serial-tegra.c 37.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * serial_tegra.c
 *
 * High-speed serial driver for NVIDIA Tegra SoCs
 *
 * Copyright (c) 2012-2013, NVIDIA CORPORATION.  All rights reserved.
 *
 * Author: Laxman Dewangan <ldewangan@nvidia.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <linux/clk.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
29
#include <linux/err.h>
30 31 32 33 34 35 36
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/pagemap.h>
#include <linux/platform_device.h>
37
#include <linux/reset.h>
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
#include <linux/serial.h>
#include <linux/serial_8250.h>
#include <linux/serial_core.h>
#include <linux/serial_reg.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/termios.h>
#include <linux/tty.h>
#include <linux/tty_flip.h>

#define TEGRA_UART_TYPE				"TEGRA_UART"
#define TX_EMPTY_STATUS				(UART_LSR_TEMT | UART_LSR_THRE)
#define BYTES_TO_ALIGN(x)			((unsigned long)(x) & 0x3)

#define TEGRA_UART_RX_DMA_BUFFER_SIZE		4096
#define TEGRA_UART_LSR_TXFIFO_FULL		0x100
#define TEGRA_UART_IER_EORD			0x20
#define TEGRA_UART_MCR_RTS_EN			0x40
#define TEGRA_UART_MCR_CTS_EN			0x20
#define TEGRA_UART_LSR_ANY			(UART_LSR_OE | UART_LSR_BI | \
						UART_LSR_PE | UART_LSR_FE)
#define TEGRA_UART_IRDA_CSR			0x08
#define TEGRA_UART_SIR_ENABLED			0x80

#define TEGRA_UART_TX_PIO			1
#define TEGRA_UART_TX_DMA			2
#define TEGRA_UART_MIN_DMA			16
#define TEGRA_UART_FIFO_SIZE			32

/*
 * Tx fifo trigger level setting in tegra uart is in
 * reverse way then conventional uart.
 */
#define TEGRA_UART_TX_TRIG_16B			0x00
#define TEGRA_UART_TX_TRIG_8B			0x10
#define TEGRA_UART_TX_TRIG_4B			0x20
#define TEGRA_UART_TX_TRIG_1B			0x30

#define TEGRA_UART_MAXIMUM			5

/* Default UART setting when started: 115200 no parity, stop, 8 data bits */
#define TEGRA_UART_DEFAULT_BAUD			115200
#define TEGRA_UART_DEFAULT_LSR			UART_LCR_WLEN8

/* Tx transfer mode */
#define TEGRA_TX_PIO				1
#define TEGRA_TX_DMA				2

/**
 * tegra_uart_chip_data: SOC specific data.
 *
 * @tx_fifo_full_status: Status flag available for checking tx fifo full.
 * @allow_txfifo_reset_fifo_mode: allow_tx fifo reset with fifo mode or not.
 *			Tegra30 does not allow this.
 * @support_clk_src_div: Clock source support the clock divider.
 */
struct tegra_uart_chip_data {
	bool	tx_fifo_full_status;
	bool	allow_txfifo_reset_fifo_mode;
	bool	support_clk_src_div;
};

struct tegra_uart_port {
	struct uart_port			uport;
	const struct tegra_uart_chip_data	*cdata;

	struct clk				*uart_clk;
105
	struct reset_control			*rst;
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
	unsigned int				current_baud;

	/* Register shadow */
	unsigned long				fcr_shadow;
	unsigned long				mcr_shadow;
	unsigned long				lcr_shadow;
	unsigned long				ier_shadow;
	bool					rts_active;

	int					tx_in_progress;
	unsigned int				tx_bytes;

	bool					enable_modem_interrupt;

	bool					rx_timeout;
	int					rx_in_progress;
	int					symb_bit;

	struct dma_chan				*rx_dma_chan;
	struct dma_chan				*tx_dma_chan;
	dma_addr_t				rx_dma_buf_phys;
	dma_addr_t				tx_dma_buf_phys;
	unsigned char				*rx_dma_buf_virt;
	unsigned char				*tx_dma_buf_virt;
	struct dma_async_tx_descriptor		*tx_dma_desc;
	struct dma_async_tx_descriptor		*rx_dma_desc;
	dma_cookie_t				tx_cookie;
	dma_cookie_t				rx_cookie;
134 135
	unsigned int				tx_bytes_requested;
	unsigned int				rx_bytes_requested;
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
};

static void tegra_uart_start_next_tx(struct tegra_uart_port *tup);
static int tegra_uart_start_rx_dma(struct tegra_uart_port *tup);

static inline unsigned long tegra_uart_read(struct tegra_uart_port *tup,
		unsigned long reg)
{
	return readl(tup->uport.membase + (reg << tup->uport.regshift));
}

static inline void tegra_uart_write(struct tegra_uart_port *tup, unsigned val,
	unsigned long reg)
{
	writel(val, tup->uport.membase + (reg << tup->uport.regshift));
}

static inline struct tegra_uart_port *to_tegra_uport(struct uart_port *u)
{
	return container_of(u, struct tegra_uart_port, uport);
}

static unsigned int tegra_uart_get_mctrl(struct uart_port *u)
{
	struct tegra_uart_port *tup = to_tegra_uport(u);

	/*
	 * RI - Ring detector is active
	 * CD/DCD/CAR - Carrier detect is always active. For some reason
	 *	linux has different names for carrier detect.
	 * DSR - Data Set ready is active as the hardware doesn't support it.
	 *	Don't know if the linux support this yet?
	 * CTS - Clear to send. Always set to active, as the hardware handles
	 *	CTS automatically.
	 */
	if (tup->enable_modem_interrupt)
		return TIOCM_RI | TIOCM_CD | TIOCM_DSR | TIOCM_CTS;
	return TIOCM_CTS;
}

static void set_rts(struct tegra_uart_port *tup, bool active)
{
	unsigned long mcr;

	mcr = tup->mcr_shadow;
	if (active)
		mcr |= TEGRA_UART_MCR_RTS_EN;
	else
		mcr &= ~TEGRA_UART_MCR_RTS_EN;
	if (mcr != tup->mcr_shadow) {
		tegra_uart_write(tup, mcr, UART_MCR);
		tup->mcr_shadow = mcr;
	}
}

static void set_dtr(struct tegra_uart_port *tup, bool active)
{
	unsigned long mcr;

	mcr = tup->mcr_shadow;
	if (active)
		mcr |= UART_MCR_DTR;
	else
		mcr &= ~UART_MCR_DTR;
	if (mcr != tup->mcr_shadow) {
		tegra_uart_write(tup, mcr, UART_MCR);
		tup->mcr_shadow = mcr;
	}
}

static void tegra_uart_set_mctrl(struct uart_port *u, unsigned int mctrl)
{
	struct tegra_uart_port *tup = to_tegra_uport(u);
	unsigned long mcr;
	int dtr_enable;

	mcr = tup->mcr_shadow;
	tup->rts_active = !!(mctrl & TIOCM_RTS);
	set_rts(tup, tup->rts_active);

	dtr_enable = !!(mctrl & TIOCM_DTR);
	set_dtr(tup, dtr_enable);
}

static void tegra_uart_break_ctl(struct uart_port *u, int break_ctl)
{
	struct tegra_uart_port *tup = to_tegra_uport(u);
	unsigned long lcr;

	lcr = tup->lcr_shadow;
	if (break_ctl)
		lcr |= UART_LCR_SBC;
	else
		lcr &= ~UART_LCR_SBC;
	tegra_uart_write(tup, lcr, UART_LCR);
	tup->lcr_shadow = lcr;
}

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
/**
 * tegra_uart_wait_cycle_time: Wait for N UART clock periods
 *
 * @tup:	Tegra serial port data structure.
 * @cycles:	Number of clock periods to wait.
 *
 * Tegra UARTs are clocked at 16X the baud/bit rate and hence the UART
 * clock speed is 16X the current baud rate.
 */
static void tegra_uart_wait_cycle_time(struct tegra_uart_port *tup,
				       unsigned int cycles)
{
	if (tup->current_baud)
		udelay(DIV_ROUND_UP(cycles * 1000000, tup->current_baud * 16));
}

250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
/* Wait for a symbol-time. */
static void tegra_uart_wait_sym_time(struct tegra_uart_port *tup,
		unsigned int syms)
{
	if (tup->current_baud)
		udelay(DIV_ROUND_UP(syms * tup->symb_bit * 1000000,
			tup->current_baud));
}

static void tegra_uart_fifo_reset(struct tegra_uart_port *tup, u8 fcr_bits)
{
	unsigned long fcr = tup->fcr_shadow;

	if (tup->cdata->allow_txfifo_reset_fifo_mode) {
		fcr |= fcr_bits & (UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT);
		tegra_uart_write(tup, fcr, UART_FCR);
	} else {
		fcr &= ~UART_FCR_ENABLE_FIFO;
		tegra_uart_write(tup, fcr, UART_FCR);
		udelay(60);
		fcr |= fcr_bits & (UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT);
		tegra_uart_write(tup, fcr, UART_FCR);
		fcr |= UART_FCR_ENABLE_FIFO;
		tegra_uart_write(tup, fcr, UART_FCR);
	}

	/* Dummy read to ensure the write is posted */
	tegra_uart_read(tup, UART_SCR);

279 280 281 282 283 284
	/*
	 * For all tegra devices (up to t210), there is a hardware issue that
	 * requires software to wait for 32 UART clock periods for the flush
	 * to propagate, otherwise data could be lost.
	 */
	tegra_uart_wait_cycle_time(tup, 32);
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
}

static int tegra_set_baudrate(struct tegra_uart_port *tup, unsigned int baud)
{
	unsigned long rate;
	unsigned int divisor;
	unsigned long lcr;
	int ret;

	if (tup->current_baud == baud)
		return 0;

	if (tup->cdata->support_clk_src_div) {
		rate = baud * 16;
		ret = clk_set_rate(tup->uart_clk, rate);
		if (ret < 0) {
			dev_err(tup->uport.dev,
				"clk_set_rate() failed for rate %lu\n", rate);
			return ret;
		}
		divisor = 1;
	} else {
		rate = clk_get_rate(tup->uart_clk);
		divisor = DIV_ROUND_CLOSEST(rate, baud * 16);
	}

	lcr = tup->lcr_shadow;
	lcr |= UART_LCR_DLAB;
	tegra_uart_write(tup, lcr, UART_LCR);

	tegra_uart_write(tup, divisor & 0xFF, UART_TX);
	tegra_uart_write(tup, ((divisor >> 8) & 0xFF), UART_IER);

	lcr &= ~UART_LCR_DLAB;
	tegra_uart_write(tup, lcr, UART_LCR);

	/* Dummy read to ensure the write is posted */
	tegra_uart_read(tup, UART_SCR);

	tup->current_baud = baud;

	/* wait two character intervals at new rate */
	tegra_uart_wait_sym_time(tup, 2);
	return 0;
}

static char tegra_uart_decode_rx_error(struct tegra_uart_port *tup,
			unsigned long lsr)
{
	char flag = TTY_NORMAL;

	if (unlikely(lsr & TEGRA_UART_LSR_ANY)) {
		if (lsr & UART_LSR_OE) {
			/* Overrrun error */
339
			flag = TTY_OVERRUN;
340 341 342 343
			tup->uport.icount.overrun++;
			dev_err(tup->uport.dev, "Got overrun errors\n");
		} else if (lsr & UART_LSR_PE) {
			/* Parity error */
344
			flag = TTY_PARITY;
345 346 347
			tup->uport.icount.parity++;
			dev_err(tup->uport.dev, "Got Parity errors\n");
		} else if (lsr & UART_LSR_FE) {
348
			flag = TTY_FRAME;
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
			tup->uport.icount.frame++;
			dev_err(tup->uport.dev, "Got frame errors\n");
		} else if (lsr & UART_LSR_BI) {
			dev_err(tup->uport.dev, "Got Break\n");
			tup->uport.icount.brk++;
			/* If FIFO read error without any data, reset Rx FIFO */
			if (!(lsr & UART_LSR_DR) && (lsr & UART_LSR_FIFOE))
				tegra_uart_fifo_reset(tup, UART_FCR_CLEAR_RCVR);
		}
	}
	return flag;
}

static int tegra_uart_request_port(struct uart_port *u)
{
	return 0;
}

static void tegra_uart_release_port(struct uart_port *u)
{
	/* Nothing to do here */
}

static void tegra_uart_fill_tx_fifo(struct tegra_uart_port *tup, int max_bytes)
{
	struct circ_buf *xmit = &tup->uport.state->xmit;
	int i;

	for (i = 0; i < max_bytes; i++) {
		BUG_ON(uart_circ_empty(xmit));
		if (tup->cdata->tx_fifo_full_status) {
			unsigned long lsr = tegra_uart_read(tup, UART_LSR);
			if ((lsr & TEGRA_UART_LSR_TXFIFO_FULL))
				break;
		}
		tegra_uart_write(tup, xmit->buf[xmit->tail], UART_TX);
		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
		tup->uport.icount.tx++;
	}
}

static void tegra_uart_start_pio_tx(struct tegra_uart_port *tup,
		unsigned int bytes)
{
	if (bytes > TEGRA_UART_MIN_DMA)
		bytes = TEGRA_UART_MIN_DMA;

	tup->tx_in_progress = TEGRA_UART_TX_PIO;
	tup->tx_bytes = bytes;
	tup->ier_shadow |= UART_IER_THRI;
	tegra_uart_write(tup, tup->ier_shadow, UART_IER);
}

static void tegra_uart_tx_dma_complete(void *args)
{
	struct tegra_uart_port *tup = args;
	struct circ_buf *xmit = &tup->uport.state->xmit;
	struct dma_tx_state state;
	unsigned long flags;
408
	unsigned int count;
409

410
	dmaengine_tx_status(tup->tx_dma_chan, tup->tx_cookie, &state);
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
	count = tup->tx_bytes_requested - state.residue;
	async_tx_ack(tup->tx_dma_desc);
	spin_lock_irqsave(&tup->uport.lock, flags);
	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
	tup->tx_in_progress = 0;
	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
		uart_write_wakeup(&tup->uport);
	tegra_uart_start_next_tx(tup);
	spin_unlock_irqrestore(&tup->uport.lock, flags);
}

static int tegra_uart_start_tx_dma(struct tegra_uart_port *tup,
		unsigned long count)
{
	struct circ_buf *xmit = &tup->uport.state->xmit;
	dma_addr_t tx_phys_addr;

	dma_sync_single_for_device(tup->uport.dev, tup->tx_dma_buf_phys,
				UART_XMIT_SIZE, DMA_TO_DEVICE);

	tup->tx_bytes = count & ~(0xF);
	tx_phys_addr = tup->tx_dma_buf_phys + xmit->tail;
	tup->tx_dma_desc = dmaengine_prep_slave_single(tup->tx_dma_chan,
				tx_phys_addr, tup->tx_bytes, DMA_MEM_TO_DEV,
				DMA_PREP_INTERRUPT);
	if (!tup->tx_dma_desc) {
		dev_err(tup->uport.dev, "Not able to get desc for Tx\n");
		return -EIO;
	}

	tup->tx_dma_desc->callback = tegra_uart_tx_dma_complete;
	tup->tx_dma_desc->callback_param = tup;
	tup->tx_in_progress = TEGRA_UART_TX_DMA;
	tup->tx_bytes_requested = tup->tx_bytes;
	tup->tx_cookie = dmaengine_submit(tup->tx_dma_desc);
	dma_async_issue_pending(tup->tx_dma_chan);
	return 0;
}

static void tegra_uart_start_next_tx(struct tegra_uart_port *tup)
{
	unsigned long tail;
	unsigned long count;
	struct circ_buf *xmit = &tup->uport.state->xmit;

	tail = (unsigned long)&xmit->buf[xmit->tail];
	count = CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE);
	if (!count)
		return;

	if (count < TEGRA_UART_MIN_DMA)
		tegra_uart_start_pio_tx(tup, count);
	else if (BYTES_TO_ALIGN(tail) > 0)
		tegra_uart_start_pio_tx(tup, BYTES_TO_ALIGN(tail));
	else
		tegra_uart_start_tx_dma(tup, count);
}

/* Called by serial core driver with u->lock taken. */
static void tegra_uart_start_tx(struct uart_port *u)
{
	struct tegra_uart_port *tup = to_tegra_uport(u);
	struct circ_buf *xmit = &u->state->xmit;

	if (!uart_circ_empty(xmit) && !tup->tx_in_progress)
		tegra_uart_start_next_tx(tup);
}

static unsigned int tegra_uart_tx_empty(struct uart_port *u)
{
	struct tegra_uart_port *tup = to_tegra_uport(u);
	unsigned int ret = 0;
	unsigned long flags;

	spin_lock_irqsave(&u->lock, flags);
	if (!tup->tx_in_progress) {
		unsigned long lsr = tegra_uart_read(tup, UART_LSR);
		if ((lsr & TX_EMPTY_STATUS) == TX_EMPTY_STATUS)
			ret = TIOCSER_TEMT;
	}
	spin_unlock_irqrestore(&u->lock, flags);
	return ret;
}

static void tegra_uart_stop_tx(struct uart_port *u)
{
	struct tegra_uart_port *tup = to_tegra_uport(u);
	struct circ_buf *xmit = &tup->uport.state->xmit;
	struct dma_tx_state state;
500
	unsigned int count;
501

502 503 504
	if (tup->tx_in_progress != TEGRA_UART_TX_DMA)
		return;

505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
	dmaengine_terminate_all(tup->tx_dma_chan);
	dmaengine_tx_status(tup->tx_dma_chan, tup->tx_cookie, &state);
	count = tup->tx_bytes_requested - state.residue;
	async_tx_ack(tup->tx_dma_desc);
	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
	tup->tx_in_progress = 0;
}

static void tegra_uart_handle_tx_pio(struct tegra_uart_port *tup)
{
	struct circ_buf *xmit = &tup->uport.state->xmit;

	tegra_uart_fill_tx_fifo(tup, tup->tx_bytes);
	tup->tx_in_progress = 0;
	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
		uart_write_wakeup(&tup->uport);
	tegra_uart_start_next_tx(tup);
}

static void tegra_uart_handle_rx_pio(struct tegra_uart_port *tup,
525
		struct tty_port *tty)
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
{
	do {
		char flag = TTY_NORMAL;
		unsigned long lsr = 0;
		unsigned char ch;

		lsr = tegra_uart_read(tup, UART_LSR);
		if (!(lsr & UART_LSR_DR))
			break;

		flag = tegra_uart_decode_rx_error(tup, lsr);
		ch = (unsigned char) tegra_uart_read(tup, UART_RX);
		tup->uport.icount.rx++;

		if (!uart_handle_sysrq_char(&tup->uport, ch) && tty)
			tty_insert_flip_char(tty, ch, flag);
	} while (1);
}

static void tegra_uart_copy_rx_to_tty(struct tegra_uart_port *tup,
546 547
				      struct tty_port *tty,
				      unsigned int count)
548 549 550
{
	int copied;

551 552 553 554
	/* If count is zero, then there is no data to be copied */
	if (!count)
		return;

555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
	tup->uport.icount.rx += count;
	if (!tty) {
		dev_err(tup->uport.dev, "No tty port\n");
		return;
	}
	dma_sync_single_for_cpu(tup->uport.dev, tup->rx_dma_buf_phys,
				TEGRA_UART_RX_DMA_BUFFER_SIZE, DMA_FROM_DEVICE);
	copied = tty_insert_flip_string(tty,
			((unsigned char *)(tup->rx_dma_buf_virt)), count);
	if (copied != count) {
		WARN_ON(1);
		dev_err(tup->uport.dev, "RxData copy to tty layer failed\n");
	}
	dma_sync_single_for_device(tup->uport.dev, tup->rx_dma_buf_phys,
				TEGRA_UART_RX_DMA_BUFFER_SIZE, DMA_TO_DEVICE);
}

static void tegra_uart_rx_dma_complete(void *args)
{
	struct tegra_uart_port *tup = args;
	struct uart_port *u = &tup->uport;
576
	unsigned int count = tup->rx_bytes_requested;
577
	struct tty_struct *tty = tty_port_tty_get(&tup->uport.state->port);
578
	struct tty_port *port = &u->state->port;
579
	unsigned long flags;
580 581
	struct dma_tx_state state;
	enum dma_status status;
582 583 584

	spin_lock_irqsave(&u->lock, flags);

585 586 587 588 589 590 591 592 593
	status = dmaengine_tx_status(tup->rx_dma_chan, tup->rx_cookie, &state);

	if (status == DMA_IN_PROGRESS) {
		dev_dbg(tup->uport.dev, "RX DMA is in progress\n");
		goto done;
	}

	async_tx_ack(tup->rx_dma_desc);

594 595 596 597 598
	/* Deactivate flow control to stop sender */
	if (tup->rts_active)
		set_rts(tup, false);

	/* If we are here, DMA is stopped */
599
	tegra_uart_copy_rx_to_tty(tup, port, count);
600

601
	tegra_uart_handle_rx_pio(tup, port);
602
	if (tty) {
603
		tty_flip_buffer_push(port);
604 605 606 607 608 609 610 611
		tty_kref_put(tty);
	}
	tegra_uart_start_rx_dma(tup);

	/* Activate flow control to start transfer */
	if (tup->rts_active)
		set_rts(tup, true);

612
done:
613 614 615
	spin_unlock_irqrestore(&u->lock, flags);
}

616
static void tegra_uart_handle_rx_dma(struct tegra_uart_port *tup)
617 618 619
{
	struct dma_tx_state state;
	struct tty_struct *tty = tty_port_tty_get(&tup->uport.state->port);
620
	struct tty_port *port = &tup->uport.state->port;
621
	unsigned int count;
622 623 624 625 626 627 628

	/* Deactivate flow control to stop sender */
	if (tup->rts_active)
		set_rts(tup, false);

	dmaengine_terminate_all(tup->rx_dma_chan);
	dmaengine_tx_status(tup->rx_dma_chan,  tup->rx_cookie, &state);
629
	async_tx_ack(tup->rx_dma_desc);
630 631 632
	count = tup->rx_bytes_requested - state.residue;

	/* If we are here, DMA is stopped */
633
	tegra_uart_copy_rx_to_tty(tup, port, count);
634

635
	tegra_uart_handle_rx_pio(tup, port);
636
	if (tty) {
637
		tty_flip_buffer_push(port);
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
		tty_kref_put(tty);
	}
	tegra_uart_start_rx_dma(tup);

	if (tup->rts_active)
		set_rts(tup, true);
}

static int tegra_uart_start_rx_dma(struct tegra_uart_port *tup)
{
	unsigned int count = TEGRA_UART_RX_DMA_BUFFER_SIZE;

	tup->rx_dma_desc = dmaengine_prep_slave_single(tup->rx_dma_chan,
				tup->rx_dma_buf_phys, count, DMA_DEV_TO_MEM,
				DMA_PREP_INTERRUPT);
	if (!tup->rx_dma_desc) {
		dev_err(tup->uport.dev, "Not able to get desc for Rx\n");
		return -EIO;
	}

	tup->rx_dma_desc->callback = tegra_uart_rx_dma_complete;
	tup->rx_dma_desc->callback_param = tup;
	dma_sync_single_for_device(tup->uport.dev, tup->rx_dma_buf_phys,
				count, DMA_TO_DEVICE);
	tup->rx_bytes_requested = count;
	tup->rx_cookie = dmaengine_submit(tup->rx_dma_desc);
	dma_async_issue_pending(tup->rx_dma_chan);
	return 0;
}

static void tegra_uart_handle_modem_signal_change(struct uart_port *u)
{
	struct tegra_uart_port *tup = to_tegra_uport(u);
	unsigned long msr;

	msr = tegra_uart_read(tup, UART_MSR);
	if (!(msr & UART_MSR_ANY_DELTA))
		return;

	if (msr & UART_MSR_TERI)
		tup->uport.icount.rng++;
	if (msr & UART_MSR_DDSR)
		tup->uport.icount.dsr++;
	/* We may only get DDCD when HW init and reset */
	if (msr & UART_MSR_DDCD)
		uart_handle_dcd_change(&tup->uport, msr & UART_MSR_DCD);
	/* Will start/stop_tx accordingly */
	if (msr & UART_MSR_DCTS)
		uart_handle_cts_change(&tup->uport, msr & UART_MSR_CTS);
}

static irqreturn_t tegra_uart_isr(int irq, void *data)
{
	struct tegra_uart_port *tup = data;
	struct uart_port *u = &tup->uport;
	unsigned long iir;
	unsigned long ier;
	bool is_rx_int = false;
	unsigned long flags;

	spin_lock_irqsave(&u->lock, flags);
	while (1) {
		iir = tegra_uart_read(tup, UART_IIR);
		if (iir & UART_IIR_NO_INT) {
			if (is_rx_int) {
703
				tegra_uart_handle_rx_dma(tup);
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
				if (tup->rx_in_progress) {
					ier = tup->ier_shadow;
					ier |= (UART_IER_RLSI | UART_IER_RTOIE |
						TEGRA_UART_IER_EORD);
					tup->ier_shadow = ier;
					tegra_uart_write(tup, ier, UART_IER);
				}
			}
			spin_unlock_irqrestore(&u->lock, flags);
			return IRQ_HANDLED;
		}

		switch ((iir >> 1) & 0x7) {
		case 0: /* Modem signal change interrupt */
			tegra_uart_handle_modem_signal_change(u);
			break;

		case 1: /* Transmit interrupt only triggered when using PIO */
			tup->ier_shadow &= ~UART_IER_THRI;
			tegra_uart_write(tup, tup->ier_shadow, UART_IER);
			tegra_uart_handle_tx_pio(tup);
			break;

		case 4: /* End of data */
		case 6: /* Rx timeout */
		case 2: /* Receive */
			if (!is_rx_int) {
				is_rx_int = true;
				/* Disable Rx interrupts */
				ier = tup->ier_shadow;
				ier |= UART_IER_RDI;
				tegra_uart_write(tup, ier, UART_IER);
				ier &= ~(UART_IER_RDI | UART_IER_RLSI |
					UART_IER_RTOIE | TEGRA_UART_IER_EORD);
				tup->ier_shadow = ier;
				tegra_uart_write(tup, ier, UART_IER);
			}
			break;

		case 3: /* Receive error */
			tegra_uart_decode_rx_error(tup,
					tegra_uart_read(tup, UART_LSR));
			break;

		case 5: /* break nothing to handle */
		case 7: /* break nothing to handle */
			break;
		}
	}
}

static void tegra_uart_stop_rx(struct uart_port *u)
{
	struct tegra_uart_port *tup = to_tegra_uport(u);
J
Johan Hovold 已提交
758
	struct tty_struct *tty;
759
	struct tty_port *port = &u->state->port;
760 761 762 763 764 765 766 767 768 769
	struct dma_tx_state state;
	unsigned long ier;
	int count;

	if (tup->rts_active)
		set_rts(tup, false);

	if (!tup->rx_in_progress)
		return;

J
Johan Hovold 已提交
770 771
	tty = tty_port_tty_get(&tup->uport.state->port);

772 773 774 775 776 777 778 779
	tegra_uart_wait_sym_time(tup, 1); /* wait a character interval */

	ier = tup->ier_shadow;
	ier &= ~(UART_IER_RDI | UART_IER_RLSI | UART_IER_RTOIE |
					TEGRA_UART_IER_EORD);
	tup->ier_shadow = ier;
	tegra_uart_write(tup, ier, UART_IER);
	tup->rx_in_progress = 0;
780 781 782 783 784 785 786
	dmaengine_terminate_all(tup->rx_dma_chan);
	dmaengine_tx_status(tup->rx_dma_chan, tup->rx_cookie, &state);
	async_tx_ack(tup->rx_dma_desc);
	count = tup->rx_bytes_requested - state.residue;
	tegra_uart_copy_rx_to_tty(tup, port, count);
	tegra_uart_handle_rx_pio(tup, port);

787
	if (tty) {
788
		tty_flip_buffer_push(port);
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
		tty_kref_put(tty);
	}
}

static void tegra_uart_hw_deinit(struct tegra_uart_port *tup)
{
	unsigned long flags;
	unsigned long char_time = DIV_ROUND_UP(10000000, tup->current_baud);
	unsigned long fifo_empty_time = tup->uport.fifosize * char_time;
	unsigned long wait_time;
	unsigned long lsr;
	unsigned long msr;
	unsigned long mcr;

	/* Disable interrupts */
	tegra_uart_write(tup, 0, UART_IER);

	lsr = tegra_uart_read(tup, UART_LSR);
	if ((lsr & UART_LSR_TEMT) != UART_LSR_TEMT) {
		msr = tegra_uart_read(tup, UART_MSR);
		mcr = tegra_uart_read(tup, UART_MCR);
		if ((mcr & TEGRA_UART_MCR_CTS_EN) && (msr & UART_MSR_CTS))
			dev_err(tup->uport.dev,
				"Tx Fifo not empty, CTS disabled, waiting\n");

		/* Wait for Tx fifo to be empty */
		while ((lsr & UART_LSR_TEMT) != UART_LSR_TEMT) {
			wait_time = min(fifo_empty_time, 100lu);
			udelay(wait_time);
			fifo_empty_time -= wait_time;
			if (!fifo_empty_time) {
				msr = tegra_uart_read(tup, UART_MSR);
				mcr = tegra_uart_read(tup, UART_MCR);
				if ((mcr & TEGRA_UART_MCR_CTS_EN) &&
					(msr & UART_MSR_CTS))
					dev_err(tup->uport.dev,
						"Slave not ready\n");
				break;
			}
			lsr = tegra_uart_read(tup, UART_LSR);
		}
	}

	spin_lock_irqsave(&tup->uport.lock, flags);
	/* Reset the Rx and Tx FIFOs */
	tegra_uart_fifo_reset(tup, UART_FCR_CLEAR_XMIT | UART_FCR_CLEAR_RCVR);
	tup->current_baud = 0;
	spin_unlock_irqrestore(&tup->uport.lock, flags);

	clk_disable_unprepare(tup->uart_clk);
}

static int tegra_uart_hw_init(struct tegra_uart_port *tup)
{
	int ret;

	tup->fcr_shadow = 0;
	tup->mcr_shadow = 0;
	tup->lcr_shadow = 0;
	tup->ier_shadow = 0;
	tup->current_baud = 0;

	clk_prepare_enable(tup->uart_clk);

	/* Reset the UART controller to clear all previous status.*/
854
	reset_control_assert(tup->rst);
855
	udelay(10);
856
	reset_control_deassert(tup->rst);
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883

	tup->rx_in_progress = 0;
	tup->tx_in_progress = 0;

	/*
	 * Set the trigger level
	 *
	 * For PIO mode:
	 *
	 * For receive, this will interrupt the CPU after that many number of
	 * bytes are received, for the remaining bytes the receive timeout
	 * interrupt is received. Rx high watermark is set to 4.
	 *
	 * For transmit, if the trasnmit interrupt is enabled, this will
	 * interrupt the CPU when the number of entries in the FIFO reaches the
	 * low watermark. Tx low watermark is set to 16 bytes.
	 *
	 * For DMA mode:
	 *
	 * Set the Tx trigger to 16. This should match the DMA burst size that
	 * programmed in the DMA registers.
	 */
	tup->fcr_shadow = UART_FCR_ENABLE_FIFO;
	tup->fcr_shadow |= UART_FCR_R_TRIG_01;
	tup->fcr_shadow |= TEGRA_UART_TX_TRIG_16B;
	tegra_uart_write(tup, tup->fcr_shadow, UART_FCR);

884 885 886 887 888 889 890 891 892 893
	/* Dummy read to ensure the write is posted */
	tegra_uart_read(tup, UART_SCR);

	/*
	 * For all tegra devices (up to t210), there is a hardware issue that
	 * requires software to wait for 3 UART clock periods after enabling
	 * the TX fifo, otherwise data could be lost.
	 */
	tegra_uart_wait_cycle_time(tup, 3);

894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
	/*
	 * Initialize the UART with default configuration
	 * (115200, N, 8, 1) so that the receive DMA buffer may be
	 * enqueued
	 */
	tup->lcr_shadow = TEGRA_UART_DEFAULT_LSR;
	tegra_set_baudrate(tup, TEGRA_UART_DEFAULT_BAUD);
	tup->fcr_shadow |= UART_FCR_DMA_SELECT;
	tegra_uart_write(tup, tup->fcr_shadow, UART_FCR);

	ret = tegra_uart_start_rx_dma(tup);
	if (ret < 0) {
		dev_err(tup->uport.dev, "Not able to start Rx DMA\n");
		return ret;
	}
	tup->rx_in_progress = 1;

	/*
	 * Enable IE_RXS for the receive status interrupts like line errros.
	 * Enable IE_RX_TIMEOUT to get the bytes which cannot be DMA'd.
	 *
	 * If using DMA mode, enable EORD instead of receive interrupt which
	 * will interrupt after the UART is done with the receive instead of
	 * the interrupt when the FIFO "threshold" is reached.
	 *
	 * EORD is different interrupt than RX_TIMEOUT - RX_TIMEOUT occurs when
	 * the DATA is sitting in the FIFO and couldn't be transferred to the
	 * DMA as the DMA size alignment(4 bytes) is not met. EORD will be
	 * triggered when there is a pause of the incomming data stream for 4
	 * characters long.
	 *
	 * For pauses in the data which is not aligned to 4 bytes, we get
	 * both the EORD as well as RX_TIMEOUT - SW sees RX_TIMEOUT first
	 * then the EORD.
	 */
	tup->ier_shadow = UART_IER_RLSI | UART_IER_RTOIE | TEGRA_UART_IER_EORD;
	tegra_uart_write(tup, tup->ier_shadow, UART_IER);
	return 0;
}

934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
static void tegra_uart_dma_channel_free(struct tegra_uart_port *tup,
		bool dma_to_memory)
{
	if (dma_to_memory) {
		dmaengine_terminate_all(tup->rx_dma_chan);
		dma_release_channel(tup->rx_dma_chan);
		dma_free_coherent(tup->uport.dev, TEGRA_UART_RX_DMA_BUFFER_SIZE,
				tup->rx_dma_buf_virt, tup->rx_dma_buf_phys);
		tup->rx_dma_chan = NULL;
		tup->rx_dma_buf_phys = 0;
		tup->rx_dma_buf_virt = NULL;
	} else {
		dmaengine_terminate_all(tup->tx_dma_chan);
		dma_release_channel(tup->tx_dma_chan);
		dma_unmap_single(tup->uport.dev, tup->tx_dma_buf_phys,
			UART_XMIT_SIZE, DMA_TO_DEVICE);
		tup->tx_dma_chan = NULL;
		tup->tx_dma_buf_phys = 0;
		tup->tx_dma_buf_virt = NULL;
	}
}

956 957 958 959 960 961 962 963 964
static int tegra_uart_dma_channel_allocate(struct tegra_uart_port *tup,
			bool dma_to_memory)
{
	struct dma_chan *dma_chan;
	unsigned char *dma_buf;
	dma_addr_t dma_phys;
	int ret;
	struct dma_slave_config dma_sconfig;

965 966 967 968
	dma_chan = dma_request_slave_channel_reason(tup->uport.dev,
						dma_to_memory ? "rx" : "tx");
	if (IS_ERR(dma_chan)) {
		ret = PTR_ERR(dma_chan);
969
		dev_err(tup->uport.dev,
970 971
			"DMA channel alloc failed: %d\n", ret);
		return ret;
972 973 974 975 976 977 978 979 980 981 982 983
	}

	if (dma_to_memory) {
		dma_buf = dma_alloc_coherent(tup->uport.dev,
				TEGRA_UART_RX_DMA_BUFFER_SIZE,
				 &dma_phys, GFP_KERNEL);
		if (!dma_buf) {
			dev_err(tup->uport.dev,
				"Not able to allocate the dma buffer\n");
			dma_release_channel(dma_chan);
			return -ENOMEM;
		}
984 985 986 987 988 989
		dma_sconfig.src_addr = tup->uport.mapbase;
		dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
		dma_sconfig.src_maxburst = 4;
		tup->rx_dma_chan = dma_chan;
		tup->rx_dma_buf_virt = dma_buf;
		tup->rx_dma_buf_phys = dma_phys;
990 991 992 993
	} else {
		dma_phys = dma_map_single(tup->uport.dev,
			tup->uport.state->xmit.buf, UART_XMIT_SIZE,
			DMA_TO_DEVICE);
994 995 996 997 998
		if (dma_mapping_error(tup->uport.dev, dma_phys)) {
			dev_err(tup->uport.dev, "dma_map_single tx failed\n");
			dma_release_channel(dma_chan);
			return -ENOMEM;
		}
999 1000 1001 1002
		dma_buf = tup->uport.state->xmit.buf;
		dma_sconfig.dst_addr = tup->uport.mapbase;
		dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
		dma_sconfig.dst_maxburst = 16;
1003 1004 1005
		tup->tx_dma_chan = dma_chan;
		tup->tx_dma_buf_virt = dma_buf;
		tup->tx_dma_buf_phys = dma_phys;
1006 1007 1008 1009 1010 1011
	}

	ret = dmaengine_slave_config(dma_chan, &dma_sconfig);
	if (ret < 0) {
		dev_err(tup->uport.dev,
			"Dma slave config failed, err = %d\n", ret);
1012 1013
		tegra_uart_dma_channel_free(tup, dma_to_memory);
		return ret;
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
	}

	return 0;
}

static int tegra_uart_startup(struct uart_port *u)
{
	struct tegra_uart_port *tup = to_tegra_uport(u);
	int ret;

	ret = tegra_uart_dma_channel_allocate(tup, false);
	if (ret < 0) {
		dev_err(u->dev, "Tx Dma allocation failed, err = %d\n", ret);
		return ret;
	}

	ret = tegra_uart_dma_channel_allocate(tup, true);
	if (ret < 0) {
		dev_err(u->dev, "Rx Dma allocation failed, err = %d\n", ret);
		goto fail_rx_dma;
	}

	ret = tegra_uart_hw_init(tup);
	if (ret < 0) {
		dev_err(u->dev, "Uart HW init failed, err = %d\n", ret);
		goto fail_hw_init;
	}

1042
	ret = request_irq(u->irq, tegra_uart_isr, 0,
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
				dev_name(u->dev), tup);
	if (ret < 0) {
		dev_err(u->dev, "Failed to register ISR for IRQ %d\n", u->irq);
		goto fail_hw_init;
	}
	return 0;

fail_hw_init:
	tegra_uart_dma_channel_free(tup, true);
fail_rx_dma:
	tegra_uart_dma_channel_free(tup, false);
	return ret;
}

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
/*
 * Flush any TX data submitted for DMA and PIO. Called when the
 * TX circular buffer is reset.
 */
static void tegra_uart_flush_buffer(struct uart_port *u)
{
	struct tegra_uart_port *tup = to_tegra_uport(u);

	tup->tx_bytes = 0;
	if (tup->tx_dma_chan)
		dmaengine_terminate_all(tup->tx_dma_chan);
}

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
static void tegra_uart_shutdown(struct uart_port *u)
{
	struct tegra_uart_port *tup = to_tegra_uport(u);

	tegra_uart_hw_deinit(tup);

	tup->rx_in_progress = 0;
	tup->tx_in_progress = 0;

	tegra_uart_dma_channel_free(tup, true);
	tegra_uart_dma_channel_free(tup, false);
	free_irq(u->irq, tup);
}

static void tegra_uart_enable_ms(struct uart_port *u)
{
	struct tegra_uart_port *tup = to_tegra_uport(u);

	if (tup->enable_modem_interrupt) {
		tup->ier_shadow |= UART_IER_MSI;
		tegra_uart_write(tup, tup->ier_shadow, UART_IER);
	}
}

static void tegra_uart_set_termios(struct uart_port *u,
		struct ktermios *termios, struct ktermios *oldtermios)
{
	struct tegra_uart_port *tup = to_tegra_uport(u);
	unsigned int baud;
	unsigned long flags;
	unsigned int lcr;
	int symb_bit = 1;
	struct clk *parent_clk = clk_get_parent(tup->uart_clk);
	unsigned long parent_clk_rate = clk_get_rate(parent_clk);
	int max_divider = (tup->cdata->support_clk_src_div) ? 0x7FFF : 0xFFFF;

	max_divider *= 16;
	spin_lock_irqsave(&u->lock, flags);

	/* Changing configuration, it is safe to stop any rx now */
	if (tup->rts_active)
		set_rts(tup, false);

	/* Clear all interrupts as configuration is going to be change */
	tegra_uart_write(tup, tup->ier_shadow | UART_IER_RDI, UART_IER);
	tegra_uart_read(tup, UART_IER);
	tegra_uart_write(tup, 0, UART_IER);
	tegra_uart_read(tup, UART_IER);

	/* Parity */
	lcr = tup->lcr_shadow;
	lcr &= ~UART_LCR_PARITY;

	/* CMSPAR isn't supported by this driver */
	termios->c_cflag &= ~CMSPAR;

	if ((termios->c_cflag & PARENB) == PARENB) {
		symb_bit++;
		if (termios->c_cflag & PARODD) {
			lcr |= UART_LCR_PARITY;
			lcr &= ~UART_LCR_EPAR;
			lcr &= ~UART_LCR_SPAR;
		} else {
			lcr |= UART_LCR_PARITY;
			lcr |= UART_LCR_EPAR;
			lcr &= ~UART_LCR_SPAR;
		}
	}

	lcr &= ~UART_LCR_WLEN8;
	switch (termios->c_cflag & CSIZE) {
	case CS5:
		lcr |= UART_LCR_WLEN5;
		symb_bit += 5;
		break;
	case CS6:
		lcr |= UART_LCR_WLEN6;
		symb_bit += 6;
		break;
	case CS7:
		lcr |= UART_LCR_WLEN7;
		symb_bit += 7;
		break;
	default:
		lcr |= UART_LCR_WLEN8;
		symb_bit += 8;
		break;
	}

	/* Stop bits */
	if (termios->c_cflag & CSTOPB) {
		lcr |= UART_LCR_STOP;
		symb_bit += 2;
	} else {
		lcr &= ~UART_LCR_STOP;
		symb_bit++;
	}

	tegra_uart_write(tup, lcr, UART_LCR);
	tup->lcr_shadow = lcr;
	tup->symb_bit = symb_bit;

	/* Baud rate. */
	baud = uart_get_baud_rate(u, termios, oldtermios,
			parent_clk_rate/max_divider,
			parent_clk_rate/16);
	spin_unlock_irqrestore(&u->lock, flags);
	tegra_set_baudrate(tup, baud);
	if (tty_termios_baud_rate(termios))
		tty_termios_encode_baud_rate(termios, baud, baud);
	spin_lock_irqsave(&u->lock, flags);

	/* Flow control */
	if (termios->c_cflag & CRTSCTS)	{
		tup->mcr_shadow |= TEGRA_UART_MCR_CTS_EN;
		tup->mcr_shadow &= ~TEGRA_UART_MCR_RTS_EN;
		tegra_uart_write(tup, tup->mcr_shadow, UART_MCR);
		/* if top layer has asked to set rts active then do so here */
		if (tup->rts_active)
			set_rts(tup, true);
	} else {
		tup->mcr_shadow &= ~TEGRA_UART_MCR_CTS_EN;
		tup->mcr_shadow &= ~TEGRA_UART_MCR_RTS_EN;
		tegra_uart_write(tup, tup->mcr_shadow, UART_MCR);
	}

	/* update the port timeout based on new settings */
	uart_update_timeout(u, termios->c_cflag, baud);

	/* Make sure all write has completed */
	tegra_uart_read(tup, UART_IER);

	/* Reenable interrupt */
	tegra_uart_write(tup, tup->ier_shadow, UART_IER);
	tegra_uart_read(tup, UART_IER);

	spin_unlock_irqrestore(&u->lock, flags);
}

static const char *tegra_uart_type(struct uart_port *u)
{
	return TEGRA_UART_TYPE;
}

static struct uart_ops tegra_uart_ops = {
	.tx_empty	= tegra_uart_tx_empty,
	.set_mctrl	= tegra_uart_set_mctrl,
	.get_mctrl	= tegra_uart_get_mctrl,
	.stop_tx	= tegra_uart_stop_tx,
	.start_tx	= tegra_uart_start_tx,
	.stop_rx	= tegra_uart_stop_rx,
	.flush_buffer	= tegra_uart_flush_buffer,
	.enable_ms	= tegra_uart_enable_ms,
	.break_ctl	= tegra_uart_break_ctl,
	.startup	= tegra_uart_startup,
	.shutdown	= tegra_uart_shutdown,
	.set_termios	= tegra_uart_set_termios,
	.type		= tegra_uart_type,
	.request_port	= tegra_uart_request_port,
	.release_port	= tegra_uart_release_port,
};

static struct uart_driver tegra_uart_driver = {
	.owner		= THIS_MODULE,
	.driver_name	= "tegra_hsuart",
	.dev_name	= "ttyTHS",
1236
	.cons		= NULL,
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
	.nr		= TEGRA_UART_MAXIMUM,
};

static int tegra_uart_parse_dt(struct platform_device *pdev,
	struct tegra_uart_port *tup)
{
	struct device_node *np = pdev->dev.of_node;
	int port;

	port = of_alias_get_id(np, "serial");
	if (port < 0) {
		dev_err(&pdev->dev, "failed to get alias id, errno %d\n", port);
		return port;
	}
	tup->uport.line = port;

	tup->enable_modem_interrupt = of_property_read_bool(np,
					"nvidia,enable-modem-interrupt");
	return 0;
}

1258
static struct tegra_uart_chip_data tegra20_uart_chip_data = {
1259 1260 1261 1262 1263
	.tx_fifo_full_status		= false,
	.allow_txfifo_reset_fifo_mode	= true,
	.support_clk_src_div		= false,
};

1264
static struct tegra_uart_chip_data tegra30_uart_chip_data = {
1265 1266 1267 1268 1269
	.tx_fifo_full_status		= true,
	.allow_txfifo_reset_fifo_mode	= false,
	.support_clk_src_div		= true,
};

1270
static const struct of_device_id tegra_uart_of_match[] = {
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
	{
		.compatible	= "nvidia,tegra30-hsuart",
		.data		= &tegra30_uart_chip_data,
	}, {
		.compatible	= "nvidia,tegra20-hsuart",
		.data		= &tegra20_uart_chip_data,
	}, {
	},
};
MODULE_DEVICE_TABLE(of, tegra_uart_of_match);

static int tegra_uart_probe(struct platform_device *pdev)
{
	struct tegra_uart_port *tup;
	struct uart_port *u;
	struct resource *resource;
	int ret;
	const struct tegra_uart_chip_data *cdata;
	const struct of_device_id *match;

S
Stephen Warren 已提交
1291
	match = of_match_device(tegra_uart_of_match, &pdev->dev);
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
	if (!match) {
		dev_err(&pdev->dev, "Error: No device match found\n");
		return -ENODEV;
	}
	cdata = match->data;

	tup = devm_kzalloc(&pdev->dev, sizeof(*tup), GFP_KERNEL);
	if (!tup) {
		dev_err(&pdev->dev, "Failed to allocate memory for tup\n");
		return -ENOMEM;
	}

	ret = tegra_uart_parse_dt(pdev, tup);
	if (ret < 0)
		return ret;

	u = &tup->uport;
	u->dev = &pdev->dev;
	u->ops = &tegra_uart_ops;
	u->type = PORT_TEGRA;
	u->fifosize = 32;
	tup->cdata = cdata;

	platform_set_drvdata(pdev, tup);
	resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!resource) {
		dev_err(&pdev->dev, "No IO memory resource\n");
		return -ENODEV;
	}

	u->mapbase = resource->start;
1323 1324 1325
	u->membase = devm_ioremap_resource(&pdev->dev, resource);
	if (IS_ERR(u->membase))
		return PTR_ERR(u->membase);
1326 1327 1328 1329 1330 1331 1332

	tup->uart_clk = devm_clk_get(&pdev->dev, NULL);
	if (IS_ERR(tup->uart_clk)) {
		dev_err(&pdev->dev, "Couldn't get the clock\n");
		return PTR_ERR(tup->uart_clk);
	}

1333 1334 1335 1336 1337 1338
	tup->rst = devm_reset_control_get(&pdev->dev, "serial");
	if (IS_ERR(tup->rst)) {
		dev_err(&pdev->dev, "Couldn't get the reset\n");
		return PTR_ERR(tup->rst);
	}

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
	u->iotype = UPIO_MEM32;
	u->irq = platform_get_irq(pdev, 0);
	u->regshift = 2;
	ret = uart_add_one_port(&tegra_uart_driver, u);
	if (ret < 0) {
		dev_err(&pdev->dev, "Failed to add uart port, err %d\n", ret);
		return ret;
	}
	return ret;
}

static int tegra_uart_remove(struct platform_device *pdev)
{
	struct tegra_uart_port *tup = platform_get_drvdata(pdev);
	struct uart_port *u = &tup->uport;

	uart_remove_one_port(&tegra_uart_driver, u);
	return 0;
}

#ifdef CONFIG_PM_SLEEP
static int tegra_uart_suspend(struct device *dev)
{
	struct tegra_uart_port *tup = dev_get_drvdata(dev);
	struct uart_port *u = &tup->uport;

	return uart_suspend_port(&tegra_uart_driver, u);
}

static int tegra_uart_resume(struct device *dev)
{
	struct tegra_uart_port *tup = dev_get_drvdata(dev);
	struct uart_port *u = &tup->uport;

	return uart_resume_port(&tegra_uart_driver, u);
}
#endif

static const struct dev_pm_ops tegra_uart_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(tegra_uart_suspend, tegra_uart_resume)
};

static struct platform_driver tegra_uart_platform_driver = {
	.probe		= tegra_uart_probe,
	.remove		= tegra_uart_remove,
	.driver		= {
		.name	= "serial-tegra",
S
Stephen Warren 已提交
1386
		.of_match_table = tegra_uart_of_match,
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
		.pm	= &tegra_uart_pm_ops,
	},
};

static int __init tegra_uart_init(void)
{
	int ret;

	ret = uart_register_driver(&tegra_uart_driver);
	if (ret < 0) {
		pr_err("Could not register %s driver\n",
			tegra_uart_driver.driver_name);
		return ret;
	}

	ret = platform_driver_register(&tegra_uart_platform_driver);
	if (ret < 0) {
M
Masanari Iida 已提交
1404
		pr_err("Uart platform driver register failed, e = %d\n", ret);
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
		uart_unregister_driver(&tegra_uart_driver);
		return ret;
	}
	return 0;
}

static void __exit tegra_uart_exit(void)
{
	pr_info("Unloading tegra uart driver\n");
	platform_driver_unregister(&tegra_uart_platform_driver);
	uart_unregister_driver(&tegra_uart_driver);
}

module_init(tegra_uart_init);
module_exit(tegra_uart_exit);

MODULE_ALIAS("platform:serial-tegra");
MODULE_DESCRIPTION("High speed UART driver for tegra chipset");
MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
MODULE_LICENSE("GPL v2");