drm-kms.rst 16.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
=========================
Kernel Mode Setting (KMS)
=========================

Drivers must initialize the mode setting core by calling
:c:func:`drm_mode_config_init()` on the DRM device. The function
initializes the :c:type:`struct drm_device <drm_device>`
mode_config field and never fails. Once done, mode configuration must
be setup by initializing the following fields.

-  int min_width, min_height; int max_width, max_height;
   Minimum and maximum width and height of the frame buffers in pixel
   units.

-  struct drm_mode_config_funcs \*funcs;
   Mode setting functions.

D
Daniel Vetter 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
Overview
========

.. kernel-render:: DOT
   :alt: KMS Display Pipeline
   :caption: KMS Display Pipeline Overview

   digraph "KMS" {
      node [shape=box]

      subgraph cluster_static {
          style=dashed
          label="Static Objects"

          node [bgcolor=grey style=filled]
          "drm_plane A" -> "drm_crtc"
          "drm_plane B" -> "drm_crtc"
          "drm_crtc" -> "drm_encoder A"
          "drm_crtc" -> "drm_encoder B"
      }

      subgraph cluster_user_created {
          style=dashed
          label="Userspace-Created"

          node [shape=oval]
          "drm_framebuffer 1" -> "drm_plane A"
          "drm_framebuffer 2" -> "drm_plane B"
      }

      subgraph cluster_connector {
          style=dashed
          label="Hotpluggable"

          "drm_encoder A" -> "drm_connector A"
          "drm_encoder B" -> "drm_connector B"
      }
   }

The basic object structure KMS presents to userspace is fairly simple.
Framebuffers (represented by :c:type:`struct drm_framebuffer <drm_framebuffer>`,
see `Frame Buffer Abstraction`_) feed into planes. One or more (or even no)
planes feed their pixel data into a CRTC (represented by :c:type:`struct
drm_crtc <drm_crtc>`, see `CRTC Abstraction`_) for blending. The precise
blending step is explained in more detail in `Plane Composition Properties`_ and
related chapters.

For the output routing the first step is encoders (represented by
:c:type:`struct drm_encoder <drm_encoder>`, see `Encoder Abstraction`_). Those
are really just internal artifacts of the helper libraries used to implement KMS
drivers. Besides that they make it unecessarily more complicated for userspace
to figure out which connections between a CRTC and a connector are possible, and
what kind of cloning is supported, they serve no purpose in the userspace API.
Unfortunately encoders have been exposed to userspace, hence can't remove them
at this point.  Futhermore the exposed restrictions are often wrongly set by
drivers, and in many cases not powerful enough to express the real restrictions.
A CRTC can be connected to multiple encoders, and for an active CRTC there must
be at least one encoder.

The final, and real, endpoint in the display chain is the connector (represented
by :c:type:`struct drm_connector <drm_connector>`, see `Connector
Abstraction`_). Connectors can have different possible encoders, but the kernel
driver selects which encoder to use for each connector. The use case is DVI,
which could switch between an analog and a digital encoder. Encoders can also
drive multiple different connectors. There is exactly one active connector for
every active encoder.

Internally the output pipeline is a bit more complex and matches today's
hardware more closely:

.. kernel-render:: DOT
   :alt: KMS Output Pipeline
   :caption: KMS Output Pipeline

   digraph "Output Pipeline" {
      node [shape=box]

      subgraph {
          "drm_crtc" [bgcolor=grey style=filled]
      }

      subgraph cluster_internal {
          style=dashed
          label="Internal Pipeline"
          {
              node [bgcolor=grey style=filled]
              "drm_encoder A";
              "drm_encoder B";
              "drm_encoder C";
          }

          {
              node [bgcolor=grey style=filled]
              "drm_encoder B" -> "drm_bridge B"
              "drm_encoder C" -> "drm_bridge C1"
              "drm_bridge C1" -> "drm_bridge C2";
          }
      }

      "drm_crtc" -> "drm_encoder A"
      "drm_crtc" -> "drm_encoder B"
      "drm_crtc" -> "drm_encoder C"


      subgraph cluster_output {
          style=dashed
          label="Outputs"

          "drm_encoder A" -> "drm_connector A";
          "drm_bridge B" -> "drm_connector B";
          "drm_bridge C2" -> "drm_connector C";

          "drm_panel"
      }
   }

Internally two additional helper objects come into play. First, to be able to
share code for encoders (sometimes on the same SoC, sometimes off-chip) one or
more :ref:`drm_bridges` (represented by :c:type:`struct drm_bridge
<drm_bridge>`) can be linked to an encoder. This link is static and cannot be
changed, which means the cross-bar (if there is any) needs to be mapped between
the CRTC and any encoders. Often for drivers with bridges there's no code left
at the encoder level. Atomic drivers can leave out all the encoder callbacks to
essentially only leave a dummy routing object behind, which is needed for
backwards compatibility since encoders are exposed to userspace.

The second object is for panels, represented by :c:type:`struct drm_panel
<drm_panel>`, see :ref:`drm_panel_helper`. Panels do not have a fixed binding
point, but are generally linked to the driver private structure that embeds
:c:type:`struct drm_connector <drm_connector>`.

Note that currently the bridge chaining and interactions with connectors and
panels are still in-flux and not really fully sorted out yet.
151

D
Daniel Vetter 已提交
152 153
KMS Core Structures and Functions
=================================
154

D
Daniel Vetter 已提交
155
.. kernel-doc:: include/drm/drm_mode_config.h
156 157
   :internal:

158 159 160
.. kernel-doc:: drivers/gpu/drm/drm_mode_config.c
   :export:

D
Daniel Vetter 已提交
161 162
Modeset Base Object Abstraction
===============================
D
Daniel Vetter 已提交
163

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
.. kernel-render:: DOT
   :alt: Mode Objects and Properties
   :caption: Mode Objects and Properties

   digraph {
      node [shape=box]

      "drm_property A" -> "drm_mode_object A"
      "drm_property A" -> "drm_mode_object B"
      "drm_property B" -> "drm_mode_object A"
   }

The base structure for all KMS objects is :c:type:`struct drm_mode_object
<drm_mode_object>`. One of the base services it provides is tracking properties,
which are especially important for the atomic IOCTL (see `Atomic Mode
Setting`_). The somewhat surprising part here is that properties are not
directly instantiated on each object, but free-standing mode objects themselves,
represented by :c:type:`struct drm_property <drm_property>`, which only specify
the type and value range of a property. Any given property can be attached
multiple times to different objects using :c:func:`drm_object_attach_property()
<drm_object_attach_property>`.

D
Daniel Vetter 已提交
186 187 188 189
.. kernel-doc:: include/drm/drm_mode_object.h
   :internal:

.. kernel-doc:: drivers/gpu/drm/drm_mode_object.c
190 191 192
   :export:

Atomic Mode Setting Function Reference
D
Daniel Vetter 已提交
193
======================================
194

D
Daniel Vetter 已提交
195
.. kernel-doc:: include/drm/drm_atomic.h
196 197
   :internal:

198 199 200
.. kernel-doc:: drivers/gpu/drm/drm_atomic.c
   :export:

D
Daniel Vetter 已提交
201 202 203 204
CRTC Abstraction
================

.. kernel-doc:: drivers/gpu/drm/drm_crtc.c
205 206 207 208
   :doc: overview

CRTC Functions Reference
--------------------------------
D
Daniel Vetter 已提交
209 210 211 212

.. kernel-doc:: include/drm/drm_crtc.h
   :internal:

213 214 215
.. kernel-doc:: drivers/gpu/drm/drm_crtc.c
   :export:

216
Frame Buffer Abstraction
D
Daniel Vetter 已提交
217
========================
218

219 220
.. kernel-doc:: drivers/gpu/drm/drm_framebuffer.c
   :doc: overview
221

222 223 224 225 226 227
Frame Buffer Functions Reference
--------------------------------

.. kernel-doc:: include/drm/drm_framebuffer.h
   :internal:

228 229 230
.. kernel-doc:: drivers/gpu/drm/drm_framebuffer.c
   :export:

231
DRM Format Handling
D
Daniel Vetter 已提交
232
===================
233

234 235 236
.. kernel-doc:: include/drm/drm_fourcc.h
   :internal:

237 238 239 240
.. kernel-doc:: drivers/gpu/drm/drm_fourcc.c
   :export:

Dumb Buffer Objects
D
Daniel Vetter 已提交
241
===================
242

D
Daniel Vetter 已提交
243 244
.. kernel-doc:: drivers/gpu/drm/drm_dumb_buffers.c
   :doc: overview
245

D
Daniel Vetter 已提交
246 247 248
Plane Abstraction
=================

249 250 251
.. kernel-doc:: drivers/gpu/drm/drm_plane.c
   :doc: overview

D
Daniel Vetter 已提交
252 253 254 255 256 257 258 259 260
Plane Functions Reference
-------------------------

.. kernel-doc:: include/drm/drm_plane.h
   :internal:

.. kernel-doc:: drivers/gpu/drm/drm_plane.c
   :export:

D
Daniel Vetter 已提交
261 262
Display Modes Function Reference
================================
263

D
Daniel Vetter 已提交
264 265 266 267 268
.. kernel-doc:: include/drm/drm_modes.h
   :internal:

.. kernel-doc:: drivers/gpu/drm/drm_modes.c
   :export:
269

270 271 272 273 274 275 276 277
Connector Abstraction
=====================

.. kernel-doc:: drivers/gpu/drm/drm_connector.c
   :doc: overview

Connector Functions Reference
-----------------------------
D
Daniel Vetter 已提交
278 279 280 281 282 283 284

.. kernel-doc:: include/drm/drm_connector.h
   :internal:

.. kernel-doc:: drivers/gpu/drm/drm_connector.c
   :export:

D
Daniel Vetter 已提交
285 286 287
Encoder Abstraction
===================

288 289 290 291 292 293
.. kernel-doc:: drivers/gpu/drm/drm_encoder.c
   :doc: overview

Encoder Functions Reference
---------------------------

D
Daniel Vetter 已提交
294 295 296 297 298 299
.. kernel-doc:: include/drm/drm_encoder.h
   :internal:

.. kernel-doc:: drivers/gpu/drm/drm_encoder.c
   :export:

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
KMS Initialization and Cleanup
==============================

A KMS device is abstracted and exposed as a set of planes, CRTCs,
encoders and connectors. KMS drivers must thus create and initialize all
those objects at load time after initializing mode setting.

CRTCs (:c:type:`struct drm_crtc <drm_crtc>`)
--------------------------------------------

A CRTC is an abstraction representing a part of the chip that contains a
pointer to a scanout buffer. Therefore, the number of CRTCs available
determines how many independent scanout buffers can be active at any
given time. The CRTC structure contains several fields to support this:
a pointer to some video memory (abstracted as a frame buffer object), a
display mode, and an (x, y) offset into the video memory to support
panning or configurations where one piece of video memory spans multiple
CRTCs.

CRTC Initialization
~~~~~~~~~~~~~~~~~~~

A KMS device must create and register at least one struct
:c:type:`struct drm_crtc <drm_crtc>` instance. The instance is
allocated and zeroed by the driver, possibly as part of a larger
structure, and registered with a call to :c:func:`drm_crtc_init()`
with a pointer to CRTC functions.


Cleanup
-------

The DRM core manages its objects' lifetime. When an object is not needed
anymore the core calls its destroy function, which must clean up and
free every resource allocated for the object. Every
:c:func:`drm_\*_init()` call must be matched with a corresponding
:c:func:`drm_\*_cleanup()` call to cleanup CRTCs
(:c:func:`drm_crtc_cleanup()`), planes
(:c:func:`drm_plane_cleanup()`), encoders
(:c:func:`drm_encoder_cleanup()`) and connectors
(:c:func:`drm_connector_cleanup()`). Furthermore, connectors that
have been added to sysfs must be removed by a call to
:c:func:`drm_connector_unregister()` before calling
:c:func:`drm_connector_cleanup()`.

Connectors state change detection must be cleanup up with a call to
:c:func:`drm_kms_helper_poll_fini()`.

Output discovery and initialization example
-------------------------------------------

351
.. code-block:: c
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396

    void intel_crt_init(struct drm_device *dev)
    {
        struct drm_connector *connector;
        struct intel_output *intel_output;

        intel_output = kzalloc(sizeof(struct intel_output), GFP_KERNEL);
        if (!intel_output)
            return;

        connector = &intel_output->base;
        drm_connector_init(dev, &intel_output->base,
                   &intel_crt_connector_funcs, DRM_MODE_CONNECTOR_VGA);

        drm_encoder_init(dev, &intel_output->enc, &intel_crt_enc_funcs,
                 DRM_MODE_ENCODER_DAC);

        drm_mode_connector_attach_encoder(&intel_output->base,
                          &intel_output->enc);

        /* Set up the DDC bus. */
        intel_output->ddc_bus = intel_i2c_create(dev, GPIOA, "CRTDDC_A");
        if (!intel_output->ddc_bus) {
            dev_printk(KERN_ERR, &dev->pdev->dev, "DDC bus registration "
                   "failed.\n");
            return;
        }

        intel_output->type = INTEL_OUTPUT_ANALOG;
        connector->interlace_allowed = 0;
        connector->doublescan_allowed = 0;

        drm_encoder_helper_add(&intel_output->enc, &intel_crt_helper_funcs);
        drm_connector_helper_add(connector, &intel_crt_connector_helper_funcs);

        drm_connector_register(connector);
    }

In the example above (taken from the i915 driver), a CRTC, connector and
encoder combination is created. A device-specific i2c bus is also
created for fetching EDID data and performing monitor detection. Once
the process is complete, the new connector is registered with sysfs to
make its properties available to applications.

KMS Locking
D
Daniel Vetter 已提交
397
===========
398 399 400 401 402 403 404 405 406 407 408 409 410

.. kernel-doc:: drivers/gpu/drm/drm_modeset_lock.c
   :doc: kms locking

.. kernel-doc:: include/drm/drm_modeset_lock.h
   :internal:

.. kernel-doc:: drivers/gpu/drm/drm_modeset_lock.c
   :export:

KMS Properties
==============

D
Daniel Vetter 已提交
411 412 413
Property Types and Blob Property Support
----------------------------------------

414 415 416
.. kernel-doc:: drivers/gpu/drm/drm_property.c
   :doc: overview

D
Daniel Vetter 已提交
417 418 419 420 421 422
.. kernel-doc:: include/drm/drm_property.h
   :internal:

.. kernel-doc:: drivers/gpu/drm/drm_property.c
   :export:

423 424 425 426 427 428
Standard Connector Properties
-----------------------------

.. kernel-doc:: drivers/gpu/drm/drm_connector.c
   :doc: standard connector properties

429 430 431 432 433
Plane Composition Properties
----------------------------

.. kernel-doc:: drivers/gpu/drm/drm_blend.c
   :doc: overview
D
Daniel Vetter 已提交
434 435 436 437

.. kernel-doc:: drivers/gpu/drm/drm_blend.c
   :export:

438 439 440 441 442 443 444 445 446 447 448 449
Color Management Properties
---------------------------

.. kernel-doc:: drivers/gpu/drm/drm_color_mgmt.c
   :doc: overview

.. kernel-doc:: include/drm/drm_color_mgmt.h
   :internal:

.. kernel-doc:: drivers/gpu/drm/drm_color_mgmt.c
   :export:

450 451 452 453 454 455
Tile Group Property
-------------------

.. kernel-doc:: drivers/gpu/drm/drm_connector.c
   :doc: Tile group

456 457 458 459 460 461
Explicit Fencing Properties
---------------------------

.. kernel-doc:: drivers/gpu/drm/drm_atomic.c
   :doc: explicit fencing properties

462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
Existing KMS Properties
-----------------------

The following table gives description of drm properties exposed by
various modules/drivers.

.. csv-table::
   :header-rows: 1
   :file: kms-properties.csv

Vertical Blanking
=================

Vertical blanking plays a major role in graphics rendering. To achieve
tear-free display, users must synchronize page flips and/or rendering to
vertical blanking. The DRM API offers ioctls to perform page flips
synchronized to vertical blanking and wait for vertical blanking.

The DRM core handles most of the vertical blanking management logic,
which involves filtering out spurious interrupts, keeping race-free
blanking counters, coping with counter wrap-around and resets and
keeping use counts. It relies on the driver to generate vertical
blanking interrupts and optionally provide a hardware vertical blanking
counter. Drivers must implement the following operations.

-  int (\*enable_vblank) (struct drm_device \*dev, int crtc); void
   (\*disable_vblank) (struct drm_device \*dev, int crtc);
   Enable or disable vertical blanking interrupts for the given CRTC.

-  u32 (\*get_vblank_counter) (struct drm_device \*dev, int crtc);
   Retrieve the value of the vertical blanking counter for the given
   CRTC. If the hardware maintains a vertical blanking counter its value
   should be returned. Otherwise drivers can use the
   :c:func:`drm_vblank_count()` helper function to handle this
   operation.

Drivers must initialize the vertical blanking handling core with a call
to :c:func:`drm_vblank_init()` in their load operation.

Vertical blanking interrupts can be enabled by the DRM core or by
drivers themselves (for instance to handle page flipping operations).
The DRM core maintains a vertical blanking use count to ensure that the
interrupts are not disabled while a user still needs them. To increment
the use count, drivers call :c:func:`drm_vblank_get()`. Upon
return vertical blanking interrupts are guaranteed to be enabled.

To decrement the use count drivers call
:c:func:`drm_vblank_put()`. Only when the use count drops to zero
will the DRM core disable the vertical blanking interrupts after a delay
by scheduling a timer. The delay is accessible through the
vblankoffdelay module parameter or the ``drm_vblank_offdelay`` global
variable and expressed in milliseconds. Its default value is 5000 ms.
Zero means never disable, and a negative value means disable
immediately. Drivers may override the behaviour by setting the
:c:type:`struct drm_device <drm_device>`
vblank_disable_immediate flag, which when set causes vblank interrupts
to be disabled immediately regardless of the drm_vblank_offdelay
value. The flag should only be set if there's a properly working
hardware vblank counter present.

When a vertical blanking interrupt occurs drivers only need to call the
:c:func:`drm_handle_vblank()` function to account for the
interrupt.

Resources allocated by :c:func:`drm_vblank_init()` must be freed
with a call to :c:func:`drm_vblank_cleanup()` in the driver unload
operation handler.

Vertical Blanking and Interrupt Handling Functions Reference
------------------------------------------------------------

D
Daniel Vetter 已提交
533 534
.. kernel-doc:: include/drm/drm_irq.h
   :internal:
535 536 537

.. kernel-doc:: drivers/gpu/drm/drm_irq.c
   :export: