fault.c 37.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2 3
/*
 *  Copyright (C) 1995  Linus Torvalds
I
Ingo Molnar 已提交
4
 *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5
 *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
L
Linus Torvalds 已提交
6
 */
7
#include <linux/sched.h>		/* test_thread_flag(), ...	*/
8
#include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
9
#include <linux/kdebug.h>		/* oops_begin/end, ...		*/
10
#include <linux/extable.h>		/* search_exception_tables	*/
11
#include <linux/bootmem.h>		/* max_low_pfn			*/
12
#include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
13
#include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
14
#include <linux/perf_event.h>		/* perf_sw_event		*/
15
#include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
16
#include <linux/prefetch.h>		/* prefetchw			*/
17
#include <linux/context_tracking.h>	/* exception_enter(), ...	*/
18
#include <linux/uaccess.h>		/* faulthandler_disabled()	*/
I
Ingo Molnar 已提交
19

20
#include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
21 22
#include <asm/traps.h>			/* dotraplinkage, ...		*/
#include <asm/pgalloc.h>		/* pgd_*(), ...			*/
V
Vegard Nossum 已提交
23
#include <asm/kmemcheck.h>		/* kmemcheck_*(), ...		*/
24 25
#include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
#include <asm/vsyscall.h>		/* emulate_vsyscall		*/
B
Brian Gerst 已提交
26
#include <asm/vm86.h>			/* struct vm86			*/
27
#include <asm/mmu_context.h>		/* vma_pkey()			*/
L
Linus Torvalds 已提交
28

29 30 31
#define CREATE_TRACE_POINTS
#include <asm/trace/exceptions.h>

32
/*
I
Ingo Molnar 已提交
33 34 35 36 37 38 39
 * Page fault error code bits:
 *
 *   bit 0 ==	 0: no page found	1: protection fault
 *   bit 1 ==	 0: read access		1: write access
 *   bit 2 ==	 0: kernel-mode access	1: user-mode access
 *   bit 3 ==				1: use of reserved bit detected
 *   bit 4 ==				1: fault was an instruction fetch
40
 *   bit 5 ==				1: protection keys block access
41
 */
I
Ingo Molnar 已提交
42 43 44 45 46 47 48
enum x86_pf_error_code {

	PF_PROT		=		1 << 0,
	PF_WRITE	=		1 << 1,
	PF_USER		=		1 << 2,
	PF_RSVD		=		1 << 3,
	PF_INSTR	=		1 << 4,
49
	PF_PK		=		1 << 5,
I
Ingo Molnar 已提交
50
};
51

52
/*
53 54
 * Returns 0 if mmiotrace is disabled, or if the fault is not
 * handled by mmiotrace:
55
 */
56
static nokprobe_inline int
57
kmmio_fault(struct pt_regs *regs, unsigned long addr)
58
{
59 60 61 62
	if (unlikely(is_kmmio_active()))
		if (kmmio_handler(regs, addr) == 1)
			return -1;
	return 0;
63 64
}

65
static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
66
{
67 68 69
	int ret = 0;

	/* kprobe_running() needs smp_processor_id() */
70
	if (kprobes_built_in() && !user_mode(regs)) {
71 72 73 74 75
		preempt_disable();
		if (kprobe_running() && kprobe_fault_handler(regs, 14))
			ret = 1;
		preempt_enable();
	}
76

77
	return ret;
78
}
79

80
/*
I
Ingo Molnar 已提交
81 82 83 84 85 86
 * Prefetch quirks:
 *
 * 32-bit mode:
 *
 *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
 *   Check that here and ignore it.
87
 *
I
Ingo Molnar 已提交
88
 * 64-bit mode:
89
 *
I
Ingo Molnar 已提交
90 91 92 93
 *   Sometimes the CPU reports invalid exceptions on prefetch.
 *   Check that here and ignore it.
 *
 * Opcode checker based on code by Richard Brunner.
94
 */
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
static inline int
check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
		      unsigned char opcode, int *prefetch)
{
	unsigned char instr_hi = opcode & 0xf0;
	unsigned char instr_lo = opcode & 0x0f;

	switch (instr_hi) {
	case 0x20:
	case 0x30:
		/*
		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
		 * In X86_64 long mode, the CPU will signal invalid
		 * opcode if some of these prefixes are present so
		 * X86_64 will never get here anyway
		 */
		return ((instr_lo & 7) == 0x6);
#ifdef CONFIG_X86_64
	case 0x40:
		/*
		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
		 * Need to figure out under what instruction mode the
		 * instruction was issued. Could check the LDT for lm,
		 * but for now it's good enough to assume that long
		 * mode only uses well known segments or kernel.
		 */
121
		return (!user_mode(regs) || user_64bit_mode(regs));
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
#endif
	case 0x60:
		/* 0x64 thru 0x67 are valid prefixes in all modes. */
		return (instr_lo & 0xC) == 0x4;
	case 0xF0:
		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
		return !instr_lo || (instr_lo>>1) == 1;
	case 0x00:
		/* Prefetch instruction is 0x0F0D or 0x0F18 */
		if (probe_kernel_address(instr, opcode))
			return 0;

		*prefetch = (instr_lo == 0xF) &&
			(opcode == 0x0D || opcode == 0x18);
		return 0;
	default:
		return 0;
	}
}

I
Ingo Molnar 已提交
142 143
static int
is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
144
{
I
Ingo Molnar 已提交
145
	unsigned char *max_instr;
146
	unsigned char *instr;
147
	int prefetch = 0;
L
Linus Torvalds 已提交
148

I
Ingo Molnar 已提交
149 150 151 152
	/*
	 * If it was a exec (instruction fetch) fault on NX page, then
	 * do not ignore the fault:
	 */
153
	if (error_code & PF_INSTR)
L
Linus Torvalds 已提交
154
		return 0;
155

156
	instr = (void *)convert_ip_to_linear(current, regs);
157
	max_instr = instr + 15;
L
Linus Torvalds 已提交
158

159
	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
L
Linus Torvalds 已提交
160 161
		return 0;

162
	while (instr < max_instr) {
I
Ingo Molnar 已提交
163
		unsigned char opcode;
L
Linus Torvalds 已提交
164

165
		if (probe_kernel_address(instr, opcode))
166
			break;
L
Linus Torvalds 已提交
167 168 169

		instr++;

170
		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
L
Linus Torvalds 已提交
171 172 173 174 175
			break;
	}
	return prefetch;
}

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
/*
 * A protection key fault means that the PKRU value did not allow
 * access to some PTE.  Userspace can figure out what PKRU was
 * from the XSAVE state, and this function fills out a field in
 * siginfo so userspace can discover which protection key was set
 * on the PTE.
 *
 * If we get here, we know that the hardware signaled a PF_PK
 * fault and that there was a VMA once we got in the fault
 * handler.  It does *not* guarantee that the VMA we find here
 * was the one that we faulted on.
 *
 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
 * 2. T1   : set PKRU to deny access to pkey=4, touches page
 * 3. T1   : faults...
 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
 * 5. T1   : enters fault handler, takes mmap_sem, etc...
 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
 *	     faulted on a pte with its pkey=4.
 */
196
static void fill_sig_info_pkey(int si_code, siginfo_t *info, u32 *pkey)
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
{
	/* This is effectively an #ifdef */
	if (!boot_cpu_has(X86_FEATURE_OSPKE))
		return;

	/* Fault not from Protection Keys: nothing to do */
	if (si_code != SEGV_PKUERR)
		return;
	/*
	 * force_sig_info_fault() is called from a number of
	 * contexts, some of which have a VMA and some of which
	 * do not.  The PF_PK handing happens after we have a
	 * valid VMA, so we should never reach this without a
	 * valid VMA.
	 */
212
	if (!pkey) {
213 214 215 216 217 218 219 220 221
		WARN_ONCE(1, "PKU fault with no VMA passed in");
		info->si_pkey = 0;
		return;
	}
	/*
	 * si_pkey should be thought of as a strong hint, but not
	 * absolutely guranteed to be 100% accurate because of
	 * the race explained above.
	 */
222
	info->si_pkey = *pkey;
223 224
}

I
Ingo Molnar 已提交
225 226
static void
force_sig_info_fault(int si_signo, int si_code, unsigned long address,
227
		     struct task_struct *tsk, u32 *pkey, int fault)
228
{
229
	unsigned lsb = 0;
230 231
	siginfo_t info;

I
Ingo Molnar 已提交
232 233 234 235
	info.si_signo	= si_signo;
	info.si_errno	= 0;
	info.si_code	= si_code;
	info.si_addr	= (void __user *)address;
236 237 238 239 240
	if (fault & VM_FAULT_HWPOISON_LARGE)
		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 
	if (fault & VM_FAULT_HWPOISON)
		lsb = PAGE_SHIFT;
	info.si_addr_lsb = lsb;
I
Ingo Molnar 已提交
241

242
	fill_sig_info_pkey(si_code, &info, pkey);
243

244 245 246
	force_sig_info(si_signo, &info, tsk);
}

247 248 249 250 251
DEFINE_SPINLOCK(pgd_lock);
LIST_HEAD(pgd_list);

#ifdef CONFIG_X86_32
static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
252
{
253 254
	unsigned index = pgd_index(address);
	pgd_t *pgd_k;
255
	p4d_t *p4d, *p4d_k;
256 257
	pud_t *pud, *pud_k;
	pmd_t *pmd, *pmd_k;
I
Ingo Molnar 已提交
258

259 260 261 262 263 264 265 266 267
	pgd += index;
	pgd_k = init_mm.pgd + index;

	if (!pgd_present(*pgd_k))
		return NULL;

	/*
	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
	 * and redundant with the set_pmd() on non-PAE. As would
268
	 * set_p4d/set_pud.
269
	 */
270 271 272 273 274 275 276
	p4d = p4d_offset(pgd, address);
	p4d_k = p4d_offset(pgd_k, address);
	if (!p4d_present(*p4d_k))
		return NULL;

	pud = pud_offset(p4d, address);
	pud_k = pud_offset(p4d_k, address);
277 278 279 280 281 282 283 284
	if (!pud_present(*pud_k))
		return NULL;

	pmd = pmd_offset(pud, address);
	pmd_k = pmd_offset(pud_k, address);
	if (!pmd_present(*pmd_k))
		return NULL;

285
	if (!pmd_present(*pmd))
286
		set_pmd(pmd, *pmd_k);
287
	else
288 289 290 291 292 293 294 295 296 297 298 299 300
		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));

	return pmd_k;
}

void vmalloc_sync_all(void)
{
	unsigned long address;

	if (SHARED_KERNEL_PMD)
		return;

	for (address = VMALLOC_START & PMD_MASK;
301
	     address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
302 303 304
	     address += PMD_SIZE) {
		struct page *page;

A
Andrea Arcangeli 已提交
305
		spin_lock(&pgd_lock);
306
		list_for_each_entry(page, &pgd_list, lru) {
307
			spinlock_t *pgt_lock;
308
			pmd_t *ret;
309

A
Andrea Arcangeli 已提交
310
			/* the pgt_lock only for Xen */
311 312 313 314 315 316 317
			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;

			spin_lock(pgt_lock);
			ret = vmalloc_sync_one(page_address(page), address);
			spin_unlock(pgt_lock);

			if (!ret)
318 319
				break;
		}
A
Andrea Arcangeli 已提交
320
		spin_unlock(&pgd_lock);
321 322 323 324 325 326 327 328
	}
}

/*
 * 32-bit:
 *
 *   Handle a fault on the vmalloc or module mapping area
 */
329
static noinline int vmalloc_fault(unsigned long address)
330 331 332 333 334 335 336 337 338
{
	unsigned long pgd_paddr;
	pmd_t *pmd_k;
	pte_t *pte_k;

	/* Make sure we are in vmalloc area: */
	if (!(address >= VMALLOC_START && address < VMALLOC_END))
		return -1;

339 340
	WARN_ON_ONCE(in_nmi());

341 342 343 344 345 346 347
	/*
	 * Synchronize this task's top level page-table
	 * with the 'reference' page table.
	 *
	 * Do _not_ use "current" here. We might be inside
	 * an interrupt in the middle of a task switch..
	 */
348
	pgd_paddr = read_cr3_pa();
349 350 351 352
	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
	if (!pmd_k)
		return -1;

353 354 355
	if (pmd_huge(*pmd_k))
		return 0;

356 357 358 359 360 361
	pte_k = pte_offset_kernel(pmd_k, address);
	if (!pte_present(*pte_k))
		return -1;

	return 0;
}
362
NOKPROBE_SYMBOL(vmalloc_fault);
363 364 365 366 367 368 369 370

/*
 * Did it hit the DOS screen memory VA from vm86 mode?
 */
static inline void
check_v8086_mode(struct pt_regs *regs, unsigned long address,
		 struct task_struct *tsk)
{
371
#ifdef CONFIG_VM86
372 373
	unsigned long bit;

374
	if (!v8086_mode(regs) || !tsk->thread.vm86)
375 376 377 378
		return;

	bit = (address - 0xA0000) >> PAGE_SHIFT;
	if (bit < 32)
379 380
		tsk->thread.vm86->screen_bitmap |= 1 << bit;
#endif
381
}
L
Linus Torvalds 已提交
382

A
Akinobu Mita 已提交
383
static bool low_pfn(unsigned long pfn)
L
Linus Torvalds 已提交
384
{
A
Akinobu Mita 已提交
385 386
	return pfn < max_low_pfn;
}
387

A
Akinobu Mita 已提交
388 389
static void dump_pagetable(unsigned long address)
{
390
	pgd_t *base = __va(read_cr3_pa());
A
Akinobu Mita 已提交
391
	pgd_t *pgd = &base[pgd_index(address)];
392 393
	p4d_t *p4d;
	pud_t *pud;
A
Akinobu Mita 已提交
394 395
	pmd_t *pmd;
	pte_t *pte;
I
Ingo Molnar 已提交
396

397
#ifdef CONFIG_X86_PAE
398
	pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
A
Akinobu Mita 已提交
399 400
	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
		goto out;
401 402 403
#define pr_pde pr_cont
#else
#define pr_pde pr_info
404
#endif
405 406 407
	p4d = p4d_offset(pgd, address);
	pud = pud_offset(p4d, address);
	pmd = pmd_offset(pud, address);
408 409
	pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
#undef pr_pde
410 411 412 413 414

	/*
	 * We must not directly access the pte in the highpte
	 * case if the page table is located in highmem.
	 * And let's rather not kmap-atomic the pte, just in case
I
Ingo Molnar 已提交
415
	 * it's allocated already:
416
	 */
A
Akinobu Mita 已提交
417 418
	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
		goto out;
419

A
Akinobu Mita 已提交
420
	pte = pte_offset_kernel(pmd, address);
421
	pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
A
Akinobu Mita 已提交
422
out:
423
	pr_cont("\n");
424 425 426 427 428 429
}

#else /* CONFIG_X86_64: */

void vmalloc_sync_all(void)
{
430
	sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
431 432 433 434 435 436 437
}

/*
 * 64-bit:
 *
 *   Handle a fault on the vmalloc area
 */
438
static noinline int vmalloc_fault(unsigned long address)
439 440
{
	pgd_t *pgd, *pgd_ref;
441
	p4d_t *p4d, *p4d_ref;
442 443 444 445 446 447 448 449
	pud_t *pud, *pud_ref;
	pmd_t *pmd, *pmd_ref;
	pte_t *pte, *pte_ref;

	/* Make sure we are in vmalloc area: */
	if (!(address >= VMALLOC_START && address < VMALLOC_END))
		return -1;

450 451
	WARN_ON_ONCE(in_nmi());

452 453 454 455 456
	/*
	 * Copy kernel mappings over when needed. This can also
	 * happen within a race in page table update. In the later
	 * case just flush:
	 */
457
	pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address);
458 459 460 461
	pgd_ref = pgd_offset_k(address);
	if (pgd_none(*pgd_ref))
		return -1;

462
	if (pgd_none(*pgd)) {
463
		set_pgd(pgd, *pgd_ref);
464
		arch_flush_lazy_mmu_mode();
465 466 467 468 469 470 471 472
	} else if (CONFIG_PGTABLE_LEVELS > 4) {
		/*
		 * With folded p4d, pgd_none() is always false, so the pgd may
		 * point to an empty page table entry and pgd_page_vaddr()
		 * will return garbage.
		 *
		 * We will do the correct sanity check on the p4d level.
		 */
473
		BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
474
	}
475

476 477 478 479 480 481 482 483 484 485 486 487 488
	/* With 4-level paging, copying happens on the p4d level. */
	p4d = p4d_offset(pgd, address);
	p4d_ref = p4d_offset(pgd_ref, address);
	if (p4d_none(*p4d_ref))
		return -1;

	if (p4d_none(*p4d)) {
		set_p4d(p4d, *p4d_ref);
		arch_flush_lazy_mmu_mode();
	} else {
		BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_ref));
	}

489 490 491 492 493
	/*
	 * Below here mismatches are bugs because these lower tables
	 * are shared:
	 */

494 495
	pud = pud_offset(p4d, address);
	pud_ref = pud_offset(p4d_ref, address);
496 497 498
	if (pud_none(*pud_ref))
		return -1;

499
	if (pud_none(*pud) || pud_pfn(*pud) != pud_pfn(*pud_ref))
500 501
		BUG();

502 503 504
	if (pud_huge(*pud))
		return 0;

505 506 507 508 509
	pmd = pmd_offset(pud, address);
	pmd_ref = pmd_offset(pud_ref, address);
	if (pmd_none(*pmd_ref))
		return -1;

510
	if (pmd_none(*pmd) || pmd_pfn(*pmd) != pmd_pfn(*pmd_ref))
511 512
		BUG();

513 514 515
	if (pmd_huge(*pmd))
		return 0;

516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
	pte_ref = pte_offset_kernel(pmd_ref, address);
	if (!pte_present(*pte_ref))
		return -1;

	pte = pte_offset_kernel(pmd, address);

	/*
	 * Don't use pte_page here, because the mappings can point
	 * outside mem_map, and the NUMA hash lookup cannot handle
	 * that:
	 */
	if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
		BUG();

	return 0;
}
532
NOKPROBE_SYMBOL(vmalloc_fault);
533

534
#ifdef CONFIG_CPU_SUP_AMD
535
static const char errata93_warning[] =
536 537 538 539 540
KERN_ERR 
"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
"******* Working around it, but it may cause SEGVs or burn power.\n"
"******* Please consider a BIOS update.\n"
"******* Disabling USB legacy in the BIOS may also help.\n";
541
#endif
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560

/*
 * No vm86 mode in 64-bit mode:
 */
static inline void
check_v8086_mode(struct pt_regs *regs, unsigned long address,
		 struct task_struct *tsk)
{
}

static int bad_address(void *p)
{
	unsigned long dummy;

	return probe_kernel_address((unsigned long *)p, dummy);
}

static void dump_pagetable(unsigned long address)
{
561
	pgd_t *base = __va(read_cr3_pa());
A
Akinobu Mita 已提交
562
	pgd_t *pgd = base + pgd_index(address);
563
	p4d_t *p4d;
L
Linus Torvalds 已提交
564 565 566 567
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

I
Ingo Molnar 已提交
568 569 570
	if (bad_address(pgd))
		goto bad;

571
	pr_info("PGD %lx ", pgd_val(*pgd));
I
Ingo Molnar 已提交
572 573 574

	if (!pgd_present(*pgd))
		goto out;
L
Linus Torvalds 已提交
575

576 577 578 579
	p4d = p4d_offset(pgd, address);
	if (bad_address(p4d))
		goto bad;

580
	pr_cont("P4D %lx ", p4d_val(*p4d));
581 582 583 584
	if (!p4d_present(*p4d) || p4d_large(*p4d))
		goto out;

	pud = pud_offset(p4d, address);
I
Ingo Molnar 已提交
585 586 587
	if (bad_address(pud))
		goto bad;

588
	pr_cont("PUD %lx ", pud_val(*pud));
589
	if (!pud_present(*pud) || pud_large(*pud))
I
Ingo Molnar 已提交
590
		goto out;
L
Linus Torvalds 已提交
591 592

	pmd = pmd_offset(pud, address);
I
Ingo Molnar 已提交
593 594 595
	if (bad_address(pmd))
		goto bad;

596
	pr_cont("PMD %lx ", pmd_val(*pmd));
I
Ingo Molnar 已提交
597 598
	if (!pmd_present(*pmd) || pmd_large(*pmd))
		goto out;
L
Linus Torvalds 已提交
599 600

	pte = pte_offset_kernel(pmd, address);
I
Ingo Molnar 已提交
601 602 603
	if (bad_address(pte))
		goto bad;

604
	pr_cont("PTE %lx", pte_val(*pte));
I
Ingo Molnar 已提交
605
out:
606
	pr_cont("\n");
L
Linus Torvalds 已提交
607 608
	return;
bad:
609
	pr_info("BAD\n");
610 611
}

612
#endif /* CONFIG_X86_64 */
L
Linus Torvalds 已提交
613

I
Ingo Molnar 已提交
614 615 616 617 618 619 620 621 622 623 624 625 626
/*
 * Workaround for K8 erratum #93 & buggy BIOS.
 *
 * BIOS SMM functions are required to use a specific workaround
 * to avoid corruption of the 64bit RIP register on C stepping K8.
 *
 * A lot of BIOS that didn't get tested properly miss this.
 *
 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
 * Try to work around it here.
 *
 * Note we only handle faults in kernel here.
 * Does nothing on 32-bit.
627
 */
628
static int is_errata93(struct pt_regs *regs, unsigned long address)
L
Linus Torvalds 已提交
629
{
630 631 632 633 634
#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
	    || boot_cpu_data.x86 != 0xf)
		return 0;

635
	if (address != regs->ip)
L
Linus Torvalds 已提交
636
		return 0;
I
Ingo Molnar 已提交
637

638
	if ((address >> 32) != 0)
L
Linus Torvalds 已提交
639
		return 0;
I
Ingo Molnar 已提交
640

L
Linus Torvalds 已提交
641
	address |= 0xffffffffUL << 32;
642 643
	if ((address >= (u64)_stext && address <= (u64)_etext) ||
	    (address >= MODULES_VADDR && address <= MODULES_END)) {
644
		printk_once(errata93_warning);
645
		regs->ip = address;
L
Linus Torvalds 已提交
646 647
		return 1;
	}
648
#endif
L
Linus Torvalds 已提交
649
	return 0;
650
}
L
Linus Torvalds 已提交
651

652
/*
I
Ingo Molnar 已提交
653 654 655 656 657
 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
 * to illegal addresses >4GB.
 *
 * We catch this in the page fault handler because these addresses
 * are not reachable. Just detect this case and return.  Any code
658 659 660 661 662
 * segment in LDT is compatibility mode.
 */
static int is_errata100(struct pt_regs *regs, unsigned long address)
{
#ifdef CONFIG_X86_64
I
Ingo Molnar 已提交
663
	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
664 665 666 667 668
		return 1;
#endif
	return 0;
}

669 670 671 672
static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
{
#ifdef CONFIG_X86_F00F_BUG
	unsigned long nr;
I
Ingo Molnar 已提交
673

674
	/*
I
Ingo Molnar 已提交
675
	 * Pentium F0 0F C7 C8 bug workaround:
676
	 */
677
	if (boot_cpu_has_bug(X86_BUG_F00F)) {
678 679 680 681 682 683 684 685 686 687 688
		nr = (address - idt_descr.address) >> 3;

		if (nr == 6) {
			do_invalid_op(regs, 0);
			return 1;
		}
	}
#endif
	return 0;
}

689 690
static const char nx_warning[] = KERN_CRIT
"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
691 692
static const char smep_warning[] = KERN_CRIT
"unable to execute userspace code (SMEP?) (uid: %d)\n";
693

I
Ingo Molnar 已提交
694 695 696
static void
show_fault_oops(struct pt_regs *regs, unsigned long error_code,
		unsigned long address)
697
{
698 699 700 701
	if (!oops_may_print())
		return;

	if (error_code & PF_INSTR) {
702
		unsigned int level;
703 704
		pgd_t *pgd;
		pte_t *pte;
I
Ingo Molnar 已提交
705

706
		pgd = __va(read_cr3_pa());
707 708 709
		pgd += pgd_index(address);

		pte = lookup_address_in_pgd(pgd, address, &level);
710

711
		if (pte && pte_present(*pte) && !pte_exec(*pte))
712
			printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
713 714
		if (pte && pte_present(*pte) && pte_exec(*pte) &&
				(pgd_flags(*pgd) & _PAGE_USER) &&
715
				(__read_cr4() & X86_CR4_SMEP))
716
			printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
717 718
	}

719
	printk(KERN_ALERT "BUG: unable to handle kernel ");
720
	if (address < PAGE_SIZE)
721
		printk(KERN_CONT "NULL pointer dereference");
722
	else
723
		printk(KERN_CONT "paging request");
I
Ingo Molnar 已提交
724

725
	printk(KERN_CONT " at %p\n", (void *) address);
726
	printk(KERN_ALERT "IP: %pS\n", (void *)regs->ip);
I
Ingo Molnar 已提交
727

728 729 730
	dump_pagetable(address);
}

I
Ingo Molnar 已提交
731 732 733
static noinline void
pgtable_bad(struct pt_regs *regs, unsigned long error_code,
	    unsigned long address)
L
Linus Torvalds 已提交
734
{
I
Ingo Molnar 已提交
735 736 737 738 739 740 741
	struct task_struct *tsk;
	unsigned long flags;
	int sig;

	flags = oops_begin();
	tsk = current;
	sig = SIGKILL;
742

L
Linus Torvalds 已提交
743
	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
744
	       tsk->comm, address);
L
Linus Torvalds 已提交
745
	dump_pagetable(address);
I
Ingo Molnar 已提交
746 747

	tsk->thread.cr2		= address;
748
	tsk->thread.trap_nr	= X86_TRAP_PF;
I
Ingo Molnar 已提交
749 750
	tsk->thread.error_code	= error_code;

751
	if (__die("Bad pagetable", regs, error_code))
752
		sig = 0;
I
Ingo Molnar 已提交
753

754
	oops_end(flags, regs, sig);
L
Linus Torvalds 已提交
755 756
}

I
Ingo Molnar 已提交
757 758
static noinline void
no_context(struct pt_regs *regs, unsigned long error_code,
759
	   unsigned long address, int signal, int si_code)
760 761 762 763 764
{
	struct task_struct *tsk = current;
	unsigned long flags;
	int sig;

I
Ingo Molnar 已提交
765
	/* Are we prepared to handle this kernel fault? */
766
	if (fixup_exception(regs, X86_TRAP_PF)) {
767 768 769 770 771 772 773 774 775 776 777 778 779 780
		/*
		 * Any interrupt that takes a fault gets the fixup. This makes
		 * the below recursive fault logic only apply to a faults from
		 * task context.
		 */
		if (in_interrupt())
			return;

		/*
		 * Per the above we're !in_interrupt(), aka. task context.
		 *
		 * In this case we need to make sure we're not recursively
		 * faulting through the emulate_vsyscall() logic.
		 */
781
		if (current->thread.sig_on_uaccess_err && signal) {
782
			tsk->thread.trap_nr = X86_TRAP_PF;
783 784 785 786
			tsk->thread.error_code = error_code | PF_USER;
			tsk->thread.cr2 = address;

			/* XXX: hwpoison faults will set the wrong code. */
787
			force_sig_info_fault(signal, si_code, address,
788
					     tsk, NULL, 0);
789
		}
790 791 792 793

		/*
		 * Barring that, we can do the fixup and be happy.
		 */
794
		return;
795
	}
796

797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
#ifdef CONFIG_VMAP_STACK
	/*
	 * Stack overflow?  During boot, we can fault near the initial
	 * stack in the direct map, but that's not an overflow -- check
	 * that we're in vmalloc space to avoid this.
	 */
	if (is_vmalloc_addr((void *)address) &&
	    (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
	     address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
		unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *);
		/*
		 * We're likely to be running with very little stack space
		 * left.  It's plausible that we'd hit this condition but
		 * double-fault even before we get this far, in which case
		 * we're fine: the double-fault handler will deal with it.
		 *
		 * We don't want to make it all the way into the oops code
		 * and then double-fault, though, because we're likely to
		 * break the console driver and lose most of the stack dump.
		 */
		asm volatile ("movq %[stack], %%rsp\n\t"
			      "call handle_stack_overflow\n\t"
			      "1: jmp 1b"
820
			      : ASM_CALL_CONSTRAINT
821 822 823 824 825 826 827
			      : "D" ("kernel stack overflow (page fault)"),
				"S" (regs), "d" (address),
				[stack] "rm" (stack));
		unreachable();
	}
#endif

828
	/*
I
Ingo Molnar 已提交
829 830 831 832 833 834 835
	 * 32-bit:
	 *
	 *   Valid to do another page fault here, because if this fault
	 *   had been triggered by is_prefetch fixup_exception would have
	 *   handled it.
	 *
	 * 64-bit:
836
	 *
I
Ingo Molnar 已提交
837
	 *   Hall of shame of CPU/BIOS bugs.
838 839 840 841 842 843 844 845 846
	 */
	if (is_prefetch(regs, error_code, address))
		return;

	if (is_errata93(regs, address))
		return;

	/*
	 * Oops. The kernel tried to access some bad page. We'll have to
I
Ingo Molnar 已提交
847
	 * terminate things with extreme prejudice:
848 849 850 851 852
	 */
	flags = oops_begin();

	show_fault_oops(regs, error_code, address);

853
	if (task_stack_end_corrupted(tsk))
854
		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
855

856
	tsk->thread.cr2		= address;
857
	tsk->thread.trap_nr	= X86_TRAP_PF;
858
	tsk->thread.error_code	= error_code;
859 860 861 862

	sig = SIGKILL;
	if (__die("Oops", regs, error_code))
		sig = 0;
I
Ingo Molnar 已提交
863

864
	/* Executive summary in case the body of the oops scrolled away */
865
	printk(KERN_DEFAULT "CR2: %016lx\n", address);
I
Ingo Molnar 已提交
866

867 868 869
	oops_end(flags, regs, sig);
}

I
Ingo Molnar 已提交
870 871 872 873 874 875 876 877 878 879 880 881 882 883
/*
 * Print out info about fatal segfaults, if the show_unhandled_signals
 * sysctl is set:
 */
static inline void
show_signal_msg(struct pt_regs *regs, unsigned long error_code,
		unsigned long address, struct task_struct *tsk)
{
	if (!unhandled_signal(tsk, SIGSEGV))
		return;

	if (!printk_ratelimit())
		return;

884
	printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
I
Ingo Molnar 已提交
885 886 887 888 889 890 891 892 893 894 895
		task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
		tsk->comm, task_pid_nr(tsk), address,
		(void *)regs->ip, (void *)regs->sp, error_code);

	print_vma_addr(KERN_CONT " in ", regs->ip);

	printk(KERN_CONT "\n");
}

static void
__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
896
		       unsigned long address, u32 *pkey, int si_code)
897 898 899 900 901 902
{
	struct task_struct *tsk = current;

	/* User mode accesses just cause a SIGSEGV */
	if (error_code & PF_USER) {
		/*
I
Ingo Molnar 已提交
903
		 * It's possible to have interrupts off here:
904 905 906 907 908
		 */
		local_irq_enable();

		/*
		 * Valid to do another page fault here because this one came
I
Ingo Molnar 已提交
909
		 * from user space:
910 911 912 913 914 915 916
		 */
		if (is_prefetch(regs, error_code, address))
			return;

		if (is_errata100(regs, address))
			return;

917 918 919 920 921 922
#ifdef CONFIG_X86_64
		/*
		 * Instruction fetch faults in the vsyscall page might need
		 * emulation.
		 */
		if (unlikely((error_code & PF_INSTR) &&
923
			     ((address & ~0xfff) == VSYSCALL_ADDR))) {
924 925 926 927
			if (emulate_vsyscall(regs, address))
				return;
		}
#endif
928 929 930 931 932 933 934

		/*
		 * To avoid leaking information about the kernel page table
		 * layout, pretend that user-mode accesses to kernel addresses
		 * are always protection faults.
		 */
		if (address >= TASK_SIZE_MAX)
935
			error_code |= PF_PROT;
936

937
		if (likely(show_unhandled_signals))
I
Ingo Molnar 已提交
938 939 940
			show_signal_msg(regs, error_code, address, tsk);

		tsk->thread.cr2		= address;
941
		tsk->thread.error_code	= error_code;
942
		tsk->thread.trap_nr	= X86_TRAP_PF;
943

944
		force_sig_info_fault(SIGSEGV, si_code, address, tsk, pkey, 0);
I
Ingo Molnar 已提交
945

946 947 948 949 950 951
		return;
	}

	if (is_f00f_bug(regs, address))
		return;

952
	no_context(regs, error_code, address, SIGSEGV, si_code);
953 954
}

I
Ingo Molnar 已提交
955 956
static noinline void
bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
957
		     unsigned long address, u32 *pkey)
958
{
959
	__bad_area_nosemaphore(regs, error_code, address, pkey, SEGV_MAPERR);
960 961
}

I
Ingo Molnar 已提交
962 963
static void
__bad_area(struct pt_regs *regs, unsigned long error_code,
964
	   unsigned long address,  struct vm_area_struct *vma, int si_code)
965 966
{
	struct mm_struct *mm = current->mm;
967 968 969 970
	u32 pkey;

	if (vma)
		pkey = vma_pkey(vma);
971 972 973 974 975 976 977

	/*
	 * Something tried to access memory that isn't in our memory map..
	 * Fix it, but check if it's kernel or user first..
	 */
	up_read(&mm->mmap_sem);

978 979
	__bad_area_nosemaphore(regs, error_code, address,
			       (vma) ? &pkey : NULL, si_code);
980 981
}

I
Ingo Molnar 已提交
982 983
static noinline void
bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
984
{
985
	__bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
986 987
}

988 989 990
static inline bool bad_area_access_from_pkeys(unsigned long error_code,
		struct vm_area_struct *vma)
{
991 992 993
	/* This code is always called on the current mm */
	bool foreign = false;

994 995 996 997
	if (!boot_cpu_has(X86_FEATURE_OSPKE))
		return false;
	if (error_code & PF_PK)
		return true;
998
	/* this checks permission keys on the VMA: */
999 1000
	if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
				(error_code & PF_INSTR), foreign))
1001
		return true;
1002
	return false;
1003 1004
}

I
Ingo Molnar 已提交
1005 1006
static noinline void
bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
1007
		      unsigned long address, struct vm_area_struct *vma)
1008
{
1009 1010 1011 1012 1013
	/*
	 * This OSPKE check is not strictly necessary at runtime.
	 * But, doing it this way allows compiler optimizations
	 * if pkeys are compiled out.
	 */
1014
	if (bad_area_access_from_pkeys(error_code, vma))
1015 1016 1017
		__bad_area(regs, error_code, address, vma, SEGV_PKUERR);
	else
		__bad_area(regs, error_code, address, vma, SEGV_ACCERR);
1018 1019
}

I
Ingo Molnar 已提交
1020
static void
1021
do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
1022
	  u32 *pkey, unsigned int fault)
1023 1024
{
	struct task_struct *tsk = current;
1025
	int code = BUS_ADRERR;
1026

I
Ingo Molnar 已提交
1027
	/* Kernel mode? Handle exceptions or die: */
1028
	if (!(error_code & PF_USER)) {
1029
		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1030 1031
		return;
	}
I
Ingo Molnar 已提交
1032

1033
	/* User-space => ok to do another page fault: */
1034 1035
	if (is_prefetch(regs, error_code, address))
		return;
I
Ingo Molnar 已提交
1036 1037 1038

	tsk->thread.cr2		= address;
	tsk->thread.error_code	= error_code;
1039
	tsk->thread.trap_nr	= X86_TRAP_PF;
I
Ingo Molnar 已提交
1040

1041
#ifdef CONFIG_MEMORY_FAILURE
1042
	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
1043 1044 1045 1046 1047 1048
		printk(KERN_ERR
	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
			tsk->comm, tsk->pid, address);
		code = BUS_MCEERR_AR;
	}
#endif
1049
	force_sig_info_fault(SIGBUS, code, address, tsk, pkey, fault);
1050 1051
}

1052
static noinline void
I
Ingo Molnar 已提交
1053
mm_fault_error(struct pt_regs *regs, unsigned long error_code,
1054
	       unsigned long address, u32 *pkey, unsigned int fault)
1055
{
1056 1057 1058
	if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
		no_context(regs, error_code, address, 0, 0);
		return;
1059 1060
	}

I
Ingo Molnar 已提交
1061
	if (fault & VM_FAULT_OOM) {
1062 1063
		/* Kernel mode? Handle exceptions or die: */
		if (!(error_code & PF_USER)) {
1064 1065
			no_context(regs, error_code, address,
				   SIGSEGV, SEGV_MAPERR);
1066
			return;
1067 1068
		}

1069 1070 1071 1072 1073 1074
		/*
		 * We ran out of memory, call the OOM killer, and return the
		 * userspace (which will retry the fault, or kill us if we got
		 * oom-killed):
		 */
		pagefault_out_of_memory();
I
Ingo Molnar 已提交
1075
	} else {
1076 1077
		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
			     VM_FAULT_HWPOISON_LARGE))
1078
			do_sigbus(regs, error_code, address, pkey, fault);
1079
		else if (fault & VM_FAULT_SIGSEGV)
1080
			bad_area_nosemaphore(regs, error_code, address, pkey);
I
Ingo Molnar 已提交
1081 1082 1083
		else
			BUG();
	}
1084 1085
}

1086 1087 1088 1089
static int spurious_fault_check(unsigned long error_code, pte_t *pte)
{
	if ((error_code & PF_WRITE) && !pte_write(*pte))
		return 0;
I
Ingo Molnar 已提交
1090

1091 1092
	if ((error_code & PF_INSTR) && !pte_exec(*pte))
		return 0;
1093 1094 1095 1096 1097 1098
	/*
	 * Note: We do not do lazy flushing on protection key
	 * changes, so no spurious fault will ever set PF_PK.
	 */
	if ((error_code & PF_PK))
		return 1;
1099 1100 1101 1102

	return 1;
}

1103
/*
I
Ingo Molnar 已提交
1104 1105 1106 1107 1108 1109 1110 1111
 * Handle a spurious fault caused by a stale TLB entry.
 *
 * This allows us to lazily refresh the TLB when increasing the
 * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
 * eagerly is very expensive since that implies doing a full
 * cross-processor TLB flush, even if no stale TLB entries exist
 * on other processors.
 *
1112 1113 1114 1115
 * Spurious faults may only occur if the TLB contains an entry with
 * fewer permission than the page table entry.  Non-present (P = 0)
 * and reserved bit (R = 1) faults are never spurious.
 *
1116 1117
 * There are no security implications to leaving a stale TLB when
 * increasing the permissions on a page.
1118 1119 1120 1121 1122
 *
 * Returns non-zero if a spurious fault was handled, zero otherwise.
 *
 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
 * (Optional Invalidation).
1123
 */
1124
static noinline int
I
Ingo Molnar 已提交
1125
spurious_fault(unsigned long error_code, unsigned long address)
1126 1127
{
	pgd_t *pgd;
1128
	p4d_t *p4d;
1129 1130 1131
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;
1132
	int ret;
1133

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
	/*
	 * Only writes to RO or instruction fetches from NX may cause
	 * spurious faults.
	 *
	 * These could be from user or supervisor accesses but the TLB
	 * is only lazily flushed after a kernel mapping protection
	 * change, so user accesses are not expected to cause spurious
	 * faults.
	 */
	if (error_code != (PF_WRITE | PF_PROT)
	    && error_code != (PF_INSTR | PF_PROT))
1145 1146 1147 1148 1149 1150
		return 0;

	pgd = init_mm.pgd + pgd_index(address);
	if (!pgd_present(*pgd))
		return 0;

1151 1152 1153 1154 1155 1156 1157 1158
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return 0;

	if (p4d_large(*p4d))
		return spurious_fault_check(error_code, (pte_t *) p4d);

	pud = pud_offset(p4d, address);
1159 1160 1161
	if (!pud_present(*pud))
		return 0;

1162 1163 1164
	if (pud_large(*pud))
		return spurious_fault_check(error_code, (pte_t *) pud);

1165 1166 1167 1168
	pmd = pmd_offset(pud, address);
	if (!pmd_present(*pmd))
		return 0;

1169 1170 1171
	if (pmd_large(*pmd))
		return spurious_fault_check(error_code, (pte_t *) pmd);

1172
	pte = pte_offset_kernel(pmd, address);
1173
	if (!pte_present(*pte))
1174 1175
		return 0;

1176 1177 1178 1179 1180
	ret = spurious_fault_check(error_code, pte);
	if (!ret)
		return 0;

	/*
I
Ingo Molnar 已提交
1181 1182
	 * Make sure we have permissions in PMD.
	 * If not, then there's a bug in the page tables:
1183 1184 1185
	 */
	ret = spurious_fault_check(error_code, (pte_t *) pmd);
	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
I
Ingo Molnar 已提交
1186

1187
	return ret;
1188
}
1189
NOKPROBE_SYMBOL(spurious_fault);
1190

1191
int show_unhandled_signals = 1;
L
Linus Torvalds 已提交
1192

I
Ingo Molnar 已提交
1193
static inline int
M
Michel Lespinasse 已提交
1194
access_error(unsigned long error_code, struct vm_area_struct *vma)
1195
{
1196 1197
	/* This is only called for the current mm, so: */
	bool foreign = false;
1198 1199 1200 1201 1202 1203 1204 1205 1206

	/*
	 * Read or write was blocked by protection keys.  This is
	 * always an unconditional error and can never result in
	 * a follow-up action to resolve the fault, like a COW.
	 */
	if (error_code & PF_PK)
		return 1;

1207 1208 1209 1210 1211
	/*
	 * Make sure to check the VMA so that we do not perform
	 * faults just to hit a PF_PK as soon as we fill in a
	 * page.
	 */
1212 1213
	if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
				(error_code & PF_INSTR), foreign))
1214
		return 1;
1215

M
Michel Lespinasse 已提交
1216
	if (error_code & PF_WRITE) {
I
Ingo Molnar 已提交
1217
		/* write, present and write, not present: */
1218 1219
		if (unlikely(!(vma->vm_flags & VM_WRITE)))
			return 1;
I
Ingo Molnar 已提交
1220
		return 0;
1221 1222
	}

I
Ingo Molnar 已提交
1223 1224 1225 1226 1227 1228 1229 1230
	/* read, present: */
	if (unlikely(error_code & PF_PROT))
		return 1;

	/* read, not present: */
	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
		return 1;

1231 1232 1233
	return 0;
}

1234 1235
static int fault_in_kernel_space(unsigned long address)
{
1236
	return address >= TASK_SIZE_MAX;
1237 1238
}

1239 1240
static inline bool smap_violation(int error_code, struct pt_regs *regs)
{
1241 1242 1243 1244 1245 1246
	if (!IS_ENABLED(CONFIG_X86_SMAP))
		return false;

	if (!static_cpu_has(X86_FEATURE_SMAP))
		return false;

1247 1248 1249
	if (error_code & PF_USER)
		return false;

1250
	if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
1251 1252 1253 1254 1255
		return false;

	return true;
}

L
Linus Torvalds 已提交
1256 1257 1258 1259 1260
/*
 * This routine handles page faults.  It determines the address,
 * and the problem, and then passes it off to one of the appropriate
 * routines.
 */
1261
static noinline void
1262 1263
__do_page_fault(struct pt_regs *regs, unsigned long error_code,
		unsigned long address)
L
Linus Torvalds 已提交
1264
{
I
Ingo Molnar 已提交
1265
	struct vm_area_struct *vma;
L
Linus Torvalds 已提交
1266 1267
	struct task_struct *tsk;
	struct mm_struct *mm;
1268
	int fault, major = 0;
1269
	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1270
	u32 pkey;
L
Linus Torvalds 已提交
1271

1272 1273
	tsk = current;
	mm = tsk->mm;
I
Ingo Molnar 已提交
1274

V
Vegard Nossum 已提交
1275 1276 1277 1278 1279 1280
	/*
	 * Detect and handle instructions that would cause a page fault for
	 * both a tracked kernel page and a userspace page.
	 */
	if (kmemcheck_active(regs))
		kmemcheck_hide(regs);
1281
	prefetchw(&mm->mmap_sem);
V
Vegard Nossum 已提交
1282

1283
	if (unlikely(kmmio_fault(regs, address)))
1284
		return;
L
Linus Torvalds 已提交
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296

	/*
	 * We fault-in kernel-space virtual memory on-demand. The
	 * 'reference' page table is init_mm.pgd.
	 *
	 * NOTE! We MUST NOT take any locks for this case. We may
	 * be in an interrupt or a critical region, and should
	 * only copy the information from the master page table,
	 * nothing more.
	 *
	 * This verifies that the fault happens in kernel space
	 * (error_code & 4) == 0, and that the fault was not a
1297
	 * protection error (error_code & 9) == 0.
L
Linus Torvalds 已提交
1298
	 */
1299
	if (unlikely(fault_in_kernel_space(address))) {
V
Vegard Nossum 已提交
1300 1301 1302 1303 1304 1305 1306
		if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
			if (vmalloc_fault(address) >= 0)
				return;

			if (kmemcheck_fault(regs, address, error_code))
				return;
		}
1307

I
Ingo Molnar 已提交
1308
		/* Can handle a stale RO->RW TLB: */
1309
		if (spurious_fault(error_code, address))
1310 1311
			return;

I
Ingo Molnar 已提交
1312
		/* kprobes don't want to hook the spurious faults: */
1313
		if (kprobes_fault(regs))
1314
			return;
1315 1316
		/*
		 * Don't take the mm semaphore here. If we fixup a prefetch
I
Ingo Molnar 已提交
1317
		 * fault we could otherwise deadlock:
1318
		 */
1319
		bad_area_nosemaphore(regs, error_code, address, NULL);
I
Ingo Molnar 已提交
1320

1321
		return;
1322 1323
	}

I
Ingo Molnar 已提交
1324
	/* kprobes don't want to hook the spurious faults: */
1325
	if (unlikely(kprobes_fault(regs)))
1326
		return;
1327

1328
	if (unlikely(error_code & PF_RSVD))
1329
		pgtable_bad(regs, error_code, address);
L
Linus Torvalds 已提交
1330

1331
	if (unlikely(smap_violation(error_code, regs))) {
1332
		bad_area_nosemaphore(regs, error_code, address, NULL);
1333
		return;
1334 1335
	}

L
Linus Torvalds 已提交
1336
	/*
I
Ingo Molnar 已提交
1337
	 * If we're in an interrupt, have no user context or are running
1338
	 * in a region with pagefaults disabled then we must not take the fault
L
Linus Torvalds 已提交
1339
	 */
1340
	if (unlikely(faulthandler_disabled() || !mm)) {
1341
		bad_area_nosemaphore(regs, error_code, address, NULL);
1342 1343
		return;
	}
L
Linus Torvalds 已提交
1344

1345 1346 1347 1348 1349 1350 1351
	/*
	 * It's safe to allow irq's after cr2 has been saved and the
	 * vmalloc fault has been handled.
	 *
	 * User-mode registers count as a user access even for any
	 * potential system fault or CPU buglet:
	 */
1352
	if (user_mode(regs)) {
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
		local_irq_enable();
		error_code |= PF_USER;
		flags |= FAULT_FLAG_USER;
	} else {
		if (regs->flags & X86_EFLAGS_IF)
			local_irq_enable();
	}

	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);

1363 1364
	if (error_code & PF_WRITE)
		flags |= FAULT_FLAG_WRITE;
1365 1366
	if (error_code & PF_INSTR)
		flags |= FAULT_FLAG_INSTRUCTION;
1367

I
Ingo Molnar 已提交
1368 1369
	/*
	 * When running in the kernel we expect faults to occur only to
I
Ingo Molnar 已提交
1370 1371 1372 1373 1374 1375 1376
	 * addresses in user space.  All other faults represent errors in
	 * the kernel and should generate an OOPS.  Unfortunately, in the
	 * case of an erroneous fault occurring in a code path which already
	 * holds mmap_sem we will deadlock attempting to validate the fault
	 * against the address space.  Luckily the kernel only validly
	 * references user space from well defined areas of code, which are
	 * listed in the exceptions table.
L
Linus Torvalds 已提交
1377 1378
	 *
	 * As the vast majority of faults will be valid we will only perform
I
Ingo Molnar 已提交
1379 1380 1381 1382
	 * the source reference check when there is a possibility of a
	 * deadlock. Attempt to lock the address space, if we cannot we then
	 * validate the source. If this is invalid we can skip the address
	 * space check, thus avoiding the deadlock:
L
Linus Torvalds 已提交
1383
	 */
1384
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1385
		if ((error_code & PF_USER) == 0 &&
1386
		    !search_exception_tables(regs->ip)) {
1387
			bad_area_nosemaphore(regs, error_code, address, NULL);
1388 1389
			return;
		}
1390
retry:
L
Linus Torvalds 已提交
1391
		down_read(&mm->mmap_sem);
1392 1393
	} else {
		/*
I
Ingo Molnar 已提交
1394 1395 1396
		 * The above down_read_trylock() might have succeeded in
		 * which case we'll have missed the might_sleep() from
		 * down_read():
1397 1398
		 */
		might_sleep();
L
Linus Torvalds 已提交
1399 1400 1401
	}

	vma = find_vma(mm, address);
1402 1403 1404 1405 1406
	if (unlikely(!vma)) {
		bad_area(regs, error_code, address);
		return;
	}
	if (likely(vma->vm_start <= address))
L
Linus Torvalds 已提交
1407
		goto good_area;
1408 1409 1410 1411
	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
		bad_area(regs, error_code, address);
		return;
	}
1412
	if (error_code & PF_USER) {
1413 1414 1415
		/*
		 * Accessing the stack below %sp is always a bug.
		 * The large cushion allows instructions like enter
I
Ingo Molnar 已提交
1416
		 * and pusha to work. ("enter $65535, $31" pushes
1417
		 * 32 pointers and then decrements %sp by 65535.)
1418
		 */
1419 1420 1421 1422
		if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
			bad_area(regs, error_code, address);
			return;
		}
L
Linus Torvalds 已提交
1423
	}
1424 1425 1426 1427 1428 1429 1430 1431 1432
	if (unlikely(expand_stack(vma, address))) {
		bad_area(regs, error_code, address);
		return;
	}

	/*
	 * Ok, we have a good vm_area for this memory access, so
	 * we can handle it..
	 */
L
Linus Torvalds 已提交
1433
good_area:
M
Michel Lespinasse 已提交
1434
	if (unlikely(access_error(error_code, vma))) {
1435
		bad_area_access_error(regs, error_code, address, vma);
1436
		return;
L
Linus Torvalds 已提交
1437 1438 1439 1440 1441
	}

	/*
	 * If for any reason at all we couldn't handle the fault,
	 * make sure we exit gracefully rather than endlessly redo
1442 1443
	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
	 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
L
Linus Torvalds 已提交
1444
	 */
1445
	fault = handle_mm_fault(vma, address, flags);
1446
	major |= fault & VM_FAULT_MAJOR;
I
Ingo Molnar 已提交
1447

1448
	/*
1449 1450 1451
	 * If we need to retry the mmap_sem has already been released,
	 * and if there is a fatal signal pending there is no guarantee
	 * that we made any progress. Handle this case first.
1452
	 */
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
	if (unlikely(fault & VM_FAULT_RETRY)) {
		/* Retry at most once */
		if (flags & FAULT_FLAG_ALLOW_RETRY) {
			flags &= ~FAULT_FLAG_ALLOW_RETRY;
			flags |= FAULT_FLAG_TRIED;
			if (!fatal_signal_pending(tsk))
				goto retry;
		}

		/* User mode? Just return to handle the fatal exception */
1463
		if (flags & FAULT_FLAG_USER)
1464 1465 1466 1467
			return;

		/* Not returning to user mode? Handle exceptions or die: */
		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1468
		return;
1469
	}
1470

1471
	pkey = vma_pkey(vma);
1472
	up_read(&mm->mmap_sem);
1473
	if (unlikely(fault & VM_FAULT_ERROR)) {
1474
		mm_fault_error(regs, error_code, address, &pkey, fault);
1475
		return;
1476 1477
	}

1478
	/*
1479 1480
	 * Major/minor page fault accounting. If any of the events
	 * returned VM_FAULT_MAJOR, we account it as a major fault.
1481
	 */
1482 1483 1484 1485 1486 1487
	if (major) {
		tsk->maj_flt++;
		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
	} else {
		tsk->min_flt++;
		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1488
	}
1489

1490
	check_v8086_mode(regs, address, tsk);
L
Linus Torvalds 已提交
1491
}
1492
NOKPROBE_SYMBOL(__do_page_fault);
1493

1494 1495 1496
static nokprobe_inline void
trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
			 unsigned long error_code)
1497 1498
{
	if (user_mode(regs))
1499
		trace_page_fault_user(address, regs, error_code);
1500
	else
1501
		trace_page_fault_kernel(address, regs, error_code);
1502 1503
}

1504 1505 1506 1507 1508 1509 1510
/*
 * We must have this function blacklisted from kprobes, tagged with notrace
 * and call read_cr2() before calling anything else. To avoid calling any
 * kind of tracing machinery before we've observed the CR2 value.
 *
 * exception_{enter,exit}() contains all sorts of tracepoints.
 */
1511
dotraplinkage void notrace
1512
do_page_fault(struct pt_regs *regs, unsigned long error_code)
1513
{
1514
	unsigned long address = read_cr2(); /* Get the faulting address */
1515
	enum ctx_state prev_state;
1516 1517

	prev_state = exception_enter();
1518
	if (trace_pagefault_enabled())
1519 1520
		trace_page_fault_entries(address, regs, error_code);

1521
	__do_page_fault(regs, error_code, address);
1522 1523
	exception_exit(prev_state);
}
1524
NOKPROBE_SYMBOL(do_page_fault);