“cb3ac42b8af357fdd9ad838234245b39e5bdb7fe”上不存在“README.md”
task_mmu.c 41.7 KB
Newer Older
L
Linus Torvalds 已提交
1
#include <linux/mm.h>
2
#include <linux/vmacache.h>
L
Linus Torvalds 已提交
3
#include <linux/hugetlb.h>
4
#include <linux/huge_mm.h>
L
Linus Torvalds 已提交
5 6
#include <linux/mount.h>
#include <linux/seq_file.h>
7
#include <linux/highmem.h>
K
Kees Cook 已提交
8
#include <linux/ptrace.h>
9
#include <linux/slab.h>
10 11
#include <linux/pagemap.h>
#include <linux/mempolicy.h>
12
#include <linux/rmap.h>
13 14
#include <linux/swap.h>
#include <linux/swapops.h>
15
#include <linux/mmu_notifier.h>
16
#include <linux/page_idle.h>
17
#include <linux/shmem_fs.h>
18

L
Linus Torvalds 已提交
19 20
#include <asm/elf.h>
#include <asm/uaccess.h>
21
#include <asm/tlbflush.h>
L
Linus Torvalds 已提交
22 23
#include "internal.h"

24
void task_mem(struct seq_file *m, struct mm_struct *mm)
L
Linus Torvalds 已提交
25
{
26
	unsigned long text, lib, swap, ptes, pmds, anon, file, shmem;
27 28
	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;

29 30 31 32
	anon = get_mm_counter(mm, MM_ANONPAGES);
	file = get_mm_counter(mm, MM_FILEPAGES);
	shmem = get_mm_counter(mm, MM_SHMEMPAGES);

33 34 35 36 37 38 39 40 41 42
	/*
	 * Note: to minimize their overhead, mm maintains hiwater_vm and
	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
	 * collector of these hiwater stats must therefore get total_vm
	 * and rss too, which will usually be the higher.  Barriers? not
	 * worth the effort, such snapshots can always be inconsistent.
	 */
	hiwater_vm = total_vm = mm->total_vm;
	if (hiwater_vm < mm->hiwater_vm)
		hiwater_vm = mm->hiwater_vm;
43
	hiwater_rss = total_rss = anon + file + shmem;
44 45
	if (hiwater_rss < mm->hiwater_rss)
		hiwater_rss = mm->hiwater_rss;
L
Linus Torvalds 已提交
46 47 48

	text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
	lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
K
KAMEZAWA Hiroyuki 已提交
49
	swap = get_mm_counter(mm, MM_SWAPENTS);
50 51
	ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
	pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
52
	seq_printf(m,
53
		"VmPeak:\t%8lu kB\n"
L
Linus Torvalds 已提交
54 55
		"VmSize:\t%8lu kB\n"
		"VmLck:\t%8lu kB\n"
56
		"VmPin:\t%8lu kB\n"
57
		"VmHWM:\t%8lu kB\n"
L
Linus Torvalds 已提交
58
		"VmRSS:\t%8lu kB\n"
59 60 61
		"RssAnon:\t%8lu kB\n"
		"RssFile:\t%8lu kB\n"
		"RssShmem:\t%8lu kB\n"
L
Linus Torvalds 已提交
62 63 64 65
		"VmData:\t%8lu kB\n"
		"VmStk:\t%8lu kB\n"
		"VmExe:\t%8lu kB\n"
		"VmLib:\t%8lu kB\n"
K
KAMEZAWA Hiroyuki 已提交
66
		"VmPTE:\t%8lu kB\n"
67
		"VmPMD:\t%8lu kB\n"
K
KAMEZAWA Hiroyuki 已提交
68
		"VmSwap:\t%8lu kB\n",
69
		hiwater_vm << (PAGE_SHIFT-10),
70
		total_vm << (PAGE_SHIFT-10),
L
Linus Torvalds 已提交
71
		mm->locked_vm << (PAGE_SHIFT-10),
72
		mm->pinned_vm << (PAGE_SHIFT-10),
73 74
		hiwater_rss << (PAGE_SHIFT-10),
		total_rss << (PAGE_SHIFT-10),
75 76 77
		anon << (PAGE_SHIFT-10),
		file << (PAGE_SHIFT-10),
		shmem << (PAGE_SHIFT-10),
78
		mm->data_vm << (PAGE_SHIFT-10),
L
Linus Torvalds 已提交
79
		mm->stack_vm << (PAGE_SHIFT-10), text, lib,
80 81
		ptes >> 10,
		pmds >> 10,
K
KAMEZAWA Hiroyuki 已提交
82
		swap << (PAGE_SHIFT-10));
83
	hugetlb_report_usage(m, mm);
L
Linus Torvalds 已提交
84 85 86 87 88 89 90
}

unsigned long task_vsize(struct mm_struct *mm)
{
	return PAGE_SIZE * mm->total_vm;
}

91 92 93
unsigned long task_statm(struct mm_struct *mm,
			 unsigned long *shared, unsigned long *text,
			 unsigned long *data, unsigned long *resident)
L
Linus Torvalds 已提交
94
{
95 96
	*shared = get_mm_counter(mm, MM_FILEPAGES) +
			get_mm_counter(mm, MM_SHMEMPAGES);
L
Linus Torvalds 已提交
97 98
	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
								>> PAGE_SHIFT;
99
	*data = mm->data_vm + mm->stack_vm;
100
	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
L
Linus Torvalds 已提交
101 102 103
	return mm->total_vm;
}

104 105
#ifdef CONFIG_NUMA
/*
106
 * Save get_task_policy() for show_numa_map().
107 108 109 110 111 112
 */
static void hold_task_mempolicy(struct proc_maps_private *priv)
{
	struct task_struct *task = priv->task;

	task_lock(task);
113
	priv->task_mempolicy = get_task_policy(task);
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
	mpol_get(priv->task_mempolicy);
	task_unlock(task);
}
static void release_task_mempolicy(struct proc_maps_private *priv)
{
	mpol_put(priv->task_mempolicy);
}
#else
static void hold_task_mempolicy(struct proc_maps_private *priv)
{
}
static void release_task_mempolicy(struct proc_maps_private *priv)
{
}
#endif

130
static void vma_stop(struct proc_maps_private *priv)
131
{
132 133 134 135 136
	struct mm_struct *mm = priv->mm;

	release_task_mempolicy(priv);
	up_read(&mm->mmap_sem);
	mmput(mm);
137
}
138

139 140 141 142 143 144 145 146
static struct vm_area_struct *
m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
{
	if (vma == priv->tail_vma)
		return NULL;
	return vma->vm_next ?: priv->tail_vma;
}

147 148 149
static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
{
	if (m->count < m->size)	/* vma is copied successfully */
150
		m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
151 152
}

153
static void *m_start(struct seq_file *m, loff_t *ppos)
154
{
155
	struct proc_maps_private *priv = m->private;
156
	unsigned long last_addr = m->version;
157
	struct mm_struct *mm;
158 159
	struct vm_area_struct *vma;
	unsigned int pos = *ppos;
160

161 162 163 164
	/* See m_cache_vma(). Zero at the start or after lseek. */
	if (last_addr == -1UL)
		return NULL;

165
	priv->task = get_proc_task(priv->inode);
166
	if (!priv->task)
167
		return ERR_PTR(-ESRCH);
168

169 170 171
	mm = priv->mm;
	if (!mm || !atomic_inc_not_zero(&mm->mm_users))
		return NULL;
172

173
	down_read(&mm->mmap_sem);
174
	hold_task_mempolicy(priv);
175
	priv->tail_vma = get_gate_vma(mm);
176

177
	if (last_addr) {
178 179 180 181
		vma = find_vma(mm, last_addr - 1);
		if (vma && vma->vm_start <= last_addr)
			vma = m_next_vma(priv, vma);
		if (vma)
182 183 184 185
			return vma;
	}

	m->version = 0;
186
	if (pos < mm->map_count) {
187 188
		for (vma = mm->mmap; pos; pos--) {
			m->version = vma->vm_start;
189
			vma = vma->vm_next;
190
		}
191
		return vma;
192
	}
193

194
	/* we do not bother to update m->version in this case */
195 196
	if (pos == mm->map_count && priv->tail_vma)
		return priv->tail_vma;
197 198 199

	vma_stop(priv);
	return NULL;
200 201 202 203 204
}

static void *m_next(struct seq_file *m, void *v, loff_t *pos)
{
	struct proc_maps_private *priv = m->private;
205
	struct vm_area_struct *next;
206 207

	(*pos)++;
208
	next = m_next_vma(priv, v);
209 210 211
	if (!next)
		vma_stop(priv);
	return next;
212 213 214 215 216 217
}

static void m_stop(struct seq_file *m, void *v)
{
	struct proc_maps_private *priv = m->private;

218 219
	if (!IS_ERR_OR_NULL(v))
		vma_stop(priv);
220
	if (priv->task) {
221
		put_task_struct(priv->task);
222 223
		priv->task = NULL;
	}
224 225
}

226 227 228 229 230 231 232 233
static int proc_maps_open(struct inode *inode, struct file *file,
			const struct seq_operations *ops, int psize)
{
	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);

	if (!priv)
		return -ENOMEM;

234
	priv->inode = inode;
235 236 237 238 239 240 241 242
	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
	if (IS_ERR(priv->mm)) {
		int err = PTR_ERR(priv->mm);

		seq_release_private(inode, file);
		return err;
	}

243 244 245
	return 0;
}

246 247 248 249 250 251 252 253 254 255 256
static int proc_map_release(struct inode *inode, struct file *file)
{
	struct seq_file *seq = file->private_data;
	struct proc_maps_private *priv = seq->private;

	if (priv->mm)
		mmdrop(priv->mm);

	return seq_release_private(inode, file);
}

257
static int do_maps_open(struct inode *inode, struct file *file,
258
			const struct seq_operations *ops)
259
{
260 261
	return proc_maps_open(inode, file, ops,
				sizeof(struct proc_maps_private));
262
}
263

264 265 266 267 268
/*
 * Indicate if the VMA is a stack for the given task; for
 * /proc/PID/maps that is the stack of the main task.
 */
static int is_stack(struct proc_maps_private *priv,
269
		    struct vm_area_struct *vma)
270
{
271 272 273 274 275 276 277
	/*
	 * We make no effort to guess what a given thread considers to be
	 * its "stack".  It's not even well-defined for programs written
	 * languages like Go.
	 */
	return vma->vm_start <= vma->vm_mm->start_stack &&
		vma->vm_end >= vma->vm_mm->start_stack;
278 279
}

280 281
static void
show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
L
Linus Torvalds 已提交
282
{
283 284
	struct mm_struct *mm = vma->vm_mm;
	struct file *file = vma->vm_file;
285
	struct proc_maps_private *priv = m->private;
286
	vm_flags_t flags = vma->vm_flags;
L
Linus Torvalds 已提交
287
	unsigned long ino = 0;
288
	unsigned long long pgoff = 0;
289
	unsigned long start, end;
L
Linus Torvalds 已提交
290
	dev_t dev = 0;
291
	const char *name = NULL;
L
Linus Torvalds 已提交
292 293

	if (file) {
A
Al Viro 已提交
294
		struct inode *inode = file_inode(vma->vm_file);
L
Linus Torvalds 已提交
295 296
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
297
		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
L
Linus Torvalds 已提交
298 299
	}

300 301
	/* We don't show the stack guard page in /proc/maps */
	start = vma->vm_start;
302 303 304 305 306
	if (stack_guard_page_start(vma, start))
		start += PAGE_SIZE;
	end = vma->vm_end;
	if (stack_guard_page_end(vma, end))
		end -= PAGE_SIZE;
307

308 309
	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
	seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
310
			start,
311
			end,
L
Linus Torvalds 已提交
312 313 314 315
			flags & VM_READ ? 'r' : '-',
			flags & VM_WRITE ? 'w' : '-',
			flags & VM_EXEC ? 'x' : '-',
			flags & VM_MAYSHARE ? 's' : 'p',
316
			pgoff,
317
			MAJOR(dev), MINOR(dev), ino);
L
Linus Torvalds 已提交
318 319 320 321 322

	/*
	 * Print the dentry name for named mappings, and a
	 * special [heap] marker for the heap:
	 */
323
	if (file) {
324
		seq_pad(m, ' ');
325
		seq_file_path(m, file, "\n");
326 327 328
		goto done;
	}

329 330 331 332 333 334
	if (vma->vm_ops && vma->vm_ops->name) {
		name = vma->vm_ops->name(vma);
		if (name)
			goto done;
	}

335 336 337 338 339 340 341 342 343 344 345 346 347
	name = arch_vma_name(vma);
	if (!name) {
		if (!mm) {
			name = "[vdso]";
			goto done;
		}

		if (vma->vm_start <= mm->brk &&
		    vma->vm_end >= mm->start_brk) {
			name = "[heap]";
			goto done;
		}

348
		if (is_stack(priv, vma))
349
			name = "[stack]";
350 351 352 353
	}

done:
	if (name) {
354
		seq_pad(m, ' ');
355
		seq_puts(m, name);
L
Linus Torvalds 已提交
356 357
	}
	seq_putc(m, '\n');
358 359
}

360
static int show_map(struct seq_file *m, void *v, int is_pid)
361
{
362
	show_map_vma(m, v, is_pid);
363
	m_cache_vma(m, v);
L
Linus Torvalds 已提交
364 365 366
	return 0;
}

367 368 369 370 371 372 373 374 375 376
static int show_pid_map(struct seq_file *m, void *v)
{
	return show_map(m, v, 1);
}

static int show_tid_map(struct seq_file *m, void *v)
{
	return show_map(m, v, 0);
}

377
static const struct seq_operations proc_pid_maps_op = {
378 379 380
	.start	= m_start,
	.next	= m_next,
	.stop	= m_stop,
381 382 383 384 385 386 387 388
	.show	= show_pid_map
};

static const struct seq_operations proc_tid_maps_op = {
	.start	= m_start,
	.next	= m_next,
	.stop	= m_stop,
	.show	= show_tid_map
389 390
};

391
static int pid_maps_open(struct inode *inode, struct file *file)
392 393 394 395
{
	return do_maps_open(inode, file, &proc_pid_maps_op);
}

396 397 398 399 400 401 402 403 404
static int tid_maps_open(struct inode *inode, struct file *file)
{
	return do_maps_open(inode, file, &proc_tid_maps_op);
}

const struct file_operations proc_pid_maps_operations = {
	.open		= pid_maps_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
405
	.release	= proc_map_release,
406 407 408 409
};

const struct file_operations proc_tid_maps_operations = {
	.open		= tid_maps_open,
410 411
	.read		= seq_read,
	.llseek		= seq_lseek,
412
	.release	= proc_map_release,
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
};

/*
 * Proportional Set Size(PSS): my share of RSS.
 *
 * PSS of a process is the count of pages it has in memory, where each
 * page is divided by the number of processes sharing it.  So if a
 * process has 1000 pages all to itself, and 1000 shared with one other
 * process, its PSS will be 1500.
 *
 * To keep (accumulated) division errors low, we adopt a 64bit
 * fixed-point pss counter to minimize division errors. So (pss >>
 * PSS_SHIFT) would be the real byte count.
 *
 * A shift of 12 before division means (assuming 4K page size):
 * 	- 1M 3-user-pages add up to 8KB errors;
 * 	- supports mapcount up to 2^24, or 16M;
 * 	- supports PSS up to 2^52 bytes, or 4PB.
 */
#define PSS_SHIFT 12

434
#ifdef CONFIG_PROC_PAGE_MONITOR
435
struct mem_size_stats {
436 437 438 439 440 441
	unsigned long resident;
	unsigned long shared_clean;
	unsigned long shared_dirty;
	unsigned long private_clean;
	unsigned long private_dirty;
	unsigned long referenced;
442
	unsigned long anonymous;
443
	unsigned long anonymous_thp;
444
	unsigned long shmem_thp;
445
	unsigned long swap;
446 447
	unsigned long shared_hugetlb;
	unsigned long private_hugetlb;
448
	u64 pss;
449
	u64 swap_pss;
450
	bool check_shmem_swap;
451 452
};

453
static void smaps_account(struct mem_size_stats *mss, struct page *page,
454
		bool compound, bool young, bool dirty)
455
{
456
	int i, nr = compound ? 1 << compound_order(page) : 1;
457
	unsigned long size = nr * PAGE_SIZE;
458 459 460 461 462 463

	if (PageAnon(page))
		mss->anonymous += size;

	mss->resident += size;
	/* Accumulate the size in pages that have been accessed. */
464
	if (young || page_is_young(page) || PageReferenced(page))
465 466
		mss->referenced += size;

467 468 469 470 471 472
	/*
	 * page_count(page) == 1 guarantees the page is mapped exactly once.
	 * If any subpage of the compound page mapped with PTE it would elevate
	 * page_count().
	 */
	if (page_count(page) == 1) {
473 474 475 476 477
		if (dirty || PageDirty(page))
			mss->private_dirty += size;
		else
			mss->private_clean += size;
		mss->pss += (u64)size << PSS_SHIFT;
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
		return;
	}

	for (i = 0; i < nr; i++, page++) {
		int mapcount = page_mapcount(page);

		if (mapcount >= 2) {
			if (dirty || PageDirty(page))
				mss->shared_dirty += PAGE_SIZE;
			else
				mss->shared_clean += PAGE_SIZE;
			mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
		} else {
			if (dirty || PageDirty(page))
				mss->private_dirty += PAGE_SIZE;
			else
				mss->private_clean += PAGE_SIZE;
			mss->pss += PAGE_SIZE << PSS_SHIFT;
		}
497 498
	}
}
499

500 501 502 503 504 505
#ifdef CONFIG_SHMEM
static int smaps_pte_hole(unsigned long addr, unsigned long end,
		struct mm_walk *walk)
{
	struct mem_size_stats *mss = walk->private;

506 507
	mss->swap += shmem_partial_swap_usage(
			walk->vma->vm_file->f_mapping, addr, end);
508 509 510 511 512

	return 0;
}
#endif

513 514
static void smaps_pte_entry(pte_t *pte, unsigned long addr,
		struct mm_walk *walk)
515 516
{
	struct mem_size_stats *mss = walk->private;
517
	struct vm_area_struct *vma = walk->vma;
518
	struct page *page = NULL;
519

520 521 522 523
	if (pte_present(*pte)) {
		page = vm_normal_page(vma, addr, *pte);
	} else if (is_swap_pte(*pte)) {
		swp_entry_t swpent = pte_to_swp_entry(*pte);
524

525 526 527
		if (!non_swap_entry(swpent)) {
			int mapcount;

528
			mss->swap += PAGE_SIZE;
529 530 531 532 533 534 535 536 537 538
			mapcount = swp_swapcount(swpent);
			if (mapcount >= 2) {
				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;

				do_div(pss_delta, mapcount);
				mss->swap_pss += pss_delta;
			} else {
				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
			}
		} else if (is_migration_entry(swpent))
539
			page = migration_entry_to_page(swpent);
540 541
	} else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
							&& pte_none(*pte))) {
542 543 544 545 546 547 548 549
		page = find_get_entry(vma->vm_file->f_mapping,
						linear_page_index(vma, addr));
		if (!page)
			return;

		if (radix_tree_exceptional_entry(page))
			mss->swap += PAGE_SIZE;
		else
550
			put_page(page);
551 552

		return;
553
	}
554 555 556

	if (!page)
		return;
557 558

	smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
559 560
}

561 562 563 564 565
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
		struct mm_walk *walk)
{
	struct mem_size_stats *mss = walk->private;
566
	struct vm_area_struct *vma = walk->vma;
567 568 569 570 571 572
	struct page *page;

	/* FOLL_DUMP will return -EFAULT on huge zero page */
	page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
	if (IS_ERR_OR_NULL(page))
		return;
573 574 575 576
	if (PageAnon(page))
		mss->anonymous_thp += HPAGE_PMD_SIZE;
	else if (PageSwapBacked(page))
		mss->shmem_thp += HPAGE_PMD_SIZE;
577 578
	else if (is_zone_device_page(page))
		/* pass */;
579 580
	else
		VM_BUG_ON_PAGE(1, page);
581
	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
582 583 584 585 586 587 588 589
}
#else
static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
		struct mm_walk *walk)
{
}
#endif

590
static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
591
			   struct mm_walk *walk)
592
{
593
	struct vm_area_struct *vma = walk->vma;
594
	pte_t *pte;
595
	spinlock_t *ptl;
596

597 598
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
599
		smaps_pmd_entry(pmd, addr, walk);
600
		spin_unlock(ptl);
601
		return 0;
602
	}
603 604 605

	if (pmd_trans_unstable(pmd))
		return 0;
606 607 608 609 610
	/*
	 * The mmap_sem held all the way back in m_start() is what
	 * keeps khugepaged out of here and from collapsing things
	 * in here.
	 */
611
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
612
	for (; addr != end; pte++, addr += PAGE_SIZE)
613
		smaps_pte_entry(pte, addr, walk);
614 615
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();
616
	return 0;
617 618
}

619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
{
	/*
	 * Don't forget to update Documentation/ on changes.
	 */
	static const char mnemonics[BITS_PER_LONG][2] = {
		/*
		 * In case if we meet a flag we don't know about.
		 */
		[0 ... (BITS_PER_LONG-1)] = "??",

		[ilog2(VM_READ)]	= "rd",
		[ilog2(VM_WRITE)]	= "wr",
		[ilog2(VM_EXEC)]	= "ex",
		[ilog2(VM_SHARED)]	= "sh",
		[ilog2(VM_MAYREAD)]	= "mr",
		[ilog2(VM_MAYWRITE)]	= "mw",
		[ilog2(VM_MAYEXEC)]	= "me",
		[ilog2(VM_MAYSHARE)]	= "ms",
		[ilog2(VM_GROWSDOWN)]	= "gd",
		[ilog2(VM_PFNMAP)]	= "pf",
		[ilog2(VM_DENYWRITE)]	= "dw",
641 642 643
#ifdef CONFIG_X86_INTEL_MPX
		[ilog2(VM_MPX)]		= "mp",
#endif
644 645 646 647 648 649 650 651 652 653 654
		[ilog2(VM_LOCKED)]	= "lo",
		[ilog2(VM_IO)]		= "io",
		[ilog2(VM_SEQ_READ)]	= "sr",
		[ilog2(VM_RAND_READ)]	= "rr",
		[ilog2(VM_DONTCOPY)]	= "dc",
		[ilog2(VM_DONTEXPAND)]	= "de",
		[ilog2(VM_ACCOUNT)]	= "ac",
		[ilog2(VM_NORESERVE)]	= "nr",
		[ilog2(VM_HUGETLB)]	= "ht",
		[ilog2(VM_ARCH_1)]	= "ar",
		[ilog2(VM_DONTDUMP)]	= "dd",
655 656 657
#ifdef CONFIG_MEM_SOFT_DIRTY
		[ilog2(VM_SOFTDIRTY)]	= "sd",
#endif
658 659 660 661
		[ilog2(VM_MIXEDMAP)]	= "mm",
		[ilog2(VM_HUGEPAGE)]	= "hg",
		[ilog2(VM_NOHUGEPAGE)]	= "nh",
		[ilog2(VM_MERGEABLE)]	= "mg",
662 663
		[ilog2(VM_UFFD_MISSING)]= "um",
		[ilog2(VM_UFFD_WP)]	= "uw",
664 665 666 667 668 669 670
#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
		/* These come out via ProtectionKey: */
		[ilog2(VM_PKEY_BIT0)]	= "",
		[ilog2(VM_PKEY_BIT1)]	= "",
		[ilog2(VM_PKEY_BIT2)]	= "",
		[ilog2(VM_PKEY_BIT3)]	= "",
#endif
671 672 673 674 675
	};
	size_t i;

	seq_puts(m, "VmFlags: ");
	for (i = 0; i < BITS_PER_LONG; i++) {
676 677
		if (!mnemonics[i][0])
			continue;
678 679 680 681 682 683 684 685
		if (vma->vm_flags & (1UL << i)) {
			seq_printf(m, "%c%c ",
				   mnemonics[i][0], mnemonics[i][1]);
		}
	}
	seq_putc(m, '\n');
}

686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
#ifdef CONFIG_HUGETLB_PAGE
static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
				 unsigned long addr, unsigned long end,
				 struct mm_walk *walk)
{
	struct mem_size_stats *mss = walk->private;
	struct vm_area_struct *vma = walk->vma;
	struct page *page = NULL;

	if (pte_present(*pte)) {
		page = vm_normal_page(vma, addr, *pte);
	} else if (is_swap_pte(*pte)) {
		swp_entry_t swpent = pte_to_swp_entry(*pte);

		if (is_migration_entry(swpent))
			page = migration_entry_to_page(swpent);
	}
	if (page) {
		int mapcount = page_mapcount(page);

		if (mapcount >= 2)
			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
		else
			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
	}
	return 0;
}
#endif /* HUGETLB_PAGE */

715 716 717 718
void __weak arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
{
}

719
static int show_smap(struct seq_file *m, void *v, int is_pid)
720 721 722
{
	struct vm_area_struct *vma = v;
	struct mem_size_stats mss;
723 724
	struct mm_walk smaps_walk = {
		.pmd_entry = smaps_pte_range,
725 726 727
#ifdef CONFIG_HUGETLB_PAGE
		.hugetlb_entry = smaps_hugetlb_range,
#endif
728 729 730
		.mm = vma->vm_mm,
		.private = &mss,
	};
731 732

	memset(&mss, 0, sizeof mss);
733 734 735

#ifdef CONFIG_SHMEM
	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
		/*
		 * For shared or readonly shmem mappings we know that all
		 * swapped out pages belong to the shmem object, and we can
		 * obtain the swap value much more efficiently. For private
		 * writable mappings, we might have COW pages that are
		 * not affected by the parent swapped out pages of the shmem
		 * object, so we have to distinguish them during the page walk.
		 * Unless we know that the shmem object (or the part mapped by
		 * our VMA) has no swapped out pages at all.
		 */
		unsigned long shmem_swapped = shmem_swap_usage(vma);

		if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
					!(vma->vm_flags & VM_WRITE)) {
			mss.swap = shmem_swapped;
		} else {
			mss.check_shmem_swap = true;
			smaps_walk.pte_hole = smaps_pte_hole;
		}
755 756 757
	}
#endif

758
	/* mmap_sem is held in m_start */
759
	walk_page_vma(vma, &smaps_walk);
760

761
	show_map_vma(m, vma, is_pid);
762 763 764 765 766 767 768 769 770

	seq_printf(m,
		   "Size:           %8lu kB\n"
		   "Rss:            %8lu kB\n"
		   "Pss:            %8lu kB\n"
		   "Shared_Clean:   %8lu kB\n"
		   "Shared_Dirty:   %8lu kB\n"
		   "Private_Clean:  %8lu kB\n"
		   "Private_Dirty:  %8lu kB\n"
771
		   "Referenced:     %8lu kB\n"
772
		   "Anonymous:      %8lu kB\n"
773
		   "AnonHugePages:  %8lu kB\n"
774
		   "ShmemPmdMapped: %8lu kB\n"
775 776
		   "Shared_Hugetlb: %8lu kB\n"
		   "Private_Hugetlb: %7lu kB\n"
777
		   "Swap:           %8lu kB\n"
778
		   "SwapPss:        %8lu kB\n"
779
		   "KernelPageSize: %8lu kB\n"
780 781
		   "MMUPageSize:    %8lu kB\n"
		   "Locked:         %8lu kB\n",
782 783 784 785 786 787 788
		   (vma->vm_end - vma->vm_start) >> 10,
		   mss.resident >> 10,
		   (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
		   mss.shared_clean  >> 10,
		   mss.shared_dirty  >> 10,
		   mss.private_clean >> 10,
		   mss.private_dirty >> 10,
789
		   mss.referenced >> 10,
790
		   mss.anonymous >> 10,
791
		   mss.anonymous_thp >> 10,
792
		   mss.shmem_thp >> 10,
793 794
		   mss.shared_hugetlb >> 10,
		   mss.private_hugetlb >> 10,
795
		   mss.swap >> 10,
796
		   (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)),
797
		   vma_kernel_pagesize(vma) >> 10,
798 799 800
		   vma_mmu_pagesize(vma) >> 10,
		   (vma->vm_flags & VM_LOCKED) ?
			(unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
801

802
	arch_show_smap(m, vma);
803
	show_smap_vma_flags(m, vma);
804
	m_cache_vma(m, vma);
805
	return 0;
806 807
}

808 809 810 811 812 813 814 815 816 817
static int show_pid_smap(struct seq_file *m, void *v)
{
	return show_smap(m, v, 1);
}

static int show_tid_smap(struct seq_file *m, void *v)
{
	return show_smap(m, v, 0);
}

818
static const struct seq_operations proc_pid_smaps_op = {
819 820 821
	.start	= m_start,
	.next	= m_next,
	.stop	= m_stop,
822 823 824 825 826 827 828 829
	.show	= show_pid_smap
};

static const struct seq_operations proc_tid_smaps_op = {
	.start	= m_start,
	.next	= m_next,
	.stop	= m_stop,
	.show	= show_tid_smap
830 831
};

832
static int pid_smaps_open(struct inode *inode, struct file *file)
833 834 835 836
{
	return do_maps_open(inode, file, &proc_pid_smaps_op);
}

837 838 839 840 841 842 843 844 845
static int tid_smaps_open(struct inode *inode, struct file *file)
{
	return do_maps_open(inode, file, &proc_tid_smaps_op);
}

const struct file_operations proc_pid_smaps_operations = {
	.open		= pid_smaps_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
846
	.release	= proc_map_release,
847 848 849 850
};

const struct file_operations proc_tid_smaps_operations = {
	.open		= tid_smaps_open,
851 852
	.read		= seq_read,
	.llseek		= seq_lseek,
853
	.release	= proc_map_release,
854 855
};

856 857 858 859
enum clear_refs_types {
	CLEAR_REFS_ALL = 1,
	CLEAR_REFS_ANON,
	CLEAR_REFS_MAPPED,
860
	CLEAR_REFS_SOFT_DIRTY,
861
	CLEAR_REFS_MM_HIWATER_RSS,
862 863 864
	CLEAR_REFS_LAST,
};

865
struct clear_refs_private {
866
	enum clear_refs_types type;
867 868
};

869
#ifdef CONFIG_MEM_SOFT_DIRTY
870 871 872 873 874 875 876 877 878 879
static inline void clear_soft_dirty(struct vm_area_struct *vma,
		unsigned long addr, pte_t *pte)
{
	/*
	 * The soft-dirty tracker uses #PF-s to catch writes
	 * to pages, so write-protect the pte as well. See the
	 * Documentation/vm/soft-dirty.txt for full description
	 * of how soft-dirty works.
	 */
	pte_t ptent = *pte;
880 881

	if (pte_present(ptent)) {
882
		ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
883
		ptent = pte_wrprotect(ptent);
884
		ptent = pte_clear_soft_dirty(ptent);
885
		ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
886 887
	} else if (is_swap_pte(ptent)) {
		ptent = pte_swp_clear_soft_dirty(ptent);
888
		set_pte_at(vma->vm_mm, addr, pte, ptent);
889
	}
890
}
891 892 893 894 895 896
#else
static inline void clear_soft_dirty(struct vm_area_struct *vma,
		unsigned long addr, pte_t *pte)
{
}
#endif
897

898
#if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
899 900 901
static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
		unsigned long addr, pmd_t *pmdp)
{
902
	pmd_t pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
903 904

	pmd = pmd_wrprotect(pmd);
905
	pmd = pmd_clear_soft_dirty(pmd);
906 907 908 909 910 911 912 913 914 915

	set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
}
#else
static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
		unsigned long addr, pmd_t *pmdp)
{
}
#endif

916
static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
917
				unsigned long end, struct mm_walk *walk)
918
{
919
	struct clear_refs_private *cp = walk->private;
920
	struct vm_area_struct *vma = walk->vma;
921 922 923 924
	pte_t *pte, ptent;
	spinlock_t *ptl;
	struct page *page;

925 926
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
927 928 929 930 931 932 933 934 935
		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
			clear_soft_dirty_pmd(vma, addr, pmd);
			goto out;
		}

		page = pmd_page(*pmd);

		/* Clear accessed and referenced bits. */
		pmdp_test_and_clear_young(vma, addr, pmd);
936
		test_and_clear_page_young(page);
937 938 939 940 941 942
		ClearPageReferenced(page);
out:
		spin_unlock(ptl);
		return 0;
	}

943 944
	if (pmd_trans_unstable(pmd))
		return 0;
945

946 947 948 949
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE) {
		ptent = *pte;

950 951 952 953 954
		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
			clear_soft_dirty(vma, addr, pte);
			continue;
		}

955 956 957
		if (!pte_present(ptent))
			continue;

958 959 960 961 962 963
		page = vm_normal_page(vma, addr, ptent);
		if (!page)
			continue;

		/* Clear accessed and referenced bits. */
		ptep_test_and_clear_young(vma, addr, pte);
964
		test_and_clear_page_young(page);
965 966 967 968 969 970 971
		ClearPageReferenced(page);
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();
	return 0;
}

972 973 974 975 976 977
static int clear_refs_test_walk(unsigned long start, unsigned long end,
				struct mm_walk *walk)
{
	struct clear_refs_private *cp = walk->private;
	struct vm_area_struct *vma = walk->vma;

978 979 980
	if (vma->vm_flags & VM_PFNMAP)
		return 1;

981 982 983 984 985 986 987 988 989 990 991 992 993
	/*
	 * Writing 1 to /proc/pid/clear_refs affects all pages.
	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
	 * Writing 4 to /proc/pid/clear_refs affects all pages.
	 */
	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
		return 1;
	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
		return 1;
	return 0;
}

994 995
static ssize_t clear_refs_write(struct file *file, const char __user *buf,
				size_t count, loff_t *ppos)
996
{
997
	struct task_struct *task;
998
	char buffer[PROC_NUMBUF];
999
	struct mm_struct *mm;
1000
	struct vm_area_struct *vma;
1001 1002
	enum clear_refs_types type;
	int itype;
1003
	int rv;
1004

1005 1006 1007 1008 1009
	memset(buffer, 0, sizeof(buffer));
	if (count > sizeof(buffer) - 1)
		count = sizeof(buffer) - 1;
	if (copy_from_user(buffer, buf, count))
		return -EFAULT;
1010
	rv = kstrtoint(strstrip(buffer), 10, &itype);
1011 1012
	if (rv < 0)
		return rv;
1013 1014
	type = (enum clear_refs_types)itype;
	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1015
		return -EINVAL;
1016

A
Al Viro 已提交
1017
	task = get_proc_task(file_inode(file));
1018 1019 1020 1021
	if (!task)
		return -ESRCH;
	mm = get_task_mm(task);
	if (mm) {
1022
		struct clear_refs_private cp = {
1023
			.type = type,
1024
		};
1025 1026
		struct mm_walk clear_refs_walk = {
			.pmd_entry = clear_refs_pte_range,
1027
			.test_walk = clear_refs_test_walk,
1028
			.mm = mm,
1029
			.private = &cp,
1030
		};
1031 1032

		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1033 1034 1035 1036 1037
			if (down_write_killable(&mm->mmap_sem)) {
				count = -EINTR;
				goto out_mm;
			}

1038 1039 1040 1041 1042 1043 1044 1045 1046
			/*
			 * Writing 5 to /proc/pid/clear_refs resets the peak
			 * resident set size to this mm's current rss value.
			 */
			reset_mm_hiwater_rss(mm);
			up_write(&mm->mmap_sem);
			goto out_mm;
		}

1047
		down_read(&mm->mmap_sem);
1048 1049 1050 1051 1052
		if (type == CLEAR_REFS_SOFT_DIRTY) {
			for (vma = mm->mmap; vma; vma = vma->vm_next) {
				if (!(vma->vm_flags & VM_SOFTDIRTY))
					continue;
				up_read(&mm->mmap_sem);
1053 1054 1055 1056
				if (down_write_killable(&mm->mmap_sem)) {
					count = -EINTR;
					goto out_mm;
				}
1057 1058 1059 1060 1061 1062 1063
				for (vma = mm->mmap; vma; vma = vma->vm_next) {
					vma->vm_flags &= ~VM_SOFTDIRTY;
					vma_set_page_prot(vma);
				}
				downgrade_write(&mm->mmap_sem);
				break;
			}
1064
			mmu_notifier_invalidate_range_start(mm, 0, -1);
1065
		}
1066
		walk_page_range(0, mm->highest_vm_end, &clear_refs_walk);
1067 1068
		if (type == CLEAR_REFS_SOFT_DIRTY)
			mmu_notifier_invalidate_range_end(mm, 0, -1);
1069 1070
		flush_tlb_mm(mm);
		up_read(&mm->mmap_sem);
1071
out_mm:
1072 1073 1074
		mmput(mm);
	}
	put_task_struct(task);
1075 1076

	return count;
1077 1078
}

1079 1080
const struct file_operations proc_clear_refs_operations = {
	.write		= clear_refs_write,
1081
	.llseek		= noop_llseek,
1082 1083
};

1084 1085 1086 1087
typedef struct {
	u64 pme;
} pagemap_entry_t;

1088
struct pagemapread {
1089
	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1090
	pagemap_entry_t *buffer;
1091
	bool show_pfn;
1092 1093
};

1094 1095 1096
#define PAGEMAP_WALK_SIZE	(PMD_SIZE)
#define PAGEMAP_WALK_MASK	(PMD_MASK)

1097 1098 1099 1100
#define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
#define PM_PFRAME_BITS		55
#define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
#define PM_SOFT_DIRTY		BIT_ULL(55)
1101
#define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1102 1103 1104 1105
#define PM_FILE			BIT_ULL(61)
#define PM_SWAP			BIT_ULL(62)
#define PM_PRESENT		BIT_ULL(63)

1106 1107
#define PM_END_OF_BUFFER    1

1108
static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1109
{
1110
	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1111 1112 1113
}

static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1114 1115
			  struct pagemapread *pm)
{
1116
	pm->buffer[pm->pos++] = *pme;
1117
	if (pm->pos >= pm->len)
1118
		return PM_END_OF_BUFFER;
1119 1120 1121 1122
	return 0;
}

static int pagemap_pte_hole(unsigned long start, unsigned long end,
1123
				struct mm_walk *walk)
1124
{
1125
	struct pagemapread *pm = walk->private;
1126
	unsigned long addr = start;
1127
	int err = 0;
1128

1129 1130
	while (addr < end) {
		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1131
		pagemap_entry_t pme = make_pme(0, 0);
1132 1133
		/* End of address space hole, which we mark as non-present. */
		unsigned long hole_end;
1134

1135 1136 1137 1138 1139 1140 1141 1142 1143
		if (vma)
			hole_end = min(end, vma->vm_start);
		else
			hole_end = end;

		for (; addr < hole_end; addr += PAGE_SIZE) {
			err = add_to_pagemap(addr, &pme, pm);
			if (err)
				goto out;
1144 1145
		}

1146 1147 1148 1149 1150
		if (!vma)
			break;

		/* Addresses in the VMA. */
		if (vma->vm_flags & VM_SOFTDIRTY)
1151
			pme = make_pme(0, PM_SOFT_DIRTY);
1152
		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1153 1154 1155 1156
			err = add_to_pagemap(addr, &pme, pm);
			if (err)
				goto out;
		}
1157
	}
1158
out:
1159 1160 1161
	return err;
}

1162
static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1163
		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1164
{
1165
	u64 frame = 0, flags = 0;
1166
	struct page *page = NULL;
1167

1168
	if (pte_present(pte)) {
1169 1170
		if (pm->show_pfn)
			frame = pte_pfn(pte);
1171
		flags |= PM_PRESENT;
1172
		page = vm_normal_page(vma, addr, pte);
1173
		if (pte_soft_dirty(pte))
1174
			flags |= PM_SOFT_DIRTY;
1175
	} else if (is_swap_pte(pte)) {
1176 1177
		swp_entry_t entry;
		if (pte_swp_soft_dirty(pte))
1178
			flags |= PM_SOFT_DIRTY;
1179
		entry = pte_to_swp_entry(pte);
1180 1181
		frame = swp_type(entry) |
			(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1182
		flags |= PM_SWAP;
1183 1184 1185 1186 1187 1188
		if (is_migration_entry(entry))
			page = migration_entry_to_page(entry);
	}

	if (page && !PageAnon(page))
		flags |= PM_FILE;
1189 1190
	if (page && page_mapcount(page) == 1)
		flags |= PM_MMAP_EXCLUSIVE;
1191 1192
	if (vma->vm_flags & VM_SOFTDIRTY)
		flags |= PM_SOFT_DIRTY;
1193

1194
	return make_pme(frame, flags);
1195 1196
}

1197
static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1198
			     struct mm_walk *walk)
1199
{
1200
	struct vm_area_struct *vma = walk->vma;
1201
	struct pagemapread *pm = walk->private;
1202
	spinlock_t *ptl;
1203
	pte_t *pte, *orig_pte;
1204 1205
	int err = 0;

1206
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1207 1208
	ptl = pmd_trans_huge_lock(pmdp, vma);
	if (ptl) {
1209 1210
		u64 flags = 0, frame = 0;
		pmd_t pmd = *pmdp;
1211

1212
		if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
1213
			flags |= PM_SOFT_DIRTY;
1214

1215 1216 1217 1218 1219 1220 1221
		/*
		 * Currently pmd for thp is always present because thp
		 * can not be swapped-out, migrated, or HWPOISONed
		 * (split in such cases instead.)
		 * This if-check is just to prepare for future implementation.
		 */
		if (pmd_present(pmd)) {
1222 1223 1224 1225 1226
			struct page *page = pmd_page(pmd);

			if (page_mapcount(page) == 1)
				flags |= PM_MMAP_EXCLUSIVE;

1227
			flags |= PM_PRESENT;
1228 1229 1230
			if (pm->show_pfn)
				frame = pmd_pfn(pmd) +
					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1231 1232
		}

1233
		for (; addr != end; addr += PAGE_SIZE) {
1234
			pagemap_entry_t pme = make_pme(frame, flags);
1235

1236
			err = add_to_pagemap(addr, &pme, pm);
1237 1238
			if (err)
				break;
1239
			if (pm->show_pfn && (flags & PM_PRESENT))
1240
				frame++;
1241
		}
1242
		spin_unlock(ptl);
1243
		return err;
1244 1245
	}

1246
	if (pmd_trans_unstable(pmdp))
1247
		return 0;
1248
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1249

1250 1251 1252 1253
	/*
	 * We can assume that @vma always points to a valid one and @end never
	 * goes beyond vma->vm_end.
	 */
1254
	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1255 1256
	for (; addr < end; pte++, addr += PAGE_SIZE) {
		pagemap_entry_t pme;
1257

1258
		pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1259
		err = add_to_pagemap(addr, &pme, pm);
1260
		if (err)
1261
			break;
1262
	}
1263
	pte_unmap_unlock(orig_pte, ptl);
1264 1265 1266 1267 1268 1269

	cond_resched();

	return err;
}

1270
#ifdef CONFIG_HUGETLB_PAGE
1271
/* This function walks within one hugetlb entry in the single call */
1272
static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1273 1274
				 unsigned long addr, unsigned long end,
				 struct mm_walk *walk)
1275 1276
{
	struct pagemapread *pm = walk->private;
1277
	struct vm_area_struct *vma = walk->vma;
1278
	u64 flags = 0, frame = 0;
1279
	int err = 0;
1280
	pte_t pte;
1281

1282
	if (vma->vm_flags & VM_SOFTDIRTY)
1283
		flags |= PM_SOFT_DIRTY;
1284

1285 1286 1287 1288 1289 1290 1291
	pte = huge_ptep_get(ptep);
	if (pte_present(pte)) {
		struct page *page = pte_page(pte);

		if (!PageAnon(page))
			flags |= PM_FILE;

1292 1293 1294
		if (page_mapcount(page) == 1)
			flags |= PM_MMAP_EXCLUSIVE;

1295
		flags |= PM_PRESENT;
1296 1297 1298
		if (pm->show_pfn)
			frame = pte_pfn(pte) +
				((addr & ~hmask) >> PAGE_SHIFT);
1299 1300
	}

1301
	for (; addr != end; addr += PAGE_SIZE) {
1302 1303
		pagemap_entry_t pme = make_pme(frame, flags);

1304
		err = add_to_pagemap(addr, &pme, pm);
1305 1306
		if (err)
			return err;
1307
		if (pm->show_pfn && (flags & PM_PRESENT))
1308
			frame++;
1309 1310 1311 1312 1313 1314
	}

	cond_resched();

	return err;
}
1315
#endif /* HUGETLB_PAGE */
1316

1317 1318 1319
/*
 * /proc/pid/pagemap - an array mapping virtual pages to pfns
 *
1320 1321 1322
 * For each page in the address space, this file contains one 64-bit entry
 * consisting of the following:
 *
1323
 * Bits 0-54  page frame number (PFN) if present
1324
 * Bits 0-4   swap type if swapped
1325
 * Bits 5-54  swap offset if swapped
1326
 * Bit  55    pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1327 1328
 * Bit  56    page exclusively mapped
 * Bits 57-60 zero
1329
 * Bit  61    page is file-page or shared-anon
1330 1331 1332 1333 1334 1335
 * Bit  62    page swapped
 * Bit  63    page present
 *
 * If the page is not present but in swap, then the PFN contains an
 * encoding of the swap file number and the page's offset into the
 * swap. Unmapped pages return a null PFN. This allows determining
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
 * precisely which pages are mapped (or in swap) and comparing mapped
 * pages between processes.
 *
 * Efficient users of this interface will use /proc/pid/maps to
 * determine which areas of memory are actually mapped and llseek to
 * skip over unmapped regions.
 */
static ssize_t pagemap_read(struct file *file, char __user *buf,
			    size_t count, loff_t *ppos)
{
1346
	struct mm_struct *mm = file->private_data;
1347
	struct pagemapread pm;
1348
	struct mm_walk pagemap_walk = {};
1349 1350 1351 1352
	unsigned long src;
	unsigned long svpfn;
	unsigned long start_vaddr;
	unsigned long end_vaddr;
1353
	int ret = 0, copied = 0;
1354

1355
	if (!mm || !atomic_inc_not_zero(&mm->mm_users))
1356 1357 1358 1359
		goto out;

	ret = -EINVAL;
	/* file position must be aligned */
1360
	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1361
		goto out_mm;
1362 1363

	ret = 0;
1364
	if (!count)
1365
		goto out_mm;
1366

1367 1368 1369
	/* do not disclose physical addresses: attack vector */
	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);

1370 1371
	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
	pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1372
	ret = -ENOMEM;
1373
	if (!pm.buffer)
1374
		goto out_mm;
1375

1376
	pagemap_walk.pmd_entry = pagemap_pmd_range;
1377
	pagemap_walk.pte_hole = pagemap_pte_hole;
1378
#ifdef CONFIG_HUGETLB_PAGE
1379
	pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1380
#endif
1381 1382 1383 1384 1385 1386
	pagemap_walk.mm = mm;
	pagemap_walk.private = &pm;

	src = *ppos;
	svpfn = src / PM_ENTRY_BYTES;
	start_vaddr = svpfn << PAGE_SHIFT;
1387
	end_vaddr = mm->task_size;
1388 1389

	/* watch out for wraparound */
1390
	if (svpfn > mm->task_size >> PAGE_SHIFT)
1391 1392 1393 1394 1395 1396 1397 1398
		start_vaddr = end_vaddr;

	/*
	 * The odds are that this will stop walking way
	 * before end_vaddr, because the length of the
	 * user buffer is tracked in "pm", and the walk
	 * will stop when we hit the end of the buffer.
	 */
1399 1400 1401 1402 1403 1404
	ret = 0;
	while (count && (start_vaddr < end_vaddr)) {
		int len;
		unsigned long end;

		pm.pos = 0;
1405
		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1406 1407 1408 1409 1410 1411 1412 1413 1414
		/* overflow ? */
		if (end < start_vaddr || end > end_vaddr)
			end = end_vaddr;
		down_read(&mm->mmap_sem);
		ret = walk_page_range(start_vaddr, end, &pagemap_walk);
		up_read(&mm->mmap_sem);
		start_vaddr = end;

		len = min(count, PM_ENTRY_BYTES * pm.pos);
1415
		if (copy_to_user(buf, pm.buffer, len)) {
1416
			ret = -EFAULT;
1417
			goto out_free;
1418 1419 1420 1421
		}
		copied += len;
		buf += len;
		count -= len;
1422
	}
1423 1424 1425 1426
	*ppos += copied;
	if (!ret || ret == PM_END_OF_BUFFER)
		ret = copied;

1427 1428
out_free:
	kfree(pm.buffer);
1429 1430
out_mm:
	mmput(mm);
1431 1432 1433 1434
out:
	return ret;
}

1435 1436
static int pagemap_open(struct inode *inode, struct file *file)
{
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
	struct mm_struct *mm;

	mm = proc_mem_open(inode, PTRACE_MODE_READ);
	if (IS_ERR(mm))
		return PTR_ERR(mm);
	file->private_data = mm;
	return 0;
}

static int pagemap_release(struct inode *inode, struct file *file)
{
	struct mm_struct *mm = file->private_data;

	if (mm)
		mmdrop(mm);
1452 1453 1454
	return 0;
}

1455 1456 1457
const struct file_operations proc_pagemap_operations = {
	.llseek		= mem_lseek, /* borrow this */
	.read		= pagemap_read,
1458
	.open		= pagemap_open,
1459
	.release	= pagemap_release,
1460
};
1461
#endif /* CONFIG_PROC_PAGE_MONITOR */
1462

1463 1464
#ifdef CONFIG_NUMA

1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
struct numa_maps {
	unsigned long pages;
	unsigned long anon;
	unsigned long active;
	unsigned long writeback;
	unsigned long mapcount_max;
	unsigned long dirty;
	unsigned long swapcache;
	unsigned long node[MAX_NUMNODES];
};

1476 1477 1478 1479 1480
struct numa_maps_private {
	struct proc_maps_private proc_maps;
	struct numa_maps md;
};

1481 1482
static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
			unsigned long nr_pages)
1483 1484 1485
{
	int count = page_mapcount(page);

1486
	md->pages += nr_pages;
1487
	if (pte_dirty || PageDirty(page))
1488
		md->dirty += nr_pages;
1489 1490

	if (PageSwapCache(page))
1491
		md->swapcache += nr_pages;
1492 1493

	if (PageActive(page) || PageUnevictable(page))
1494
		md->active += nr_pages;
1495 1496

	if (PageWriteback(page))
1497
		md->writeback += nr_pages;
1498 1499

	if (PageAnon(page))
1500
		md->anon += nr_pages;
1501 1502 1503 1504

	if (count > md->mapcount_max)
		md->mapcount_max = count;

1505
	md->node[page_to_nid(page)] += nr_pages;
1506 1507
}

1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
		unsigned long addr)
{
	struct page *page;
	int nid;

	if (!pte_present(pte))
		return NULL;

	page = vm_normal_page(vma, addr, pte);
	if (!page)
		return NULL;

	if (PageReserved(page))
		return NULL;

	nid = page_to_nid(page);
1525
	if (!node_isset(nid, node_states[N_MEMORY]))
1526 1527 1528 1529 1530
		return NULL;

	return page;
}

1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
					      struct vm_area_struct *vma,
					      unsigned long addr)
{
	struct page *page;
	int nid;

	if (!pmd_present(pmd))
		return NULL;

	page = vm_normal_page_pmd(vma, addr, pmd);
	if (!page)
		return NULL;

	if (PageReserved(page))
		return NULL;

	nid = page_to_nid(page);
	if (!node_isset(nid, node_states[N_MEMORY]))
		return NULL;

	return page;
}
#endif

1557 1558 1559
static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
		unsigned long end, struct mm_walk *walk)
{
1560 1561
	struct numa_maps *md = walk->private;
	struct vm_area_struct *vma = walk->vma;
1562 1563 1564 1565
	spinlock_t *ptl;
	pte_t *orig_pte;
	pte_t *pte;

1566
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1567 1568
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
1569 1570
		struct page *page;

1571
		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1572
		if (page)
1573
			gather_stats(page, md, pmd_dirty(*pmd),
1574
				     HPAGE_PMD_SIZE/PAGE_SIZE);
1575
		spin_unlock(ptl);
1576
		return 0;
1577 1578
	}

1579 1580
	if (pmd_trans_unstable(pmd))
		return 0;
1581
#endif
1582 1583
	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
	do {
1584
		struct page *page = can_gather_numa_stats(*pte, vma, addr);
1585 1586
		if (!page)
			continue;
1587
		gather_stats(page, md, pte_dirty(*pte), 1);
1588 1589 1590 1591 1592 1593

	} while (pte++, addr += PAGE_SIZE, addr != end);
	pte_unmap_unlock(orig_pte, ptl);
	return 0;
}
#ifdef CONFIG_HUGETLB_PAGE
1594
static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1595 1596
		unsigned long addr, unsigned long end, struct mm_walk *walk)
{
1597
	pte_t huge_pte = huge_ptep_get(pte);
1598 1599 1600
	struct numa_maps *md;
	struct page *page;

1601
	if (!pte_present(huge_pte))
1602 1603
		return 0;

1604
	page = pte_page(huge_pte);
1605 1606 1607 1608
	if (!page)
		return 0;

	md = walk->private;
1609
	gather_stats(page, md, pte_dirty(huge_pte), 1);
1610 1611 1612 1613
	return 0;
}

#else
1614
static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1615 1616 1617 1618 1619 1620 1621 1622 1623
		unsigned long addr, unsigned long end, struct mm_walk *walk)
{
	return 0;
}
#endif

/*
 * Display pages allocated per node and memory policy via /proc.
 */
1624
static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1625
{
1626 1627
	struct numa_maps_private *numa_priv = m->private;
	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1628
	struct vm_area_struct *vma = v;
1629
	struct numa_maps *md = &numa_priv->md;
1630 1631
	struct file *file = vma->vm_file;
	struct mm_struct *mm = vma->vm_mm;
1632 1633 1634 1635 1636 1637
	struct mm_walk walk = {
		.hugetlb_entry = gather_hugetlb_stats,
		.pmd_entry = gather_pte_stats,
		.private = md,
		.mm = mm,
	};
1638
	struct mempolicy *pol;
1639 1640
	char buffer[64];
	int nid;
1641 1642 1643 1644

	if (!mm)
		return 0;

1645 1646
	/* Ensure we start with an empty set of numa_maps statistics. */
	memset(md, 0, sizeof(*md));
1647

1648 1649 1650 1651 1652 1653 1654
	pol = __get_vma_policy(vma, vma->vm_start);
	if (pol) {
		mpol_to_str(buffer, sizeof(buffer), pol);
		mpol_cond_put(pol);
	} else {
		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
	}
1655 1656 1657 1658

	seq_printf(m, "%08lx %s", vma->vm_start, buffer);

	if (file) {
1659
		seq_puts(m, " file=");
1660
		seq_file_path(m, file, "\n\t= ");
1661
	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1662
		seq_puts(m, " heap");
1663
	} else if (is_stack(proc_priv, vma)) {
1664
		seq_puts(m, " stack");
1665 1666
	}

1667
	if (is_vm_hugetlb_page(vma))
1668
		seq_puts(m, " huge");
1669

1670 1671
	/* mmap_sem is held by m_start */
	walk_page_vma(vma, &walk);
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696

	if (!md->pages)
		goto out;

	if (md->anon)
		seq_printf(m, " anon=%lu", md->anon);

	if (md->dirty)
		seq_printf(m, " dirty=%lu", md->dirty);

	if (md->pages != md->anon && md->pages != md->dirty)
		seq_printf(m, " mapped=%lu", md->pages);

	if (md->mapcount_max > 1)
		seq_printf(m, " mapmax=%lu", md->mapcount_max);

	if (md->swapcache)
		seq_printf(m, " swapcache=%lu", md->swapcache);

	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
		seq_printf(m, " active=%lu", md->active);

	if (md->writeback)
		seq_printf(m, " writeback=%lu", md->writeback);

1697 1698 1699
	for_each_node_state(nid, N_MEMORY)
		if (md->node[nid])
			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1700 1701

	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1702 1703
out:
	seq_putc(m, '\n');
1704
	m_cache_vma(m, vma);
1705 1706
	return 0;
}
1707

1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
static int show_pid_numa_map(struct seq_file *m, void *v)
{
	return show_numa_map(m, v, 1);
}

static int show_tid_numa_map(struct seq_file *m, void *v)
{
	return show_numa_map(m, v, 0);
}

1718
static const struct seq_operations proc_pid_numa_maps_op = {
1719 1720 1721 1722
	.start  = m_start,
	.next   = m_next,
	.stop   = m_stop,
	.show   = show_pid_numa_map,
1723
};
1724

1725 1726 1727 1728 1729 1730 1731 1732 1733
static const struct seq_operations proc_tid_numa_maps_op = {
	.start  = m_start,
	.next   = m_next,
	.stop   = m_stop,
	.show   = show_tid_numa_map,
};

static int numa_maps_open(struct inode *inode, struct file *file,
			  const struct seq_operations *ops)
1734
{
1735 1736
	return proc_maps_open(inode, file, ops,
				sizeof(struct numa_maps_private));
1737 1738
}

1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
static int pid_numa_maps_open(struct inode *inode, struct file *file)
{
	return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
}

static int tid_numa_maps_open(struct inode *inode, struct file *file)
{
	return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
}

const struct file_operations proc_pid_numa_maps_operations = {
	.open		= pid_numa_maps_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
1753
	.release	= proc_map_release,
1754 1755 1756 1757
};

const struct file_operations proc_tid_numa_maps_operations = {
	.open		= tid_numa_maps_open,
1758 1759
	.read		= seq_read,
	.llseek		= seq_lseek,
1760
	.release	= proc_map_release,
1761
};
1762
#endif /* CONFIG_NUMA */
新手
引导
客服 返回
顶部