
Yinghai Lu 已提交
1240

1241 1242
	if (!align)
		align = SMP_CACHE_BYTES;
1243

1244 1245
	found = memblock_find_in_range_node(size, align, start, end, nid,
					    flags);
1246 1247 1248 1249 1250
	if (found && !memblock_reserve(found, size)) {
		/*
		 * The min_count is set to 0 so that memblock allocations are
		 * never reported as leaks.
		 */
1251
		kmemleak_alloc_phys(found, size, 0, 0);
1252
		return found;
1253
	}
1254
	return 0;
Y
Yinghai Lu 已提交
1255 1256
}

1257
phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1258
					phys_addr_t start, phys_addr_t end,
1259
					enum memblock_flags flags)
1260
{
1261 1262
	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
					flags);
1263 1264
}

1265
phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1266
					phys_addr_t align, phys_addr_t max_addr,
1267
					int nid, enum memblock_flags flags)
1268
{
1269
	return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
1270 1271
}

1272 1273
phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
{
1274
	enum memblock_flags flags = choose_memblock_flags();
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
	phys_addr_t ret;

again:
	ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
				      nid, flags);

	if (!ret && (flags & MEMBLOCK_MIRROR)) {
		flags &= ~MEMBLOCK_MIRROR;
		goto again;
	}
	return ret;
1286 1287 1288 1289
}

phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
{
1290 1291
	return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
				       MEMBLOCK_NONE);
1292 1293
}

1294
phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
Y
Yinghai Lu 已提交
1295
{
1296 1297 1298 1299 1300
	phys_addr_t alloc;

	alloc = __memblock_alloc_base(size, align, max_addr);

	if (alloc == 0)
1301 1302
		panic("ERROR: Failed to allocate %pa bytes below %pa.\n",
		      &size, &max_addr);
1303 1304

	return alloc;
Y
Yinghai Lu 已提交
1305 1306
}

1307
phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
Y
Yinghai Lu 已提交
1308
{
1309 1310
	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
}
Y
Yinghai Lu 已提交
1311

1312 1313 1314 1315 1316 1317
phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
{
	phys_addr_t res = memblock_alloc_nid(size, align, nid);

	if (res)
		return res;
1318
	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
Y
Yinghai Lu 已提交
1319 1320
}

1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
/**
 * memblock_virt_alloc_internal - allocate boot memory block
 * @size: size of memory block to be allocated in bytes
 * @align: alignment of the region and block's size
 * @min_addr: the lower bound of the memory region to allocate (phys address)
 * @max_addr: the upper bound of the memory region to allocate (phys address)
 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 *
 * The @min_addr limit is dropped if it can not be satisfied and the allocation
 * will fall back to memory below @min_addr. Also, allocation may fall back
 * to any node in the system if the specified node can not
 * hold the requested memory.
 *
 * The allocation is performed from memory region limited by
 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
 *
1337
 * The memory block is aligned on %SMP_CACHE_BYTES if @align == 0.
1338 1339 1340 1341 1342 1343 1344
 *
 * The phys address of allocated boot memory block is converted to virtual and
 * allocated memory is reset to 0.
 *
 * In addition, function sets the min_count to 0 using kmemleak_alloc for
 * allocated boot memory block, so that it is never reported as leaks.
 *
1345
 * Return:
1346 1347 1348 1349 1350 1351 1352 1353 1354
 * Virtual address of allocated memory block on success, NULL on failure.
 */
static void * __init memblock_virt_alloc_internal(
				phys_addr_t size, phys_addr_t align,
				phys_addr_t min_addr, phys_addr_t max_addr,
				int nid)
{
	phys_addr_t alloc;
	void *ptr;
1355
	enum memblock_flags flags = choose_memblock_flags();
1356

1357 1358
	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
		nid = NUMA_NO_NODE;
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370

	/*
	 * Detect any accidental use of these APIs after slab is ready, as at
	 * this moment memblock may be deinitialized already and its
	 * internal data may be destroyed (after execution of free_all_bootmem)
	 */
	if (WARN_ON_ONCE(slab_is_available()))
		return kzalloc_node(size, GFP_NOWAIT, nid);

	if (!align)
		align = SMP_CACHE_BYTES;

1371 1372
	if (max_addr > memblock.current_limit)
		max_addr = memblock.current_limit;
1373 1374
again:
	alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1375
					    nid, flags);
1376
	if (alloc && !memblock_reserve(alloc, size))
1377 1378 1379 1380
		goto done;

	if (nid != NUMA_NO_NODE) {
		alloc = memblock_find_in_range_node(size, align, min_addr,
1381
						    max_addr, NUMA_NO_NODE,
1382
						    flags);
1383
		if (alloc && !memblock_reserve(alloc, size))
1384 1385 1386 1387 1388 1389 1390 1391
			goto done;
	}

	if (min_addr) {
		min_addr = 0;
		goto again;
	}

1392 1393 1394 1395 1396 1397 1398 1399
	if (flags & MEMBLOCK_MIRROR) {
		flags &= ~MEMBLOCK_MIRROR;
		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
			&size);
		goto again;
	}

	return NULL;
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
done:
	ptr = phys_to_virt(alloc);

	/*
	 * The min_count is set to 0 so that bootmem allocated blocks
	 * are never reported as leaks. This is because many of these blocks
	 * are only referred via the physical address which is not
	 * looked up by kmemleak.
	 */
	kmemleak_alloc(ptr, size, 0, 0);

	return ptr;
}

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
/**
 * memblock_virt_alloc_try_nid_raw - allocate boot memory block without zeroing
 * memory and without panicking
 * @size: size of memory block to be allocated in bytes
 * @align: alignment of the region and block's size
 * @min_addr: the lower bound of the memory region from where the allocation
 *	  is preferred (phys address)
 * @max_addr: the upper bound of the memory region from where the allocation
 *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
 *	      allocate only from memory limited by memblock.current_limit value
 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 *
 * Public function, provides additional debug information (including caller
 * info), if enabled. Does not zero allocated memory, does not panic if request
 * cannot be satisfied.
 *
1430
 * Return:
1431 1432 1433 1434 1435 1436 1437 1438 1439
 * Virtual address of allocated memory block on success, NULL on failure.
 */
void * __init memblock_virt_alloc_try_nid_raw(
			phys_addr_t size, phys_addr_t align,
			phys_addr_t min_addr, phys_addr_t max_addr,
			int nid)
{
	void *ptr;

1440 1441 1442
	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n",
		     __func__, (u64)size, (u64)align, nid, &min_addr,
		     &max_addr, (void *)_RET_IP_);
1443 1444 1445 1446

	ptr = memblock_virt_alloc_internal(size, align,
					   min_addr, max_addr, nid);
	if (ptr && size > 0)
1447 1448
		page_init_poison(ptr, size);

1449 1450 1451
	return ptr;
}

1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
/**
 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
 * @size: size of memory block to be allocated in bytes
 * @align: alignment of the region and block's size
 * @min_addr: the lower bound of the memory region from where the allocation
 *	  is preferred (phys address)
 * @max_addr: the upper bound of the memory region from where the allocation
 *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
 *	      allocate only from memory limited by memblock.current_limit value
 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 *
1463 1464
 * Public function, provides additional debug information (including caller
 * info), if enabled. This function zeroes the allocated memory.
1465
 *
1466
 * Return:
1467 1468 1469 1470 1471 1472 1473
 * Virtual address of allocated memory block on success, NULL on failure.
 */
void * __init memblock_virt_alloc_try_nid_nopanic(
				phys_addr_t size, phys_addr_t align,
				phys_addr_t min_addr, phys_addr_t max_addr,
				int nid)
{
1474 1475
	void *ptr;

1476 1477 1478
	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n",
		     __func__, (u64)size, (u64)align, nid, &min_addr,
		     &max_addr, (void *)_RET_IP_);
1479 1480 1481 1482 1483 1484

	ptr = memblock_virt_alloc_internal(size, align,
					   min_addr, max_addr, nid);
	if (ptr)
		memset(ptr, 0, size);
	return ptr;
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
}

/**
 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
 * @size: size of memory block to be allocated in bytes
 * @align: alignment of the region and block's size
 * @min_addr: the lower bound of the memory region from where the allocation
 *	  is preferred (phys address)
 * @max_addr: the upper bound of the memory region from where the allocation
 *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
 *	      allocate only from memory limited by memblock.current_limit value
 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 *
1498
 * Public panicking version of memblock_virt_alloc_try_nid_nopanic()
1499 1500 1501
 * which provides debug information (including caller info), if enabled,
 * and panics if the request can not be satisfied.
 *
1502
 * Return:
1503 1504 1505 1506 1507 1508 1509 1510 1511
 * Virtual address of allocated memory block on success, NULL on failure.
 */
void * __init memblock_virt_alloc_try_nid(
			phys_addr_t size, phys_addr_t align,
			phys_addr_t min_addr, phys_addr_t max_addr,
			int nid)
{
	void *ptr;

1512 1513 1514
	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n",
		     __func__, (u64)size, (u64)align, nid, &min_addr,
		     &max_addr, (void *)_RET_IP_);
1515 1516
	ptr = memblock_virt_alloc_internal(size, align,
					   min_addr, max_addr, nid);
1517 1518
	if (ptr) {
		memset(ptr, 0, size);
1519
		return ptr;
1520
	}
1521

1522 1523
	panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa\n",
	      __func__, (u64)size, (u64)align, nid, &min_addr, &max_addr);
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
	return NULL;
}

/**
 * __memblock_free_early - free boot memory block
 * @base: phys starting address of the  boot memory block
 * @size: size of the boot memory block in bytes
 *
 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
 * The freeing memory will not be released to the buddy allocator.
 */
void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
{
1537 1538 1539 1540
	phys_addr_t end = base + size - 1;

	memblock_dbg("%s: [%pa-%pa] %pF\n",
		     __func__, &base, &end, (void *)_RET_IP_);
1541
	kmemleak_free_part_phys(base, size);
1542
	memblock_remove_range(&memblock.reserved, base, size);
1543 1544
}

1545
/**
1546
 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1547
 * @base: phys starting address of the  boot memory block
1548 1549 1550 1551 1552 1553 1554 1555
 * @size: size of the boot memory block in bytes
 *
 * This is only useful when the bootmem allocator has already been torn
 * down, but we are still initializing the system.  Pages are released directly
 * to the buddy allocator, no bootmem metadata is updated because it is gone.
 */
void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
{
1556
	phys_addr_t cursor, end;
1557

1558 1559 1560
	end = base + size - 1;
	memblock_dbg("%s: [%pa-%pa] %pF\n",
		     __func__, &base, &end, (void *)_RET_IP_);
1561
	kmemleak_free_part_phys(base, size);
1562 1563 1564 1565
	cursor = PFN_UP(base);
	end = PFN_DOWN(base + size);

	for (; cursor < end; cursor++) {
1566
		__free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
1567 1568 1569
		totalram_pages++;
	}
}
1570 1571 1572 1573 1574

/*
 * Remaining API functions
 */

1575
phys_addr_t __init_memblock memblock_phys_mem_size(void)
Y
Yinghai Lu 已提交
1576
{
1577
	return memblock.memory.total_size;
Y
Yinghai Lu 已提交
1578 1579
}

1580 1581 1582 1583 1584
phys_addr_t __init_memblock memblock_reserved_size(void)
{
	return memblock.reserved.total_size;
}

Y
Yinghai Lu 已提交
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
{
	unsigned long pages = 0;
	struct memblock_region *r;
	unsigned long start_pfn, end_pfn;

	for_each_memblock(memory, r) {
		start_pfn = memblock_region_memory_base_pfn(r);
		end_pfn = memblock_region_memory_end_pfn(r);
		start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
		end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
		pages += end_pfn - start_pfn;
	}

F
Fabian Frederick 已提交
1599
	return PFN_PHYS(pages);
Y
Yinghai Lu 已提交
1600 1601
}

1602 1603 1604 1605 1606 1607
/* lowest address */
phys_addr_t __init_memblock memblock_start_of_DRAM(void)
{
	return memblock.memory.regions[0].base;
}

1608
phys_addr_t __init_memblock memblock_end_of_DRAM(void)
Y
Yinghai Lu 已提交
1609 1610 1611
{
	int idx = memblock.memory.cnt - 1;

1612
	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
Y
Yinghai Lu 已提交
1613 1614
}

1615
static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
Y
Yinghai Lu 已提交
1616
{
1617
	phys_addr_t max_addr = PHYS_ADDR_MAX;
E
Emil Medve 已提交
1618
	struct memblock_region *r;
Y
Yinghai Lu 已提交
1619

1620 1621 1622
	/*
	 * translate the memory @limit size into the max address within one of
	 * the memory memblock regions, if the @limit exceeds the total size
1623
	 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1624
	 */
E
Emil Medve 已提交
1625
	for_each_memblock(memory, r) {
1626 1627 1628
		if (limit <= r->size) {
			max_addr = r->base + limit;
			break;
Y
Yinghai Lu 已提交
1629
		}
1630
		limit -= r->size;
Y
Yinghai Lu 已提交
1631
	}
1632

1633 1634 1635 1636 1637
	return max_addr;
}

void __init memblock_enforce_memory_limit(phys_addr_t limit)
{
1638
	phys_addr_t max_addr = PHYS_ADDR_MAX;
1639 1640 1641 1642 1643 1644 1645

	if (!limit)
		return;

	max_addr = __find_max_addr(limit);

	/* @limit exceeds the total size of the memory, do nothing */
1646
	if (max_addr == PHYS_ADDR_MAX)
1647 1648
		return;

1649
	/* truncate both memory and reserved regions */
1650
	memblock_remove_range(&memblock.memory, max_addr,
1651
			      PHYS_ADDR_MAX);
1652
	memblock_remove_range(&memblock.reserved, max_addr,
1653
			      PHYS_ADDR_MAX);
Y
Yinghai Lu 已提交
1654 1655
}

1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
{
	int start_rgn, end_rgn;
	int i, ret;

	if (!size)
		return;

	ret = memblock_isolate_range(&memblock.memory, base, size,
						&start_rgn, &end_rgn);
	if (ret)
		return;

	/* remove all the MAP regions */
	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
		if (!memblock_is_nomap(&memblock.memory.regions[i]))
			memblock_remove_region(&memblock.memory, i);

	for (i = start_rgn - 1; i >= 0; i--)
		if (!memblock_is_nomap(&memblock.memory.regions[i]))
			memblock_remove_region(&memblock.memory, i);

	/* truncate the reserved regions */
	memblock_remove_range(&memblock.reserved, 0, base);
	memblock_remove_range(&memblock.reserved,
1681
			base + size, PHYS_ADDR_MAX);
1682 1683
}

1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
void __init memblock_mem_limit_remove_map(phys_addr_t limit)
{
	phys_addr_t max_addr;

	if (!limit)
		return;

	max_addr = __find_max_addr(limit);

	/* @limit exceeds the total size of the memory, do nothing */
1694
	if (max_addr == PHYS_ADDR_MAX)
1695 1696
		return;

1697
	memblock_cap_memory_range(0, max_addr);
1698 1699
}

1700
static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
{
	unsigned int left = 0, right = type->cnt;

	do {
		unsigned int mid = (right + left) / 2;

		if (addr < type->regions[mid].base)
			right = mid;
		else if (addr >= (type->regions[mid].base +
				  type->regions[mid].size))
			left = mid + 1;
		else
			return mid;
	} while (left < right);
	return -1;
}

1718
bool __init memblock_is_reserved(phys_addr_t addr)
Y
Yinghai Lu 已提交
1719
{
1720 1721
	return memblock_search(&memblock.reserved, addr) != -1;
}
Y
Yinghai Lu 已提交
1722

1723
bool __init_memblock memblock_is_memory(phys_addr_t addr)
1724 1725 1726 1727
{
	return memblock_search(&memblock.memory, addr) != -1;
}

1728
bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1729 1730 1731 1732 1733 1734 1735 1736
{
	int i = memblock_search(&memblock.memory, addr);

	if (i == -1)
		return false;
	return !memblock_is_nomap(&memblock.memory.regions[i]);
}

1737 1738 1739 1740 1741
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
			 unsigned long *start_pfn, unsigned long *end_pfn)
{
	struct memblock_type *type = &memblock.memory;
F
Fabian Frederick 已提交
1742
	int mid = memblock_search(type, PFN_PHYS(pfn));
1743 1744 1745 1746

	if (mid == -1)
		return -1;

F
Fabian Frederick 已提交
1747 1748
	*start_pfn = PFN_DOWN(type->regions[mid].base);
	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1749 1750 1751 1752 1753

	return type->regions[mid].nid;
}
#endif

1754 1755 1756 1757 1758
/**
 * memblock_is_region_memory - check if a region is a subset of memory
 * @base: base of region to check
 * @size: size of region to check
 *
1759
 * Check if the region [@base, @base + @size) is a subset of a memory block.
1760
 *
1761
 * Return:
1762 1763
 * 0 if false, non-zero if true
 */
1764
bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1765
{
1766
	int idx = memblock_search(&memblock.memory, base);
1767
	phys_addr_t end = base + memblock_cap_size(base, &size);
1768 1769

	if (idx == -1)
1770
		return false;
1771
	return (memblock.memory.regions[idx].base +
1772
		 memblock.memory.regions[idx].size) >= end;
Y
Yinghai Lu 已提交
1773 1774
}

1775 1776 1777 1778 1779
/**
 * memblock_is_region_reserved - check if a region intersects reserved memory
 * @base: base of region to check
 * @size: size of region to check
 *
1780 1781
 * Check if the region [@base, @base + @size) intersects a reserved
 * memory block.
1782
 *
1783
 * Return:
1784
 * True if they intersect, false if not.
1785
 */
1786
bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
Y
Yinghai Lu 已提交
1787
{
1788
	memblock_cap_size(base, &size);
1789
	return memblock_overlaps_region(&memblock.reserved, base, size);
Y
Yinghai Lu 已提交
1790 1791
}

1792 1793 1794
void __init_memblock memblock_trim_memory(phys_addr_t align)
{
	phys_addr_t start, end, orig_start, orig_end;
E
Emil Medve 已提交
1795
	struct memblock_region *r;
1796

E
Emil Medve 已提交
1797 1798 1799
	for_each_memblock(memory, r) {
		orig_start = r->base;
		orig_end = r->base + r->size;
1800 1801 1802 1803 1804 1805 1806
		start = round_up(orig_start, align);
		end = round_down(orig_end, align);

		if (start == orig_start && end == orig_end)
			continue;

		if (start < end) {
E
Emil Medve 已提交
1807 1808
			r->base = start;
			r->size = end - start;
1809
		} else {
E
Emil Medve 已提交
1810 1811 1812
			memblock_remove_region(&memblock.memory,
					       r - memblock.memory.regions);
			r--;
1813 1814 1815
		}
	}
}
1816

1817
void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1818 1819 1820 1821
{
	memblock.current_limit = limit;
}

1822 1823 1824 1825 1826
phys_addr_t __init_memblock memblock_get_current_limit(void)
{
	return memblock.current_limit;
}

1827
static void __init_memblock memblock_dump(struct memblock_type *type)
1828
{
1829
	phys_addr_t base, end, size;
1830
	enum memblock_flags flags;
1831 1832
	int idx;
	struct memblock_region *rgn;
1833

1834
	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1835

1836
	for_each_memblock_type(idx, type, rgn) {
T
Tejun Heo 已提交
1837 1838 1839 1840
		char nid_buf[32] = "";

		base = rgn->base;
		size = rgn->size;
1841
		end = base + size - 1;
1842
		flags = rgn->flags;
T
Tejun Heo 已提交
1843 1844 1845 1846 1847
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
				 memblock_get_region_node(rgn));
#endif
1848
		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1849
			type->name, idx, &base, &end, &size, nid_buf, flags);
1850 1851 1852
	}
}

T
Tejun Heo 已提交
1853
void __init_memblock __memblock_dump_all(void)
1854 1855
{
	pr_info("MEMBLOCK configuration:\n");
1856 1857 1858
	pr_info(" memory size = %pa reserved size = %pa\n",
		&memblock.memory.total_size,
		&memblock.reserved.total_size);
1859

1860 1861
	memblock_dump(&memblock.memory);
	memblock_dump(&memblock.reserved);
1862
#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1863
	memblock_dump(&memblock.physmem);
1864
#endif
1865 1866
}

1867
void __init memblock_allow_resize(void)
1868
{
1869
	memblock_can_resize = 1;
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
}

static int __init early_memblock(char *p)
{
	if (p && strstr(p, "debug"))
		memblock_debug = 1;
	return 0;
}
early_param("memblock", early_memblock);

1880
#if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1881 1882 1883 1884 1885 1886

static int memblock_debug_show(struct seq_file *m, void *private)
{
	struct memblock_type *type = m->private;
	struct memblock_region *reg;
	int i;
1887
	phys_addr_t end;
1888 1889 1890

	for (i = 0; i < type->cnt; i++) {
		reg = &type->regions[i];
1891
		end = reg->base + reg->size - 1;
1892

1893 1894
		seq_printf(m, "%4d: ", i);
		seq_printf(m, "%pa..%pa\n", &reg->base, &end);
1895 1896 1897
	}
	return 0;
}
1898
DEFINE_SHOW_ATTRIBUTE(memblock_debug);
1899 1900 1901 1902 1903 1904

static int __init memblock_init_debugfs(void)
{
	struct dentry *root = debugfs_create_dir("memblock", NULL);
	if (!root)
		return -ENXIO;
1905 1906 1907 1908
	debugfs_create_file("memory", 0444, root,
			    &memblock.memory, &memblock_debug_fops);
	debugfs_create_file("reserved", 0444, root,
			    &memblock.reserved, &memblock_debug_fops);
1909
#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1910 1911
	debugfs_create_file("physmem", 0444, root,
			    &memblock.physmem, &memblock_debug_fops);
1912
#endif
1913 1914 1915 1916 1917 1918

	return 0;
}
__initcall(memblock_init_debugfs);

#endif /* CONFIG_DEBUG_FS */