shdma.c 31.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Renesas SuperH DMA Engine support
 *
 * base is drivers/dma/flsdma.c
 *
 * Copyright (C) 2009 Nobuhiro Iwamatsu <iwamatsu.nobuhiro@renesas.com>
 * Copyright (C) 2009 Renesas Solutions, Inc. All rights reserved.
 * Copyright (C) 2007 Freescale Semiconductor, Inc. All rights reserved.
 *
 * This is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * - DMA of SuperH does not have Hardware DMA chain mode.
 * - MAX DMA size is 16MB.
 *
 */

#include <linux/init.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/dmaengine.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/platform_device.h>
27
#include <linux/pm_runtime.h>
28
#include <linux/sh_dma.h>
29

30 31 32
#include "shdma.h"

/* DMA descriptor control */
33 34 35 36 37 38 39
enum sh_dmae_desc_status {
	DESC_IDLE,
	DESC_PREPARED,
	DESC_SUBMITTED,
	DESC_COMPLETED,	/* completed, have to call callback */
	DESC_WAITING,	/* callback called, waiting for ack / re-submit */
};
40 41

#define NR_DESCS_PER_CHANNEL 32
42 43
/* Default MEMCPY transfer size = 2^2 = 4 bytes */
#define LOG2_DEFAULT_XFER_SIZE	2
44

45
/* A bitmask with bits enough for enum sh_dmae_slave_chan_id */
46
static unsigned long sh_dmae_slave_used[BITS_TO_LONGS(SH_DMA_SLAVE_NUMBER)];
47

48 49
static void sh_dmae_chan_ld_cleanup(struct sh_dmae_chan *sh_chan, bool all);

50 51
static void sh_dmae_writel(struct sh_dmae_chan *sh_dc, u32 data, u32 reg)
{
52
	__raw_writel(data, sh_dc->base + reg / sizeof(u32));
53 54 55 56
}

static u32 sh_dmae_readl(struct sh_dmae_chan *sh_dc, u32 reg)
{
57 58 59 60 61 62 63 64 65 66 67
	return __raw_readl(sh_dc->base + reg / sizeof(u32));
}

static u16 dmaor_read(struct sh_dmae_device *shdev)
{
	return __raw_readw(shdev->chan_reg + DMAOR / sizeof(u32));
}

static void dmaor_write(struct sh_dmae_device *shdev, u16 data)
{
	__raw_writew(data, shdev->chan_reg + DMAOR / sizeof(u32));
68 69 70 71 72 73 74
}

/*
 * Reset DMA controller
 *
 * SH7780 has two DMAOR register
 */
75
static void sh_dmae_ctl_stop(struct sh_dmae_device *shdev)
76
{
77
	unsigned short dmaor = dmaor_read(shdev);
78

79
	dmaor_write(shdev, dmaor & ~(DMAOR_NMIF | DMAOR_AE | DMAOR_DME));
80 81
}

82
static int sh_dmae_rst(struct sh_dmae_device *shdev)
83 84 85
{
	unsigned short dmaor;

86
	sh_dmae_ctl_stop(shdev);
87
	dmaor = dmaor_read(shdev) | shdev->pdata->dmaor_init;
88

89 90
	dmaor_write(shdev, dmaor);
	if (dmaor_read(shdev) & (DMAOR_AE | DMAOR_NMIF)) {
91
		pr_warning("dma-sh: Can't initialize DMAOR.\n");
92 93 94 95 96
		return -EINVAL;
	}
	return 0;
}

97
static bool dmae_is_busy(struct sh_dmae_chan *sh_chan)
98 99
{
	u32 chcr = sh_dmae_readl(sh_chan, CHCR);
100 101 102 103 104

	if ((chcr & (CHCR_DE | CHCR_TE)) == CHCR_DE)
		return true; /* working */

	return false; /* waiting */
105 106
}

107
static unsigned int calc_xmit_shift(struct sh_dmae_chan *sh_chan, u32 chcr)
108
{
109 110 111 112 113 114 115 116
	struct sh_dmae_device *shdev = container_of(sh_chan->common.device,
						struct sh_dmae_device, common);
	struct sh_dmae_pdata *pdata = shdev->pdata;
	int cnt = ((chcr & pdata->ts_low_mask) >> pdata->ts_low_shift) |
		((chcr & pdata->ts_high_mask) >> pdata->ts_high_shift);

	if (cnt >= pdata->ts_shift_num)
		cnt = 0;
117

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
	return pdata->ts_shift[cnt];
}

static u32 log2size_to_chcr(struct sh_dmae_chan *sh_chan, int l2size)
{
	struct sh_dmae_device *shdev = container_of(sh_chan->common.device,
						struct sh_dmae_device, common);
	struct sh_dmae_pdata *pdata = shdev->pdata;
	int i;

	for (i = 0; i < pdata->ts_shift_num; i++)
		if (pdata->ts_shift[i] == l2size)
			break;

	if (i == pdata->ts_shift_num)
		i = 0;

	return ((i << pdata->ts_low_shift) & pdata->ts_low_mask) |
		((i << pdata->ts_high_shift) & pdata->ts_high_mask);
137 138
}

139
static void dmae_set_reg(struct sh_dmae_chan *sh_chan, struct sh_dmae_regs *hw)
140
{
141 142
	sh_dmae_writel(sh_chan, hw->sar, SAR);
	sh_dmae_writel(sh_chan, hw->dar, DAR);
143
	sh_dmae_writel(sh_chan, hw->tcr >> sh_chan->xmit_shift, TCR);
144 145 146 147 148 149
}

static void dmae_start(struct sh_dmae_chan *sh_chan)
{
	u32 chcr = sh_dmae_readl(sh_chan, CHCR);

150
	chcr |= CHCR_DE | CHCR_IE;
151
	sh_dmae_writel(sh_chan, chcr & ~CHCR_TE, CHCR);
152 153 154 155 156 157 158 159 160 161
}

static void dmae_halt(struct sh_dmae_chan *sh_chan)
{
	u32 chcr = sh_dmae_readl(sh_chan, CHCR);

	chcr &= ~(CHCR_DE | CHCR_TE | CHCR_IE);
	sh_dmae_writel(sh_chan, chcr, CHCR);
}

162 163
static void dmae_init(struct sh_dmae_chan *sh_chan)
{
164 165 166 167 168 169 170
	/*
	 * Default configuration for dual address memory-memory transfer.
	 * 0x400 represents auto-request.
	 */
	u32 chcr = DM_INC | SM_INC | 0x400 | log2size_to_chcr(sh_chan,
						   LOG2_DEFAULT_XFER_SIZE);
	sh_chan->xmit_shift = calc_xmit_shift(sh_chan, chcr);
171 172 173
	sh_dmae_writel(sh_chan, chcr, CHCR);
}

174 175 176
static int dmae_set_chcr(struct sh_dmae_chan *sh_chan, u32 val)
{
	/* When DMA was working, can not set data to CHCR */
177 178
	if (dmae_is_busy(sh_chan))
		return -EBUSY;
179

180
	sh_chan->xmit_shift = calc_xmit_shift(sh_chan, val);
181
	sh_dmae_writel(sh_chan, val, CHCR);
182

183 184 185 186 187
	return 0;
}

static int dmae_set_dmars(struct sh_dmae_chan *sh_chan, u16 val)
{
188 189 190 191 192 193
	struct sh_dmae_device *shdev = container_of(sh_chan->common.device,
						struct sh_dmae_device, common);
	struct sh_dmae_pdata *pdata = shdev->pdata;
	struct sh_dmae_channel *chan_pdata = &pdata->channel[sh_chan->id];
	u16 __iomem *addr = shdev->dmars + chan_pdata->dmars / sizeof(u16);
	int shift = chan_pdata->dmars_bit;
194 195 196

	if (dmae_is_busy(sh_chan))
		return -EBUSY;
197

198 199
	__raw_writew((__raw_readw(addr) & (0xff00 >> shift)) | (val << shift),
		     addr);
200 201 202 203 204 205

	return 0;
}

static dma_cookie_t sh_dmae_tx_submit(struct dma_async_tx_descriptor *tx)
{
206
	struct sh_desc *desc = tx_to_sh_desc(tx), *chunk, *last = desc, *c;
207
	struct sh_dmae_chan *sh_chan = to_sh_chan(tx->chan);
208
	dma_async_tx_callback callback = tx->callback;
209 210 211 212 213 214 215 216 217
	dma_cookie_t cookie;

	spin_lock_bh(&sh_chan->desc_lock);

	cookie = sh_chan->common.cookie;
	cookie++;
	if (cookie < 0)
		cookie = 1;

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
	sh_chan->common.cookie = cookie;
	tx->cookie = cookie;

	/* Mark all chunks of this descriptor as submitted, move to the queue */
	list_for_each_entry_safe(chunk, c, desc->node.prev, node) {
		/*
		 * All chunks are on the global ld_free, so, we have to find
		 * the end of the chain ourselves
		 */
		if (chunk != desc && (chunk->mark == DESC_IDLE ||
				      chunk->async_tx.cookie > 0 ||
				      chunk->async_tx.cookie == -EBUSY ||
				      &chunk->node == &sh_chan->ld_free))
			break;
		chunk->mark = DESC_SUBMITTED;
		/* Callback goes to the last chunk */
		chunk->async_tx.callback = NULL;
		chunk->cookie = cookie;
		list_move_tail(&chunk->node, &sh_chan->ld_queue);
		last = chunk;
	}
239

240 241 242 243 244 245
	last->async_tx.callback = callback;
	last->async_tx.callback_param = tx->callback_param;

	dev_dbg(sh_chan->dev, "submit #%d@%p on %d: %x[%d] -> %x\n",
		tx->cookie, &last->async_tx, sh_chan->id,
		desc->hw.sar, desc->hw.tcr, desc->hw.dar);
246 247 248 249 250 251

	spin_unlock_bh(&sh_chan->desc_lock);

	return cookie;
}

252
/* Called with desc_lock held */
253 254
static struct sh_desc *sh_dmae_get_desc(struct sh_dmae_chan *sh_chan)
{
255
	struct sh_desc *desc;
256

257 258 259
	list_for_each_entry(desc, &sh_chan->ld_free, node)
		if (desc->mark != DESC_PREPARED) {
			BUG_ON(desc->mark != DESC_IDLE);
260
			list_del(&desc->node);
261
			return desc;
262 263
		}

264
	return NULL;
265 266
}

267
static struct sh_dmae_slave_config *sh_dmae_find_slave(
268
	struct sh_dmae_chan *sh_chan, struct sh_dmae_slave *param)
269 270 271 272
{
	struct dma_device *dma_dev = sh_chan->common.device;
	struct sh_dmae_device *shdev = container_of(dma_dev,
					struct sh_dmae_device, common);
273
	struct sh_dmae_pdata *pdata = shdev->pdata;
274 275
	int i;

276
	if (param->slave_id >= SH_DMA_SLAVE_NUMBER)
277 278
		return NULL;

279
	for (i = 0; i < pdata->slave_num; i++)
280
		if (pdata->slave[i].slave_id == param->slave_id)
281
			return pdata->slave + i;
282 283 284 285

	return NULL;
}

286 287 288 289
static int sh_dmae_alloc_chan_resources(struct dma_chan *chan)
{
	struct sh_dmae_chan *sh_chan = to_sh_chan(chan);
	struct sh_desc *desc;
290 291
	struct sh_dmae_slave *param = chan->private;

292 293
	pm_runtime_get_sync(sh_chan->dev);

294 295 296 297 298 299 300
	/*
	 * This relies on the guarantee from dmaengine that alloc_chan_resources
	 * never runs concurrently with itself or free_chan_resources.
	 */
	if (param) {
		struct sh_dmae_slave_config *cfg;

301
		cfg = sh_dmae_find_slave(sh_chan, param);
302 303 304 305 306 307 308 309 310 311
		if (!cfg)
			return -EINVAL;

		if (test_and_set_bit(param->slave_id, sh_dmae_slave_used))
			return -EBUSY;

		param->config = cfg;

		dmae_set_dmars(sh_chan, cfg->mid_rid);
		dmae_set_chcr(sh_chan, cfg->chcr);
312 313
	} else if ((sh_dmae_readl(sh_chan, CHCR) & 0xf00) != 0x400) {
		dmae_init(sh_chan);
314
	}
315 316 317 318 319 320 321 322 323 324 325 326

	spin_lock_bh(&sh_chan->desc_lock);
	while (sh_chan->descs_allocated < NR_DESCS_PER_CHANNEL) {
		spin_unlock_bh(&sh_chan->desc_lock);
		desc = kzalloc(sizeof(struct sh_desc), GFP_KERNEL);
		if (!desc) {
			spin_lock_bh(&sh_chan->desc_lock);
			break;
		}
		dma_async_tx_descriptor_init(&desc->async_tx,
					&sh_chan->common);
		desc->async_tx.tx_submit = sh_dmae_tx_submit;
327
		desc->mark = DESC_IDLE;
328 329

		spin_lock_bh(&sh_chan->desc_lock);
330
		list_add(&desc->node, &sh_chan->ld_free);
331 332 333 334
		sh_chan->descs_allocated++;
	}
	spin_unlock_bh(&sh_chan->desc_lock);

335 336 337
	if (!sh_chan->descs_allocated)
		pm_runtime_put(sh_chan->dev);

338 339 340 341 342 343 344 345 346 347 348
	return sh_chan->descs_allocated;
}

/*
 * sh_dma_free_chan_resources - Free all resources of the channel.
 */
static void sh_dmae_free_chan_resources(struct dma_chan *chan)
{
	struct sh_dmae_chan *sh_chan = to_sh_chan(chan);
	struct sh_desc *desc, *_desc;
	LIST_HEAD(list);
349
	int descs = sh_chan->descs_allocated;
350

351 352
	dmae_halt(sh_chan);

353 354 355 356
	/* Prepared and not submitted descriptors can still be on the queue */
	if (!list_empty(&sh_chan->ld_queue))
		sh_dmae_chan_ld_cleanup(sh_chan, true);

357 358 359 360 361 362
	if (chan->private) {
		/* The caller is holding dma_list_mutex */
		struct sh_dmae_slave *param = chan->private;
		clear_bit(param->slave_id, sh_dmae_slave_used);
	}

363 364 365 366 367 368 369
	spin_lock_bh(&sh_chan->desc_lock);

	list_splice_init(&sh_chan->ld_free, &list);
	sh_chan->descs_allocated = 0;

	spin_unlock_bh(&sh_chan->desc_lock);

370 371 372
	if (descs > 0)
		pm_runtime_put(sh_chan->dev);

373 374 375 376
	list_for_each_entry_safe(desc, _desc, &list, node)
		kfree(desc);
}

377
/**
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
 * sh_dmae_add_desc - get, set up and return one transfer descriptor
 * @sh_chan:	DMA channel
 * @flags:	DMA transfer flags
 * @dest:	destination DMA address, incremented when direction equals
 *		DMA_FROM_DEVICE or DMA_BIDIRECTIONAL
 * @src:	source DMA address, incremented when direction equals
 *		DMA_TO_DEVICE or DMA_BIDIRECTIONAL
 * @len:	DMA transfer length
 * @first:	if NULL, set to the current descriptor and cookie set to -EBUSY
 * @direction:	needed for slave DMA to decide which address to keep constant,
 *		equals DMA_BIDIRECTIONAL for MEMCPY
 * Returns 0 or an error
 * Locks: called with desc_lock held
 */
static struct sh_desc *sh_dmae_add_desc(struct sh_dmae_chan *sh_chan,
	unsigned long flags, dma_addr_t *dest, dma_addr_t *src, size_t *len,
	struct sh_desc **first, enum dma_data_direction direction)
395
{
396
	struct sh_desc *new;
397 398
	size_t copy_size;

399
	if (!*len)
400 401
		return NULL;

402 403 404 405
	/* Allocate the link descriptor from the free list */
	new = sh_dmae_get_desc(sh_chan);
	if (!new) {
		dev_err(sh_chan->dev, "No free link descriptor available\n");
406
		return NULL;
407
	}
408

409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
	copy_size = min(*len, (size_t)SH_DMA_TCR_MAX + 1);

	new->hw.sar = *src;
	new->hw.dar = *dest;
	new->hw.tcr = copy_size;

	if (!*first) {
		/* First desc */
		new->async_tx.cookie = -EBUSY;
		*first = new;
	} else {
		/* Other desc - invisible to the user */
		new->async_tx.cookie = -EINVAL;
	}

424 425
	dev_dbg(sh_chan->dev,
		"chaining (%u/%u)@%x -> %x with %p, cookie %d, shift %d\n",
426
		copy_size, *len, *src, *dest, &new->async_tx,
427
		new->async_tx.cookie, sh_chan->xmit_shift);
428 429 430

	new->mark = DESC_PREPARED;
	new->async_tx.flags = flags;
431
	new->direction = direction;
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467

	*len -= copy_size;
	if (direction == DMA_BIDIRECTIONAL || direction == DMA_TO_DEVICE)
		*src += copy_size;
	if (direction == DMA_BIDIRECTIONAL || direction == DMA_FROM_DEVICE)
		*dest += copy_size;

	return new;
}

/*
 * sh_dmae_prep_sg - prepare transfer descriptors from an SG list
 *
 * Common routine for public (MEMCPY) and slave DMA. The MEMCPY case is also
 * converted to scatter-gather to guarantee consistent locking and a correct
 * list manipulation. For slave DMA direction carries the usual meaning, and,
 * logically, the SG list is RAM and the addr variable contains slave address,
 * e.g., the FIFO I/O register. For MEMCPY direction equals DMA_BIDIRECTIONAL
 * and the SG list contains only one element and points at the source buffer.
 */
static struct dma_async_tx_descriptor *sh_dmae_prep_sg(struct sh_dmae_chan *sh_chan,
	struct scatterlist *sgl, unsigned int sg_len, dma_addr_t *addr,
	enum dma_data_direction direction, unsigned long flags)
{
	struct scatterlist *sg;
	struct sh_desc *first = NULL, *new = NULL /* compiler... */;
	LIST_HEAD(tx_list);
	int chunks = 0;
	int i;

	if (!sg_len)
		return NULL;

	for_each_sg(sgl, sg, sg_len, i)
		chunks += (sg_dma_len(sg) + SH_DMA_TCR_MAX) /
			(SH_DMA_TCR_MAX + 1);
468

469 470 471 472 473 474 475 476 477 478 479 480 481 482
	/* Have to lock the whole loop to protect against concurrent release */
	spin_lock_bh(&sh_chan->desc_lock);

	/*
	 * Chaining:
	 * first descriptor is what user is dealing with in all API calls, its
	 *	cookie is at first set to -EBUSY, at tx-submit to a positive
	 *	number
	 * if more than one chunk is needed further chunks have cookie = -EINVAL
	 * the last chunk, if not equal to the first, has cookie = -ENOSPC
	 * all chunks are linked onto the tx_list head with their .node heads
	 *	only during this function, then they are immediately spliced
	 *	back onto the free list in form of a chain
	 */
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
	for_each_sg(sgl, sg, sg_len, i) {
		dma_addr_t sg_addr = sg_dma_address(sg);
		size_t len = sg_dma_len(sg);

		if (!len)
			goto err_get_desc;

		do {
			dev_dbg(sh_chan->dev, "Add SG #%d@%p[%d], dma %llx\n",
				i, sg, len, (unsigned long long)sg_addr);

			if (direction == DMA_FROM_DEVICE)
				new = sh_dmae_add_desc(sh_chan, flags,
						&sg_addr, addr, &len, &first,
						direction);
			else
				new = sh_dmae_add_desc(sh_chan, flags,
						addr, &sg_addr, &len, &first,
						direction);
			if (!new)
				goto err_get_desc;

			new->chunks = chunks--;
			list_add_tail(&new->node, &tx_list);
		} while (len);
	}
509

510 511
	if (new != first)
		new->async_tx.cookie = -ENOSPC;
512

513 514
	/* Put them back on the free list, so, they don't get lost */
	list_splice_tail(&tx_list, &sh_chan->ld_free);
515

516
	spin_unlock_bh(&sh_chan->desc_lock);
517

518
	return &first->async_tx;
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539

err_get_desc:
	list_for_each_entry(new, &tx_list, node)
		new->mark = DESC_IDLE;
	list_splice(&tx_list, &sh_chan->ld_free);

	spin_unlock_bh(&sh_chan->desc_lock);

	return NULL;
}

static struct dma_async_tx_descriptor *sh_dmae_prep_memcpy(
	struct dma_chan *chan, dma_addr_t dma_dest, dma_addr_t dma_src,
	size_t len, unsigned long flags)
{
	struct sh_dmae_chan *sh_chan;
	struct scatterlist sg;

	if (!chan || !len)
		return NULL;

540 541
	chan->private = NULL;

542 543 544 545 546 547 548 549 550 551
	sh_chan = to_sh_chan(chan);

	sg_init_table(&sg, 1);
	sg_set_page(&sg, pfn_to_page(PFN_DOWN(dma_src)), len,
		    offset_in_page(dma_src));
	sg_dma_address(&sg) = dma_src;
	sg_dma_len(&sg) = len;

	return sh_dmae_prep_sg(sh_chan, &sg, 1, &dma_dest, DMA_BIDIRECTIONAL,
			       flags);
552 553
}

554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
static struct dma_async_tx_descriptor *sh_dmae_prep_slave_sg(
	struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
	enum dma_data_direction direction, unsigned long flags)
{
	struct sh_dmae_slave *param;
	struct sh_dmae_chan *sh_chan;

	if (!chan)
		return NULL;

	sh_chan = to_sh_chan(chan);
	param = chan->private;

	/* Someone calling slave DMA on a public channel? */
	if (!param || !sg_len) {
		dev_warn(sh_chan->dev, "%s: bad parameter: %p, %d, %d\n",
			 __func__, param, sg_len, param ? param->slave_id : -1);
		return NULL;
	}

	/*
	 * if (param != NULL), this is a successfully requested slave channel,
	 * therefore param->config != NULL too.
	 */
	return sh_dmae_prep_sg(sh_chan, sgl, sg_len, &param->config->addr,
			       direction, flags);
}

static void sh_dmae_terminate_all(struct dma_chan *chan)
{
	struct sh_dmae_chan *sh_chan = to_sh_chan(chan);

	if (!chan)
		return;

589 590 591 592 593 594 595 596 597 598 599 600 601
	dmae_halt(sh_chan);

	spin_lock_bh(&sh_chan->desc_lock);
	if (!list_empty(&sh_chan->ld_queue)) {
		/* Record partial transfer */
		struct sh_desc *desc = list_entry(sh_chan->ld_queue.next,
						  struct sh_desc, node);
		desc->partial = (desc->hw.tcr - sh_dmae_readl(sh_chan, TCR)) <<
			sh_chan->xmit_shift;

	}
	spin_unlock_bh(&sh_chan->desc_lock);

602 603 604
	sh_dmae_chan_ld_cleanup(sh_chan, true);
}

605
static dma_async_tx_callback __ld_cleanup(struct sh_dmae_chan *sh_chan, bool all)
606 607
{
	struct sh_desc *desc, *_desc;
608 609 610 611 612
	/* Is the "exposed" head of a chain acked? */
	bool head_acked = false;
	dma_cookie_t cookie = 0;
	dma_async_tx_callback callback = NULL;
	void *param = NULL;
613 614 615

	spin_lock_bh(&sh_chan->desc_lock);
	list_for_each_entry_safe(desc, _desc, &sh_chan->ld_queue, node) {
616 617 618 619 620 621 622 623 624 625 626 627 628 629
		struct dma_async_tx_descriptor *tx = &desc->async_tx;

		BUG_ON(tx->cookie > 0 && tx->cookie != desc->cookie);
		BUG_ON(desc->mark != DESC_SUBMITTED &&
		       desc->mark != DESC_COMPLETED &&
		       desc->mark != DESC_WAITING);

		/*
		 * queue is ordered, and we use this loop to (1) clean up all
		 * completed descriptors, and to (2) update descriptor flags of
		 * any chunks in a (partially) completed chain
		 */
		if (!all && desc->mark == DESC_SUBMITTED &&
		    desc->cookie != cookie)
630 631
			break;

632 633
		if (tx->cookie > 0)
			cookie = tx->cookie;
634

635
		if (desc->mark == DESC_COMPLETED && desc->chunks == 1) {
636 637 638 639 640
			if (sh_chan->completed_cookie != desc->cookie - 1)
				dev_dbg(sh_chan->dev,
					"Completing cookie %d, expected %d\n",
					desc->cookie,
					sh_chan->completed_cookie + 1);
641 642
			sh_chan->completed_cookie = desc->cookie;
		}
643

644 645 646 647 648 649 650 651 652 653
		/* Call callback on the last chunk */
		if (desc->mark == DESC_COMPLETED && tx->callback) {
			desc->mark = DESC_WAITING;
			callback = tx->callback;
			param = tx->callback_param;
			dev_dbg(sh_chan->dev, "descriptor #%d@%p on %d callback\n",
				tx->cookie, tx, sh_chan->id);
			BUG_ON(desc->chunks != 1);
			break;
		}
654

655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
		if (tx->cookie > 0 || tx->cookie == -EBUSY) {
			if (desc->mark == DESC_COMPLETED) {
				BUG_ON(tx->cookie < 0);
				desc->mark = DESC_WAITING;
			}
			head_acked = async_tx_test_ack(tx);
		} else {
			switch (desc->mark) {
			case DESC_COMPLETED:
				desc->mark = DESC_WAITING;
				/* Fall through */
			case DESC_WAITING:
				if (head_acked)
					async_tx_ack(&desc->async_tx);
			}
		}

		dev_dbg(sh_chan->dev, "descriptor %p #%d completed.\n",
			tx, tx->cookie);

		if (((desc->mark == DESC_COMPLETED ||
		      desc->mark == DESC_WAITING) &&
		     async_tx_test_ack(&desc->async_tx)) || all) {
			/* Remove from ld_queue list */
			desc->mark = DESC_IDLE;
			list_move(&desc->node, &sh_chan->ld_free);
681 682 683
		}
	}
	spin_unlock_bh(&sh_chan->desc_lock);
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699

	if (callback)
		callback(param);

	return callback;
}

/*
 * sh_chan_ld_cleanup - Clean up link descriptors
 *
 * This function cleans up the ld_queue of DMA channel.
 */
static void sh_dmae_chan_ld_cleanup(struct sh_dmae_chan *sh_chan, bool all)
{
	while (__ld_cleanup(sh_chan, all))
		;
700 701 702 703
}

static void sh_chan_xfer_ld_queue(struct sh_dmae_chan *sh_chan)
{
704
	struct sh_desc *desc;
705

706
	spin_lock_bh(&sh_chan->desc_lock);
707
	/* DMA work check */
708 709
	if (dmae_is_busy(sh_chan)) {
		spin_unlock_bh(&sh_chan->desc_lock);
710
		return;
711
	}
712

713
	/* Find the first not transferred desciptor */
714 715
	list_for_each_entry(desc, &sh_chan->ld_queue, node)
		if (desc->mark == DESC_SUBMITTED) {
716 717 718
			dev_dbg(sh_chan->dev, "Queue #%d to %d: %u@%x -> %x\n",
				desc->async_tx.cookie, sh_chan->id,
				desc->hw.tcr, desc->hw.sar, desc->hw.dar);
719
			/* Get the ld start address from ld_queue */
720
			dmae_set_reg(sh_chan, &desc->hw);
721 722 723 724 725
			dmae_start(sh_chan);
			break;
		}

	spin_unlock_bh(&sh_chan->desc_lock);
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
}

static void sh_dmae_memcpy_issue_pending(struct dma_chan *chan)
{
	struct sh_dmae_chan *sh_chan = to_sh_chan(chan);
	sh_chan_xfer_ld_queue(sh_chan);
}

static enum dma_status sh_dmae_is_complete(struct dma_chan *chan,
					dma_cookie_t cookie,
					dma_cookie_t *done,
					dma_cookie_t *used)
{
	struct sh_dmae_chan *sh_chan = to_sh_chan(chan);
	dma_cookie_t last_used;
	dma_cookie_t last_complete;
742
	enum dma_status status;
743

744
	sh_dmae_chan_ld_cleanup(sh_chan, false);
745 746 747

	last_used = chan->cookie;
	last_complete = sh_chan->completed_cookie;
748
	BUG_ON(last_complete < 0);
749 750 751 752 753 754 755

	if (done)
		*done = last_complete;

	if (used)
		*used = last_used;

756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
	spin_lock_bh(&sh_chan->desc_lock);

	status = dma_async_is_complete(cookie, last_complete, last_used);

	/*
	 * If we don't find cookie on the queue, it has been aborted and we have
	 * to report error
	 */
	if (status != DMA_SUCCESS) {
		struct sh_desc *desc;
		status = DMA_ERROR;
		list_for_each_entry(desc, &sh_chan->ld_queue, node)
			if (desc->cookie == cookie) {
				status = DMA_IN_PROGRESS;
				break;
			}
	}

	spin_unlock_bh(&sh_chan->desc_lock);

	return status;
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
}

static irqreturn_t sh_dmae_interrupt(int irq, void *data)
{
	irqreturn_t ret = IRQ_NONE;
	struct sh_dmae_chan *sh_chan = (struct sh_dmae_chan *)data;
	u32 chcr = sh_dmae_readl(sh_chan, CHCR);

	if (chcr & CHCR_TE) {
		/* DMA stop */
		dmae_halt(sh_chan);

		ret = IRQ_HANDLED;
		tasklet_schedule(&sh_chan->tasklet);
	}

	return ret;
}

#if defined(CONFIG_CPU_SH4)
static irqreturn_t sh_dmae_err(int irq, void *data)
{
	struct sh_dmae_device *shdev = (struct sh_dmae_device *)data;
800
	int i;
801

802
	/* halt the dma controller */
803
	sh_dmae_ctl_stop(shdev);
804 805

	/* We cannot detect, which channel caused the error, have to reset all */
806
	for (i = 0; i < SH_DMAC_MAX_CHANNELS; i++) {
807 808 809 810 811 812 813 814 815 816 817
		struct sh_dmae_chan *sh_chan = shdev->chan[i];
		if (sh_chan) {
			struct sh_desc *desc;
			/* Stop the channel */
			dmae_halt(sh_chan);
			/* Complete all  */
			list_for_each_entry(desc, &sh_chan->ld_queue, node) {
				struct dma_async_tx_descriptor *tx = &desc->async_tx;
				desc->mark = DESC_IDLE;
				if (tx->callback)
					tx->callback(tx->callback_param);
818
			}
819
			list_splice_init(&sh_chan->ld_queue, &sh_chan->ld_free);
820 821
		}
	}
822
	sh_dmae_rst(shdev);
823 824

	return IRQ_HANDLED;
825 826 827 828 829 830
}
#endif

static void dmae_do_tasklet(unsigned long data)
{
	struct sh_dmae_chan *sh_chan = (struct sh_dmae_chan *)data;
831
	struct sh_desc *desc;
832
	u32 sar_buf = sh_dmae_readl(sh_chan, SAR);
833
	u32 dar_buf = sh_dmae_readl(sh_chan, DAR);
834

835 836
	spin_lock(&sh_chan->desc_lock);
	list_for_each_entry(desc, &sh_chan->ld_queue, node) {
837 838 839 840
		if (desc->mark == DESC_SUBMITTED &&
		    ((desc->direction == DMA_FROM_DEVICE &&
		      (desc->hw.dar + desc->hw.tcr) == dar_buf) ||
		     (desc->hw.sar + desc->hw.tcr) == sar_buf)) {
841 842 843 844
			dev_dbg(sh_chan->dev, "done #%d@%p dst %u\n",
				desc->async_tx.cookie, &desc->async_tx,
				desc->hw.dar);
			desc->mark = DESC_COMPLETED;
845 846 847
			break;
		}
	}
848
	spin_unlock(&sh_chan->desc_lock);
849 850 851

	/* Next desc */
	sh_chan_xfer_ld_queue(sh_chan);
852
	sh_dmae_chan_ld_cleanup(sh_chan, false);
853 854
}

855 856
static int __devinit sh_dmae_chan_probe(struct sh_dmae_device *shdev, int id,
					int irq, unsigned long flags)
857 858
{
	int err;
859 860
	struct sh_dmae_channel *chan_pdata = &shdev->pdata->channel[id];
	struct platform_device *pdev = to_platform_device(shdev->common.dev);
861 862 863 864 865
	struct sh_dmae_chan *new_sh_chan;

	/* alloc channel */
	new_sh_chan = kzalloc(sizeof(struct sh_dmae_chan), GFP_KERNEL);
	if (!new_sh_chan) {
866 867
		dev_err(shdev->common.dev,
			"No free memory for allocating dma channels!\n");
868 869 870
		return -ENOMEM;
	}

871 872 873
	/* copy struct dma_device */
	new_sh_chan->common.device = &shdev->common;

874 875
	new_sh_chan->dev = shdev->common.dev;
	new_sh_chan->id = id;
876 877
	new_sh_chan->irq = irq;
	new_sh_chan->base = shdev->chan_reg + chan_pdata->offset / sizeof(u32);
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896

	/* Init DMA tasklet */
	tasklet_init(&new_sh_chan->tasklet, dmae_do_tasklet,
			(unsigned long)new_sh_chan);

	/* Init the channel */
	dmae_init(new_sh_chan);

	spin_lock_init(&new_sh_chan->desc_lock);

	/* Init descripter manage list */
	INIT_LIST_HEAD(&new_sh_chan->ld_queue);
	INIT_LIST_HEAD(&new_sh_chan->ld_free);

	/* Add the channel to DMA device channel list */
	list_add_tail(&new_sh_chan->common.device_node,
			&shdev->common.channels);
	shdev->common.chancnt++;

897 898 899 900 901 902
	if (pdev->id >= 0)
		snprintf(new_sh_chan->dev_id, sizeof(new_sh_chan->dev_id),
			 "sh-dmae%d.%d", pdev->id, new_sh_chan->id);
	else
		snprintf(new_sh_chan->dev_id, sizeof(new_sh_chan->dev_id),
			 "sh-dma%d", new_sh_chan->id);
903 904

	/* set up channel irq */
905
	err = request_irq(irq, &sh_dmae_interrupt, flags,
906
			  new_sh_chan->dev_id, new_sh_chan);
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
	if (err) {
		dev_err(shdev->common.dev, "DMA channel %d request_irq error "
			"with return %d\n", id, err);
		goto err_no_irq;
	}

	shdev->chan[id] = new_sh_chan;
	return 0;

err_no_irq:
	/* remove from dmaengine device node */
	list_del(&new_sh_chan->common.device_node);
	kfree(new_sh_chan);
	return err;
}

static void sh_dmae_chan_remove(struct sh_dmae_device *shdev)
{
	int i;

	for (i = shdev->common.chancnt - 1 ; i >= 0 ; i--) {
		if (shdev->chan[i]) {
929 930 931
			struct sh_dmae_chan *sh_chan = shdev->chan[i];

			free_irq(sh_chan->irq, sh_chan);
932

933 934
			list_del(&sh_chan->common.device_node);
			kfree(sh_chan);
935 936 937 938 939 940 941 942
			shdev->chan[i] = NULL;
		}
	}
	shdev->common.chancnt = 0;
}

static int __init sh_dmae_probe(struct platform_device *pdev)
{
943 944
	struct sh_dmae_pdata *pdata = pdev->dev.platform_data;
	unsigned long irqflags = IRQF_DISABLED,
945 946
		chan_flag[SH_DMAC_MAX_CHANNELS] = {};
	int errirq, chan_irq[SH_DMAC_MAX_CHANNELS];
947
	int err, i, irq_cnt = 0, irqres = 0;
948
	struct sh_dmae_device *shdev;
949
	struct resource *chan, *dmars, *errirq_res, *chanirq_res;
950

951
	/* get platform data */
952
	if (!pdata || !pdata->channel_num)
953 954
		return -ENODEV;

955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
	chan = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	/* DMARS area is optional, if absent, this controller cannot do slave DMA */
	dmars = platform_get_resource(pdev, IORESOURCE_MEM, 1);
	/*
	 * IRQ resources:
	 * 1. there always must be at least one IRQ IO-resource. On SH4 it is
	 *    the error IRQ, in which case it is the only IRQ in this resource:
	 *    start == end. If it is the only IRQ resource, all channels also
	 *    use the same IRQ.
	 * 2. DMA channel IRQ resources can be specified one per resource or in
	 *    ranges (start != end)
	 * 3. iff all events (channels and, optionally, error) on this
	 *    controller use the same IRQ, only one IRQ resource can be
	 *    specified, otherwise there must be one IRQ per channel, even if
	 *    some of them are equal
	 * 4. if all IRQs on this controller are equal or if some specific IRQs
	 *    specify IORESOURCE_IRQ_SHAREABLE in their resources, they will be
	 *    requested with the IRQF_SHARED flag
	 */
	errirq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
	if (!chan || !errirq_res)
		return -ENODEV;

	if (!request_mem_region(chan->start, resource_size(chan), pdev->name)) {
		dev_err(&pdev->dev, "DMAC register region already claimed\n");
		return -EBUSY;
	}

	if (dmars && !request_mem_region(dmars->start, resource_size(dmars), pdev->name)) {
		dev_err(&pdev->dev, "DMAC DMARS region already claimed\n");
		err = -EBUSY;
		goto ermrdmars;
	}

	err = -ENOMEM;
990 991
	shdev = kzalloc(sizeof(struct sh_dmae_device), GFP_KERNEL);
	if (!shdev) {
992 993 994 995 996 997 998 999 1000 1001 1002
		dev_err(&pdev->dev, "Not enough memory\n");
		goto ealloc;
	}

	shdev->chan_reg = ioremap(chan->start, resource_size(chan));
	if (!shdev->chan_reg)
		goto emapchan;
	if (dmars) {
		shdev->dmars = ioremap(dmars->start, resource_size(dmars));
		if (!shdev->dmars)
			goto emapdmars;
1003 1004 1005
	}

	/* platform data */
1006
	shdev->pdata = pdata;
1007

1008 1009 1010
	pm_runtime_enable(&pdev->dev);
	pm_runtime_get_sync(&pdev->dev);

1011
	/* reset dma controller */
1012
	err = sh_dmae_rst(shdev);
1013 1014 1015 1016 1017 1018
	if (err)
		goto rst_err;

	INIT_LIST_HEAD(&shdev->common.channels);

	dma_cap_set(DMA_MEMCPY, shdev->common.cap_mask);
1019 1020
	if (dmars)
		dma_cap_set(DMA_SLAVE, shdev->common.cap_mask);
1021

1022 1023 1024 1025 1026 1027
	shdev->common.device_alloc_chan_resources
		= sh_dmae_alloc_chan_resources;
	shdev->common.device_free_chan_resources = sh_dmae_free_chan_resources;
	shdev->common.device_prep_dma_memcpy = sh_dmae_prep_memcpy;
	shdev->common.device_is_tx_complete = sh_dmae_is_complete;
	shdev->common.device_issue_pending = sh_dmae_memcpy_issue_pending;
1028 1029 1030 1031 1032

	/* Compulsory for DMA_SLAVE fields */
	shdev->common.device_prep_slave_sg = sh_dmae_prep_slave_sg;
	shdev->common.device_terminate_all = sh_dmae_terminate_all;

1033
	shdev->common.dev = &pdev->dev;
1034
	/* Default transfer size of 32 bytes requires 32-byte alignment */
1035
	shdev->common.copy_align = LOG2_DEFAULT_XFER_SIZE;
1036 1037

#if defined(CONFIG_CPU_SH4)
1038 1039 1040 1041 1042 1043 1044 1045 1046
	chanirq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 1);

	if (!chanirq_res)
		chanirq_res = errirq_res;
	else
		irqres++;

	if (chanirq_res == errirq_res ||
	    (errirq_res->flags & IORESOURCE_BITS) == IORESOURCE_IRQ_SHAREABLE)
1047
		irqflags = IRQF_SHARED;
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057

	errirq = errirq_res->start;

	err = request_irq(errirq, sh_dmae_err, irqflags,
			  "DMAC Address Error", shdev);
	if (err) {
		dev_err(&pdev->dev,
			"DMA failed requesting irq #%d, error %d\n",
			errirq, err);
		goto eirq_err;
1058 1059
	}

1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
#else
	chanirq_res = errirq_res;
#endif /* CONFIG_CPU_SH4 */

	if (chanirq_res->start == chanirq_res->end &&
	    !platform_get_resource(pdev, IORESOURCE_IRQ, 1)) {
		/* Special case - all multiplexed */
		for (; irq_cnt < pdata->channel_num; irq_cnt++) {
			chan_irq[irq_cnt] = chanirq_res->start;
			chan_flag[irq_cnt] = IRQF_SHARED;
1070
		}
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
	} else {
		do {
			for (i = chanirq_res->start; i <= chanirq_res->end; i++) {
				if ((errirq_res->flags & IORESOURCE_BITS) ==
				    IORESOURCE_IRQ_SHAREABLE)
					chan_flag[irq_cnt] = IRQF_SHARED;
				else
					chan_flag[irq_cnt] = IRQF_DISABLED;
				dev_dbg(&pdev->dev,
					"Found IRQ %d for channel %d\n",
					i, irq_cnt);
				chan_irq[irq_cnt++] = i;
			}
			chanirq_res = platform_get_resource(pdev,
						IORESOURCE_IRQ, ++irqres);
		} while (irq_cnt < pdata->channel_num && chanirq_res);
1087
	}
1088 1089 1090

	if (irq_cnt < pdata->channel_num)
		goto eirqres;
1091 1092

	/* Create DMA Channel */
1093 1094
	for (i = 0; i < pdata->channel_num; i++) {
		err = sh_dmae_chan_probe(shdev, i, chan_irq[i], chan_flag[i]);
1095 1096 1097 1098
		if (err)
			goto chan_probe_err;
	}

1099 1100
	pm_runtime_put(&pdev->dev);

1101 1102 1103 1104 1105 1106 1107
	platform_set_drvdata(pdev, shdev);
	dma_async_device_register(&shdev->common);

	return err;

chan_probe_err:
	sh_dmae_chan_remove(shdev);
1108 1109 1110
eirqres:
#if defined(CONFIG_CPU_SH4)
	free_irq(errirq, shdev);
1111
eirq_err:
1112
#endif
1113
rst_err:
1114
	pm_runtime_put(&pdev->dev);
1115 1116 1117 1118 1119
	if (dmars)
		iounmap(shdev->dmars);
emapdmars:
	iounmap(shdev->chan_reg);
emapchan:
1120
	kfree(shdev);
1121 1122 1123 1124 1125
ealloc:
	if (dmars)
		release_mem_region(dmars->start, resource_size(dmars));
ermrdmars:
	release_mem_region(chan->start, resource_size(chan));
1126 1127 1128 1129 1130 1131 1132

	return err;
}

static int __exit sh_dmae_remove(struct platform_device *pdev)
{
	struct sh_dmae_device *shdev = platform_get_drvdata(pdev);
1133 1134
	struct resource *res;
	int errirq = platform_get_irq(pdev, 0);
1135 1136 1137

	dma_async_device_unregister(&shdev->common);

1138 1139
	if (errirq > 0)
		free_irq(errirq, shdev);
1140 1141 1142 1143

	/* channel data remove */
	sh_dmae_chan_remove(shdev);

1144 1145
	pm_runtime_disable(&pdev->dev);

1146 1147 1148 1149
	if (shdev->dmars)
		iounmap(shdev->dmars);
	iounmap(shdev->chan_reg);

1150 1151
	kfree(shdev);

1152 1153 1154 1155 1156 1157 1158
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (res)
		release_mem_region(res->start, resource_size(res));
	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
	if (res)
		release_mem_region(res->start, resource_size(res));

1159 1160 1161 1162 1163 1164
	return 0;
}

static void sh_dmae_shutdown(struct platform_device *pdev)
{
	struct sh_dmae_device *shdev = platform_get_drvdata(pdev);
1165
	sh_dmae_ctl_stop(shdev);
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
}

static struct platform_driver sh_dmae_driver = {
	.remove		= __exit_p(sh_dmae_remove),
	.shutdown	= sh_dmae_shutdown,
	.driver = {
		.name	= "sh-dma-engine",
	},
};

static int __init sh_dmae_init(void)
{
	return platform_driver_probe(&sh_dmae_driver, sh_dmae_probe);
}
module_init(sh_dmae_init);

static void __exit sh_dmae_exit(void)
{
	platform_driver_unregister(&sh_dmae_driver);
}
module_exit(sh_dmae_exit);

MODULE_AUTHOR("Nobuhiro Iwamatsu <iwamatsu.nobuhiro@renesas.com>");
MODULE_DESCRIPTION("Renesas SH DMA Engine driver");
MODULE_LICENSE("GPL");