aesni-intel_glue.c 45.9 KB
Newer Older
1 2 3 4 5 6 7
/*
 * Support for Intel AES-NI instructions. This file contains glue
 * code, the real AES implementation is in intel-aes_asm.S.
 *
 * Copyright (C) 2008, Intel Corp.
 *    Author: Huang Ying <ying.huang@intel.com>
 *
8 9 10 11 12 13 14 15
 * Added RFC4106 AES-GCM support for 128-bit keys under the AEAD
 * interface for 64-bit kernels.
 *    Authors: Adrian Hoban <adrian.hoban@intel.com>
 *             Gabriele Paoloni <gabriele.paoloni@intel.com>
 *             Tadeusz Struk (tadeusz.struk@intel.com)
 *             Aidan O'Mahony (aidan.o.mahony@intel.com)
 *    Copyright (c) 2010, Intel Corporation.
 *
16 17 18 19 20 21 22 23 24
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

#include <linux/hardirq.h>
#include <linux/types.h>
#include <linux/crypto.h>
25
#include <linux/module.h>
26 27 28 29
#include <linux/err.h>
#include <crypto/algapi.h>
#include <crypto/aes.h>
#include <crypto/cryptd.h>
30
#include <crypto/ctr.h>
31 32 33
#include <crypto/b128ops.h>
#include <crypto/lrw.h>
#include <crypto/xts.h>
34
#include <asm/cpu_device_id.h>
35
#include <asm/i387.h>
36
#include <asm/crypto/aes.h>
37
#include <crypto/ablk_helper.h>
38 39 40 41
#include <crypto/scatterwalk.h>
#include <crypto/internal/aead.h>
#include <linux/workqueue.h>
#include <linux/spinlock.h>
42 43 44
#ifdef CONFIG_X86_64
#include <asm/crypto/glue_helper.h>
#endif
45

46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
/* This data is stored at the end of the crypto_tfm struct.
 * It's a type of per "session" data storage location.
 * This needs to be 16 byte aligned.
 */
struct aesni_rfc4106_gcm_ctx {
	u8 hash_subkey[16];
	struct crypto_aes_ctx aes_key_expanded;
	u8 nonce[4];
	struct cryptd_aead *cryptd_tfm;
};

struct aesni_gcm_set_hash_subkey_result {
	int err;
	struct completion completion;
};

struct aesni_hash_subkey_req_data {
	u8 iv[16];
	struct aesni_gcm_set_hash_subkey_result result;
	struct scatterlist sg;
};

#define AESNI_ALIGN	(16)
70
#define AES_BLOCK_MASK	(~(AES_BLOCK_SIZE-1))
71
#define RFC4106_HASH_SUBKEY_SIZE 16
72

73 74 75 76 77 78 79 80 81 82
struct aesni_lrw_ctx {
	struct lrw_table_ctx lrw_table;
	u8 raw_aes_ctx[sizeof(struct crypto_aes_ctx) + AESNI_ALIGN - 1];
};

struct aesni_xts_ctx {
	u8 raw_tweak_ctx[sizeof(struct crypto_aes_ctx) + AESNI_ALIGN - 1];
	u8 raw_crypt_ctx[sizeof(struct crypto_aes_ctx) + AESNI_ALIGN - 1];
};

83 84 85 86 87 88 89 90 91 92 93 94 95 96
asmlinkage int aesni_set_key(struct crypto_aes_ctx *ctx, const u8 *in_key,
			     unsigned int key_len);
asmlinkage void aesni_enc(struct crypto_aes_ctx *ctx, u8 *out,
			  const u8 *in);
asmlinkage void aesni_dec(struct crypto_aes_ctx *ctx, u8 *out,
			  const u8 *in);
asmlinkage void aesni_ecb_enc(struct crypto_aes_ctx *ctx, u8 *out,
			      const u8 *in, unsigned int len);
asmlinkage void aesni_ecb_dec(struct crypto_aes_ctx *ctx, u8 *out,
			      const u8 *in, unsigned int len);
asmlinkage void aesni_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out,
			      const u8 *in, unsigned int len, u8 *iv);
asmlinkage void aesni_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
			      const u8 *in, unsigned int len, u8 *iv);
97 98 99 100

int crypto_fpu_init(void);
void crypto_fpu_exit(void);

101 102 103
#define AVX_GEN2_OPTSIZE 640
#define AVX_GEN4_OPTSIZE 4096

104
#ifdef CONFIG_X86_64
105 106 107

static void (*aesni_ctr_enc_tfm)(struct crypto_aes_ctx *ctx, u8 *out,
			      const u8 *in, unsigned int len, u8 *iv);
108 109
asmlinkage void aesni_ctr_enc(struct crypto_aes_ctx *ctx, u8 *out,
			      const u8 *in, unsigned int len, u8 *iv);
110

111 112 113
asmlinkage void aesni_xts_crypt8(struct crypto_aes_ctx *ctx, u8 *out,
				 const u8 *in, bool enc, u8 *iv);

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
/* asmlinkage void aesni_gcm_enc()
 * void *ctx,  AES Key schedule. Starts on a 16 byte boundary.
 * u8 *out, Ciphertext output. Encrypt in-place is allowed.
 * const u8 *in, Plaintext input
 * unsigned long plaintext_len, Length of data in bytes for encryption.
 * u8 *iv, Pre-counter block j0: 4 byte salt (from Security Association)
 *         concatenated with 8 byte Initialisation Vector (from IPSec ESP
 *         Payload) concatenated with 0x00000001. 16-byte aligned pointer.
 * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
 * const u8 *aad, Additional Authentication Data (AAD)
 * unsigned long aad_len, Length of AAD in bytes. With RFC4106 this
 *          is going to be 8 or 12 bytes
 * u8 *auth_tag, Authenticated Tag output.
 * unsigned long auth_tag_len), Authenticated Tag Length in bytes.
 *          Valid values are 16 (most likely), 12 or 8.
 */
asmlinkage void aesni_gcm_enc(void *ctx, u8 *out,
			const u8 *in, unsigned long plaintext_len, u8 *iv,
			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
			u8 *auth_tag, unsigned long auth_tag_len);

/* asmlinkage void aesni_gcm_dec()
 * void *ctx, AES Key schedule. Starts on a 16 byte boundary.
 * u8 *out, Plaintext output. Decrypt in-place is allowed.
 * const u8 *in, Ciphertext input
 * unsigned long ciphertext_len, Length of data in bytes for decryption.
 * u8 *iv, Pre-counter block j0: 4 byte salt (from Security Association)
 *         concatenated with 8 byte Initialisation Vector (from IPSec ESP
 *         Payload) concatenated with 0x00000001. 16-byte aligned pointer.
 * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
 * const u8 *aad, Additional Authentication Data (AAD)
 * unsigned long aad_len, Length of AAD in bytes. With RFC4106 this is going
 * to be 8 or 12 bytes
 * u8 *auth_tag, Authenticated Tag output.
 * unsigned long auth_tag_len) Authenticated Tag Length in bytes.
 * Valid values are 16 (most likely), 12 or 8.
 */
asmlinkage void aesni_gcm_dec(void *ctx, u8 *out,
			const u8 *in, unsigned long ciphertext_len, u8 *iv,
			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
			u8 *auth_tag, unsigned long auth_tag_len);

156 157

#ifdef CONFIG_AS_AVX
158 159 160 161 162 163
asmlinkage void aes_ctr_enc_128_avx_by8(const u8 *in, u8 *iv,
		void *keys, u8 *out, unsigned int num_bytes);
asmlinkage void aes_ctr_enc_192_avx_by8(const u8 *in, u8 *iv,
		void *keys, u8 *out, unsigned int num_bytes);
asmlinkage void aes_ctr_enc_256_avx_by8(const u8 *in, u8 *iv,
		void *keys, u8 *out, unsigned int num_bytes);
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
/*
 * asmlinkage void aesni_gcm_precomp_avx_gen2()
 * gcm_data *my_ctx_data, context data
 * u8 *hash_subkey,  the Hash sub key input. Data starts on a 16-byte boundary.
 */
asmlinkage void aesni_gcm_precomp_avx_gen2(void *my_ctx_data, u8 *hash_subkey);

asmlinkage void aesni_gcm_enc_avx_gen2(void *ctx, u8 *out,
			const u8 *in, unsigned long plaintext_len, u8 *iv,
			const u8 *aad, unsigned long aad_len,
			u8 *auth_tag, unsigned long auth_tag_len);

asmlinkage void aesni_gcm_dec_avx_gen2(void *ctx, u8 *out,
			const u8 *in, unsigned long ciphertext_len, u8 *iv,
			const u8 *aad, unsigned long aad_len,
			u8 *auth_tag, unsigned long auth_tag_len);

static void aesni_gcm_enc_avx(void *ctx, u8 *out,
			const u8 *in, unsigned long plaintext_len, u8 *iv,
			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
			u8 *auth_tag, unsigned long auth_tag_len)
{
186 187
        struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
	if ((plaintext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)){
188 189 190 191 192 193 194 195 196 197 198 199 200 201
		aesni_gcm_enc(ctx, out, in, plaintext_len, iv, hash_subkey, aad,
				aad_len, auth_tag, auth_tag_len);
	} else {
		aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
		aesni_gcm_enc_avx_gen2(ctx, out, in, plaintext_len, iv, aad,
					aad_len, auth_tag, auth_tag_len);
	}
}

static void aesni_gcm_dec_avx(void *ctx, u8 *out,
			const u8 *in, unsigned long ciphertext_len, u8 *iv,
			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
			u8 *auth_tag, unsigned long auth_tag_len)
{
202 203
        struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
	if ((ciphertext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)) {
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
		aesni_gcm_dec(ctx, out, in, ciphertext_len, iv, hash_subkey, aad,
				aad_len, auth_tag, auth_tag_len);
	} else {
		aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
		aesni_gcm_dec_avx_gen2(ctx, out, in, ciphertext_len, iv, aad,
					aad_len, auth_tag, auth_tag_len);
	}
}
#endif

#ifdef CONFIG_AS_AVX2
/*
 * asmlinkage void aesni_gcm_precomp_avx_gen4()
 * gcm_data *my_ctx_data, context data
 * u8 *hash_subkey,  the Hash sub key input. Data starts on a 16-byte boundary.
 */
asmlinkage void aesni_gcm_precomp_avx_gen4(void *my_ctx_data, u8 *hash_subkey);

asmlinkage void aesni_gcm_enc_avx_gen4(void *ctx, u8 *out,
			const u8 *in, unsigned long plaintext_len, u8 *iv,
			const u8 *aad, unsigned long aad_len,
			u8 *auth_tag, unsigned long auth_tag_len);

asmlinkage void aesni_gcm_dec_avx_gen4(void *ctx, u8 *out,
			const u8 *in, unsigned long ciphertext_len, u8 *iv,
			const u8 *aad, unsigned long aad_len,
			u8 *auth_tag, unsigned long auth_tag_len);

static void aesni_gcm_enc_avx2(void *ctx, u8 *out,
			const u8 *in, unsigned long plaintext_len, u8 *iv,
			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
			u8 *auth_tag, unsigned long auth_tag_len)
{
237 238
       struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
	if ((plaintext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)) {
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
		aesni_gcm_enc(ctx, out, in, plaintext_len, iv, hash_subkey, aad,
				aad_len, auth_tag, auth_tag_len);
	} else if (plaintext_len < AVX_GEN4_OPTSIZE) {
		aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
		aesni_gcm_enc_avx_gen2(ctx, out, in, plaintext_len, iv, aad,
					aad_len, auth_tag, auth_tag_len);
	} else {
		aesni_gcm_precomp_avx_gen4(ctx, hash_subkey);
		aesni_gcm_enc_avx_gen4(ctx, out, in, plaintext_len, iv, aad,
					aad_len, auth_tag, auth_tag_len);
	}
}

static void aesni_gcm_dec_avx2(void *ctx, u8 *out,
			const u8 *in, unsigned long ciphertext_len, u8 *iv,
			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
			u8 *auth_tag, unsigned long auth_tag_len)
{
257 258
       struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
	if ((ciphertext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)) {
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
		aesni_gcm_dec(ctx, out, in, ciphertext_len, iv, hash_subkey,
				aad, aad_len, auth_tag, auth_tag_len);
	} else if (ciphertext_len < AVX_GEN4_OPTSIZE) {
		aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
		aesni_gcm_dec_avx_gen2(ctx, out, in, ciphertext_len, iv, aad,
					aad_len, auth_tag, auth_tag_len);
	} else {
		aesni_gcm_precomp_avx_gen4(ctx, hash_subkey);
		aesni_gcm_dec_avx_gen4(ctx, out, in, ciphertext_len, iv, aad,
					aad_len, auth_tag, auth_tag_len);
	}
}
#endif

static void (*aesni_gcm_enc_tfm)(void *ctx, u8 *out,
			const u8 *in, unsigned long plaintext_len, u8 *iv,
			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
			u8 *auth_tag, unsigned long auth_tag_len);

static void (*aesni_gcm_dec_tfm)(void *ctx, u8 *out,
			const u8 *in, unsigned long ciphertext_len, u8 *iv,
			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
			u8 *auth_tag, unsigned long auth_tag_len);

283 284 285 286 287 288 289 290
static inline struct
aesni_rfc4106_gcm_ctx *aesni_rfc4106_gcm_ctx_get(struct crypto_aead *tfm)
{
	return
		(struct aesni_rfc4106_gcm_ctx *)
		PTR_ALIGN((u8 *)
		crypto_tfm_ctx(crypto_aead_tfm(tfm)), AESNI_ALIGN);
}
291
#endif
292

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
static inline struct crypto_aes_ctx *aes_ctx(void *raw_ctx)
{
	unsigned long addr = (unsigned long)raw_ctx;
	unsigned long align = AESNI_ALIGN;

	if (align <= crypto_tfm_ctx_alignment())
		align = 1;
	return (struct crypto_aes_ctx *)ALIGN(addr, align);
}

static int aes_set_key_common(struct crypto_tfm *tfm, void *raw_ctx,
			      const u8 *in_key, unsigned int key_len)
{
	struct crypto_aes_ctx *ctx = aes_ctx(raw_ctx);
	u32 *flags = &tfm->crt_flags;
	int err;

	if (key_len != AES_KEYSIZE_128 && key_len != AES_KEYSIZE_192 &&
	    key_len != AES_KEYSIZE_256) {
		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
		return -EINVAL;
	}

316
	if (!irq_fpu_usable())
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
		err = crypto_aes_expand_key(ctx, in_key, key_len);
	else {
		kernel_fpu_begin();
		err = aesni_set_key(ctx, in_key, key_len);
		kernel_fpu_end();
	}

	return err;
}

static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
		       unsigned int key_len)
{
	return aes_set_key_common(tfm, crypto_tfm_ctx(tfm), in_key, key_len);
}

static void aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));

337
	if (!irq_fpu_usable())
338 339 340 341 342 343 344 345 346 347 348 349
		crypto_aes_encrypt_x86(ctx, dst, src);
	else {
		kernel_fpu_begin();
		aesni_enc(ctx, dst, src);
		kernel_fpu_end();
	}
}

static void aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));

350
	if (!irq_fpu_usable())
351 352 353 354 355 356 357 358
		crypto_aes_decrypt_x86(ctx, dst, src);
	else {
		kernel_fpu_begin();
		aesni_dec(ctx, dst, src);
		kernel_fpu_end();
	}
}

359 360 361 362 363 364 365 366 367 368 369 370 371 372
static void __aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));

	aesni_enc(ctx, dst, src);
}

static void __aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));

	aesni_dec(ctx, dst, src);
}

373 374 375 376 377 378 379 380 381 382
static int ecb_encrypt(struct blkcipher_desc *desc,
		       struct scatterlist *dst, struct scatterlist *src,
		       unsigned int nbytes)
{
	struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
	struct blkcipher_walk walk;
	int err;

	blkcipher_walk_init(&walk, dst, src, nbytes);
	err = blkcipher_walk_virt(desc, &walk);
383
	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406

	kernel_fpu_begin();
	while ((nbytes = walk.nbytes)) {
		aesni_ecb_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
			      nbytes & AES_BLOCK_MASK);
		nbytes &= AES_BLOCK_SIZE - 1;
		err = blkcipher_walk_done(desc, &walk, nbytes);
	}
	kernel_fpu_end();

	return err;
}

static int ecb_decrypt(struct blkcipher_desc *desc,
		       struct scatterlist *dst, struct scatterlist *src,
		       unsigned int nbytes)
{
	struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
	struct blkcipher_walk walk;
	int err;

	blkcipher_walk_init(&walk, dst, src, nbytes);
	err = blkcipher_walk_virt(desc, &walk);
407
	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430

	kernel_fpu_begin();
	while ((nbytes = walk.nbytes)) {
		aesni_ecb_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
			      nbytes & AES_BLOCK_MASK);
		nbytes &= AES_BLOCK_SIZE - 1;
		err = blkcipher_walk_done(desc, &walk, nbytes);
	}
	kernel_fpu_end();

	return err;
}

static int cbc_encrypt(struct blkcipher_desc *desc,
		       struct scatterlist *dst, struct scatterlist *src,
		       unsigned int nbytes)
{
	struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
	struct blkcipher_walk walk;
	int err;

	blkcipher_walk_init(&walk, dst, src, nbytes);
	err = blkcipher_walk_virt(desc, &walk);
431
	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454

	kernel_fpu_begin();
	while ((nbytes = walk.nbytes)) {
		aesni_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
			      nbytes & AES_BLOCK_MASK, walk.iv);
		nbytes &= AES_BLOCK_SIZE - 1;
		err = blkcipher_walk_done(desc, &walk, nbytes);
	}
	kernel_fpu_end();

	return err;
}

static int cbc_decrypt(struct blkcipher_desc *desc,
		       struct scatterlist *dst, struct scatterlist *src,
		       unsigned int nbytes)
{
	struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
	struct blkcipher_walk walk;
	int err;

	blkcipher_walk_init(&walk, dst, src, nbytes);
	err = blkcipher_walk_virt(desc, &walk);
455
	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
456 457 458 459 460 461 462 463 464 465 466 467 468

	kernel_fpu_begin();
	while ((nbytes = walk.nbytes)) {
		aesni_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
			      nbytes & AES_BLOCK_MASK, walk.iv);
		nbytes &= AES_BLOCK_SIZE - 1;
		err = blkcipher_walk_done(desc, &walk, nbytes);
	}
	kernel_fpu_end();

	return err;
}

469
#ifdef CONFIG_X86_64
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
static void ctr_crypt_final(struct crypto_aes_ctx *ctx,
			    struct blkcipher_walk *walk)
{
	u8 *ctrblk = walk->iv;
	u8 keystream[AES_BLOCK_SIZE];
	u8 *src = walk->src.virt.addr;
	u8 *dst = walk->dst.virt.addr;
	unsigned int nbytes = walk->nbytes;

	aesni_enc(ctx, keystream, ctrblk);
	crypto_xor(keystream, src, nbytes);
	memcpy(dst, keystream, nbytes);
	crypto_inc(ctrblk, AES_BLOCK_SIZE);
}

485
#ifdef CONFIG_AS_AVX
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
static void aesni_ctr_enc_avx_tfm(struct crypto_aes_ctx *ctx, u8 *out,
			      const u8 *in, unsigned int len, u8 *iv)
{
	/*
	 * based on key length, override with the by8 version
	 * of ctr mode encryption/decryption for improved performance
	 * aes_set_key_common() ensures that key length is one of
	 * {128,192,256}
	 */
	if (ctx->key_length == AES_KEYSIZE_128)
		aes_ctr_enc_128_avx_by8(in, iv, (void *)ctx, out, len);
	else if (ctx->key_length == AES_KEYSIZE_192)
		aes_ctr_enc_192_avx_by8(in, iv, (void *)ctx, out, len);
	else
		aes_ctr_enc_256_avx_by8(in, iv, (void *)ctx, out, len);
}
#endif

504 505 506 507 508 509 510 511 512 513 514 515 516 517
static int ctr_crypt(struct blkcipher_desc *desc,
		     struct scatterlist *dst, struct scatterlist *src,
		     unsigned int nbytes)
{
	struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
	struct blkcipher_walk walk;
	int err;

	blkcipher_walk_init(&walk, dst, src, nbytes);
	err = blkcipher_walk_virt_block(desc, &walk, AES_BLOCK_SIZE);
	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;

	kernel_fpu_begin();
	while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) {
518
		aesni_ctr_enc_tfm(ctx, walk.dst.virt.addr, walk.src.virt.addr,
519
			              nbytes & AES_BLOCK_MASK, walk.iv);
520 521 522 523 524 525 526 527 528 529 530
		nbytes &= AES_BLOCK_SIZE - 1;
		err = blkcipher_walk_done(desc, &walk, nbytes);
	}
	if (walk.nbytes) {
		ctr_crypt_final(ctx, &walk);
		err = blkcipher_walk_done(desc, &walk, 0);
	}
	kernel_fpu_end();

	return err;
}
531
#endif
532

533 534
static int ablk_ecb_init(struct crypto_tfm *tfm)
{
535
	return ablk_init_common(tfm, "__driver-ecb-aes-aesni");
536 537 538 539
}

static int ablk_cbc_init(struct crypto_tfm *tfm)
{
540
	return ablk_init_common(tfm, "__driver-cbc-aes-aesni");
541 542
}

543
#ifdef CONFIG_X86_64
544 545
static int ablk_ctr_init(struct crypto_tfm *tfm)
{
546
	return ablk_init_common(tfm, "__driver-ctr-aes-aesni");
547 548
}

549
#endif
550

551
#if IS_ENABLED(CONFIG_CRYPTO_PCBC)
552 553
static int ablk_pcbc_init(struct crypto_tfm *tfm)
{
554
	return ablk_init_common(tfm, "fpu(pcbc(__driver-aes-aesni))");
555 556 557
}
#endif

558
static void lrw_xts_encrypt_callback(void *ctx, u8 *blks, unsigned int nbytes)
559
{
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
	aesni_ecb_enc(ctx, blks, blks, nbytes);
}

static void lrw_xts_decrypt_callback(void *ctx, u8 *blks, unsigned int nbytes)
{
	aesni_ecb_dec(ctx, blks, blks, nbytes);
}

static int lrw_aesni_setkey(struct crypto_tfm *tfm, const u8 *key,
			    unsigned int keylen)
{
	struct aesni_lrw_ctx *ctx = crypto_tfm_ctx(tfm);
	int err;

	err = aes_set_key_common(tfm, ctx->raw_aes_ctx, key,
				 keylen - AES_BLOCK_SIZE);
	if (err)
		return err;

	return lrw_init_table(&ctx->lrw_table, key + keylen - AES_BLOCK_SIZE);
}

static void lrw_aesni_exit_tfm(struct crypto_tfm *tfm)
{
	struct aesni_lrw_ctx *ctx = crypto_tfm_ctx(tfm);

	lrw_free_table(&ctx->lrw_table);
}

static int lrw_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
		       struct scatterlist *src, unsigned int nbytes)
{
	struct aesni_lrw_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
	be128 buf[8];
	struct lrw_crypt_req req = {
		.tbuf = buf,
		.tbuflen = sizeof(buf),

		.table_ctx = &ctx->lrw_table,
		.crypt_ctx = aes_ctx(ctx->raw_aes_ctx),
		.crypt_fn = lrw_xts_encrypt_callback,
	};
	int ret;

	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;

	kernel_fpu_begin();
	ret = lrw_crypt(desc, dst, src, nbytes, &req);
	kernel_fpu_end();

	return ret;
}

static int lrw_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
		       struct scatterlist *src, unsigned int nbytes)
{
	struct aesni_lrw_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
	be128 buf[8];
	struct lrw_crypt_req req = {
		.tbuf = buf,
		.tbuflen = sizeof(buf),

		.table_ctx = &ctx->lrw_table,
		.crypt_ctx = aes_ctx(ctx->raw_aes_ctx),
		.crypt_fn = lrw_xts_decrypt_callback,
	};
	int ret;

	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;

	kernel_fpu_begin();
	ret = lrw_crypt(desc, dst, src, nbytes, &req);
	kernel_fpu_end();

	return ret;
}

static int xts_aesni_setkey(struct crypto_tfm *tfm, const u8 *key,
			    unsigned int keylen)
{
	struct aesni_xts_ctx *ctx = crypto_tfm_ctx(tfm);
	u32 *flags = &tfm->crt_flags;
	int err;

	/* key consists of keys of equal size concatenated, therefore
	 * the length must be even
	 */
	if (keylen % 2) {
		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
		return -EINVAL;
	}

	/* first half of xts-key is for crypt */
	err = aes_set_key_common(tfm, ctx->raw_crypt_ctx, key, keylen / 2);
	if (err)
		return err;

	/* second half of xts-key is for tweak */
	return aes_set_key_common(tfm, ctx->raw_tweak_ctx, key + keylen / 2,
				  keylen / 2);
}


663 664 665 666 667
static void aesni_xts_tweak(void *ctx, u8 *out, const u8 *in)
{
	aesni_enc(ctx, out, in);
}

668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
#ifdef CONFIG_X86_64

static void aesni_xts_enc(void *ctx, u128 *dst, const u128 *src, le128 *iv)
{
	glue_xts_crypt_128bit_one(ctx, dst, src, iv, GLUE_FUNC_CAST(aesni_enc));
}

static void aesni_xts_dec(void *ctx, u128 *dst, const u128 *src, le128 *iv)
{
	glue_xts_crypt_128bit_one(ctx, dst, src, iv, GLUE_FUNC_CAST(aesni_dec));
}

static void aesni_xts_enc8(void *ctx, u128 *dst, const u128 *src, le128 *iv)
{
	aesni_xts_crypt8(ctx, (u8 *)dst, (const u8 *)src, true, (u8 *)iv);
}

static void aesni_xts_dec8(void *ctx, u128 *dst, const u128 *src, le128 *iv)
{
	aesni_xts_crypt8(ctx, (u8 *)dst, (const u8 *)src, false, (u8 *)iv);
}

static const struct common_glue_ctx aesni_enc_xts = {
	.num_funcs = 2,
	.fpu_blocks_limit = 1,

	.funcs = { {
		.num_blocks = 8,
		.fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_enc8) }
	}, {
		.num_blocks = 1,
		.fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_enc) }
	} }
};

static const struct common_glue_ctx aesni_dec_xts = {
	.num_funcs = 2,
	.fpu_blocks_limit = 1,

	.funcs = { {
		.num_blocks = 8,
		.fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_dec8) }
	}, {
		.num_blocks = 1,
		.fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_dec) }
	} }
};

static int xts_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
		       struct scatterlist *src, unsigned int nbytes)
{
	struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);

	return glue_xts_crypt_128bit(&aesni_enc_xts, desc, dst, src, nbytes,
				     XTS_TWEAK_CAST(aesni_xts_tweak),
				     aes_ctx(ctx->raw_tweak_ctx),
				     aes_ctx(ctx->raw_crypt_ctx));
}

static int xts_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
		       struct scatterlist *src, unsigned int nbytes)
{
	struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);

	return glue_xts_crypt_128bit(&aesni_dec_xts, desc, dst, src, nbytes,
				     XTS_TWEAK_CAST(aesni_xts_tweak),
				     aes_ctx(ctx->raw_tweak_ctx),
				     aes_ctx(ctx->raw_crypt_ctx));
}

#else

740 741 742 743 744 745 746 747 748 749
static int xts_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
		       struct scatterlist *src, unsigned int nbytes)
{
	struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
	be128 buf[8];
	struct xts_crypt_req req = {
		.tbuf = buf,
		.tbuflen = sizeof(buf),

		.tweak_ctx = aes_ctx(ctx->raw_tweak_ctx),
750
		.tweak_fn = aesni_xts_tweak,
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
		.crypt_ctx = aes_ctx(ctx->raw_crypt_ctx),
		.crypt_fn = lrw_xts_encrypt_callback,
	};
	int ret;

	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;

	kernel_fpu_begin();
	ret = xts_crypt(desc, dst, src, nbytes, &req);
	kernel_fpu_end();

	return ret;
}

static int xts_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
		       struct scatterlist *src, unsigned int nbytes)
{
	struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
	be128 buf[8];
	struct xts_crypt_req req = {
		.tbuf = buf,
		.tbuflen = sizeof(buf),

		.tweak_ctx = aes_ctx(ctx->raw_tweak_ctx),
775
		.tweak_fn = aesni_xts_tweak,
776 777 778 779 780 781 782 783 784 785 786 787
		.crypt_ctx = aes_ctx(ctx->raw_crypt_ctx),
		.crypt_fn = lrw_xts_decrypt_callback,
	};
	int ret;

	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;

	kernel_fpu_begin();
	ret = xts_crypt(desc, dst, src, nbytes, &req);
	kernel_fpu_end();

	return ret;
788 789
}

790 791
#endif

792
#ifdef CONFIG_X86_64
793 794 795 796 797
static int rfc4106_init(struct crypto_tfm *tfm)
{
	struct cryptd_aead *cryptd_tfm;
	struct aesni_rfc4106_gcm_ctx *ctx = (struct aesni_rfc4106_gcm_ctx *)
		PTR_ALIGN((u8 *)crypto_tfm_ctx(tfm), AESNI_ALIGN);
798 799
	struct crypto_aead *cryptd_child;
	struct aesni_rfc4106_gcm_ctx *child_ctx;
800 801 802
	cryptd_tfm = cryptd_alloc_aead("__driver-gcm-aes-aesni", 0, 0);
	if (IS_ERR(cryptd_tfm))
		return PTR_ERR(cryptd_tfm);
803 804 805 806

	cryptd_child = cryptd_aead_child(cryptd_tfm);
	child_ctx = aesni_rfc4106_gcm_ctx_get(cryptd_child);
	memcpy(child_ctx, ctx, sizeof(*ctx));
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
	ctx->cryptd_tfm = cryptd_tfm;
	tfm->crt_aead.reqsize = sizeof(struct aead_request)
		+ crypto_aead_reqsize(&cryptd_tfm->base);
	return 0;
}

static void rfc4106_exit(struct crypto_tfm *tfm)
{
	struct aesni_rfc4106_gcm_ctx *ctx =
		(struct aesni_rfc4106_gcm_ctx *)
		PTR_ALIGN((u8 *)crypto_tfm_ctx(tfm), AESNI_ALIGN);
	if (!IS_ERR(ctx->cryptd_tfm))
		cryptd_free_aead(ctx->cryptd_tfm);
	return;
}

static void
rfc4106_set_hash_subkey_done(struct crypto_async_request *req, int err)
{
	struct aesni_gcm_set_hash_subkey_result *result = req->data;

	if (err == -EINPROGRESS)
		return;
	result->err = err;
	complete(&result->completion);
}

static int
rfc4106_set_hash_subkey(u8 *hash_subkey, const u8 *key, unsigned int key_len)
{
	struct crypto_ablkcipher *ctr_tfm;
	struct ablkcipher_request *req;
	int ret = -EINVAL;
	struct aesni_hash_subkey_req_data *req_data;

	ctr_tfm = crypto_alloc_ablkcipher("ctr(aes)", 0, 0);
	if (IS_ERR(ctr_tfm))
		return PTR_ERR(ctr_tfm);

	crypto_ablkcipher_clear_flags(ctr_tfm, ~0);

	ret = crypto_ablkcipher_setkey(ctr_tfm, key, key_len);
849
	if (ret)
850
		goto out_free_ablkcipher;
851

852
	ret = -ENOMEM;
853
	req = ablkcipher_request_alloc(ctr_tfm, GFP_KERNEL);
854
	if (!req)
855
		goto out_free_ablkcipher;
856 857

	req_data = kmalloc(sizeof(*req_data), GFP_KERNEL);
858
	if (!req_data)
859
		goto out_free_request;
860

861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
	memset(req_data->iv, 0, sizeof(req_data->iv));

	/* Clear the data in the hash sub key container to zero.*/
	/* We want to cipher all zeros to create the hash sub key. */
	memset(hash_subkey, 0, RFC4106_HASH_SUBKEY_SIZE);

	init_completion(&req_data->result.completion);
	sg_init_one(&req_data->sg, hash_subkey, RFC4106_HASH_SUBKEY_SIZE);
	ablkcipher_request_set_tfm(req, ctr_tfm);
	ablkcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
					CRYPTO_TFM_REQ_MAY_BACKLOG,
					rfc4106_set_hash_subkey_done,
					&req_data->result);

	ablkcipher_request_set_crypt(req, &req_data->sg,
		&req_data->sg, RFC4106_HASH_SUBKEY_SIZE, req_data->iv);

	ret = crypto_ablkcipher_encrypt(req);
	if (ret == -EINPROGRESS || ret == -EBUSY) {
		ret = wait_for_completion_interruptible
			(&req_data->result.completion);
		if (!ret)
			ret = req_data->result.err;
	}
885
	kfree(req_data);
886
out_free_request:
887
	ablkcipher_request_free(req);
888
out_free_ablkcipher:
889 890 891 892
	crypto_free_ablkcipher(ctr_tfm);
	return ret;
}

893 894
static int common_rfc4106_set_key(struct crypto_aead *aead, const u8 *key,
				  unsigned int key_len)
895 896
{
	int ret = 0;
897 898
	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(aead);
899
	u8 *new_key_align, *new_key_mem = NULL;
900 901 902 903 904 905 906

	if (key_len < 4) {
		crypto_tfm_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
		return -EINVAL;
	}
	/*Account for 4 byte nonce at the end.*/
	key_len -= 4;
907 908
	if (key_len != AES_KEYSIZE_128 && key_len != AES_KEYSIZE_192 &&
	    key_len != AES_KEYSIZE_256) {
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
		crypto_tfm_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
		return -EINVAL;
	}

	memcpy(ctx->nonce, key + key_len, sizeof(ctx->nonce));
	/*This must be on a 16 byte boundary!*/
	if ((unsigned long)(&(ctx->aes_key_expanded.key_enc[0])) % AESNI_ALIGN)
		return -EINVAL;

	if ((unsigned long)key % AESNI_ALIGN) {
		/*key is not aligned: use an auxuliar aligned pointer*/
		new_key_mem = kmalloc(key_len+AESNI_ALIGN, GFP_KERNEL);
		if (!new_key_mem)
			return -ENOMEM;

924 925 926
		new_key_align = PTR_ALIGN(new_key_mem, AESNI_ALIGN);
		memcpy(new_key_align, key, key_len);
		key = new_key_align;
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
	}

	if (!irq_fpu_usable())
		ret = crypto_aes_expand_key(&(ctx->aes_key_expanded),
		key, key_len);
	else {
		kernel_fpu_begin();
		ret = aesni_set_key(&(ctx->aes_key_expanded), key, key_len);
		kernel_fpu_end();
	}
	/*This must be on a 16 byte boundary!*/
	if ((unsigned long)(&(ctx->hash_subkey[0])) % AESNI_ALIGN) {
		ret = -EINVAL;
		goto exit;
	}
	ret = rfc4106_set_hash_subkey(ctx->hash_subkey, key, key_len);
exit:
	kfree(new_key_mem);
	return ret;
}

948 949
static int rfc4106_set_key(struct crypto_aead *parent, const u8 *key,
			   unsigned int key_len)
950 951
{
	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(parent);
952 953 954 955
	struct crypto_aead *child = cryptd_aead_child(ctx->cryptd_tfm);
	struct aesni_rfc4106_gcm_ctx *c_ctx = aesni_rfc4106_gcm_ctx_get(child);
	struct cryptd_aead *cryptd_tfm = ctx->cryptd_tfm;
	int ret;
956

957 958 959 960 961 962 963 964 965 966 967
	ret = crypto_aead_setkey(child, key, key_len);
	if (!ret) {
		memcpy(ctx, c_ctx, sizeof(*ctx));
		ctx->cryptd_tfm = cryptd_tfm;
	}
	return ret;
}

static int common_rfc4106_set_authsize(struct crypto_aead *aead,
				       unsigned int authsize)
{
968 969 970 971 972 973 974 975
	switch (authsize) {
	case 8:
	case 12:
	case 16:
		break;
	default:
		return -EINVAL;
	}
976
	crypto_aead_crt(aead)->authsize = authsize;
977 978 979
	return 0;
}

980 981 982 983
/* This is the Integrity Check Value (aka the authentication tag length and can
 * be 8, 12 or 16 bytes long. */
static int rfc4106_set_authsize(struct crypto_aead *parent,
				unsigned int authsize)
984
{
985 986
	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(parent);
	struct crypto_aead *child = cryptd_aead_child(ctx->cryptd_tfm);
987 988
	int ret;

989 990 991 992
	ret = crypto_aead_setauthsize(child, authsize);
	if (!ret)
		crypto_aead_crt(parent)->authsize = authsize;
	return ret;
993 994 995 996 997 998 999 1000 1001
}

static int __driver_rfc4106_encrypt(struct aead_request *req)
{
	u8 one_entry_in_sg = 0;
	u8 *src, *dst, *assoc;
	__be32 counter = cpu_to_be32(1);
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
1002
	u32 key_len = ctx->aes_key_expanded.key_length;
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
	void *aes_ctx = &(ctx->aes_key_expanded);
	unsigned long auth_tag_len = crypto_aead_authsize(tfm);
	u8 iv_tab[16+AESNI_ALIGN];
	u8* iv = (u8 *) PTR_ALIGN((u8 *)iv_tab, AESNI_ALIGN);
	struct scatter_walk src_sg_walk;
	struct scatter_walk assoc_sg_walk;
	struct scatter_walk dst_sg_walk;
	unsigned int i;

	/* Assuming we are supporting rfc4106 64-bit extended */
	/* sequence numbers We need to have the AAD length equal */
	/* to 8 or 12 bytes */
	if (unlikely(req->assoclen != 8 && req->assoclen != 12))
		return -EINVAL;
1017 1018 1019 1020 1021 1022 1023
	if (unlikely(auth_tag_len != 8 && auth_tag_len != 12 && auth_tag_len != 16))
	        return -EINVAL;
	if (unlikely(key_len != AES_KEYSIZE_128 &&
	             key_len != AES_KEYSIZE_192 &&
	             key_len != AES_KEYSIZE_256))
	        return -EINVAL;

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
	/* IV below built */
	for (i = 0; i < 4; i++)
		*(iv+i) = ctx->nonce[i];
	for (i = 0; i < 8; i++)
		*(iv+4+i) = req->iv[i];
	*((__be32 *)(iv+12)) = counter;

	if ((sg_is_last(req->src)) && (sg_is_last(req->assoc))) {
		one_entry_in_sg = 1;
		scatterwalk_start(&src_sg_walk, req->src);
		scatterwalk_start(&assoc_sg_walk, req->assoc);
1035 1036
		src = scatterwalk_map(&src_sg_walk);
		assoc = scatterwalk_map(&assoc_sg_walk);
1037 1038 1039
		dst = src;
		if (unlikely(req->src != req->dst)) {
			scatterwalk_start(&dst_sg_walk, req->dst);
1040
			dst = scatterwalk_map(&dst_sg_walk);
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
		}

	} else {
		/* Allocate memory for src, dst, assoc */
		src = kmalloc(req->cryptlen + auth_tag_len + req->assoclen,
			GFP_ATOMIC);
		if (unlikely(!src))
			return -ENOMEM;
		assoc = (src + req->cryptlen + auth_tag_len);
		scatterwalk_map_and_copy(src, req->src, 0, req->cryptlen, 0);
		scatterwalk_map_and_copy(assoc, req->assoc, 0,
					req->assoclen, 0);
		dst = src;
	}

1056
	aesni_gcm_enc_tfm(aes_ctx, dst, src, (unsigned long)req->cryptlen, iv,
1057 1058 1059 1060 1061 1062 1063
		ctx->hash_subkey, assoc, (unsigned long)req->assoclen, dst
		+ ((unsigned long)req->cryptlen), auth_tag_len);

	/* The authTag (aka the Integrity Check Value) needs to be written
	 * back to the packet. */
	if (one_entry_in_sg) {
		if (unlikely(req->src != req->dst)) {
1064
			scatterwalk_unmap(dst);
1065 1066
			scatterwalk_done(&dst_sg_walk, 0, 0);
		}
1067 1068
		scatterwalk_unmap(src);
		scatterwalk_unmap(assoc);
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
		scatterwalk_done(&src_sg_walk, 0, 0);
		scatterwalk_done(&assoc_sg_walk, 0, 0);
	} else {
		scatterwalk_map_and_copy(dst, req->dst, 0,
			req->cryptlen + auth_tag_len, 1);
		kfree(src);
	}
	return 0;
}

static int __driver_rfc4106_decrypt(struct aead_request *req)
{
	u8 one_entry_in_sg = 0;
	u8 *src, *dst, *assoc;
	unsigned long tempCipherLen = 0;
	__be32 counter = cpu_to_be32(1);
	int retval = 0;
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
1088
	u32 key_len = ctx->aes_key_expanded.key_length;
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
	void *aes_ctx = &(ctx->aes_key_expanded);
	unsigned long auth_tag_len = crypto_aead_authsize(tfm);
	u8 iv_and_authTag[32+AESNI_ALIGN];
	u8 *iv = (u8 *) PTR_ALIGN((u8 *)iv_and_authTag, AESNI_ALIGN);
	u8 *authTag = iv + 16;
	struct scatter_walk src_sg_walk;
	struct scatter_walk assoc_sg_walk;
	struct scatter_walk dst_sg_walk;
	unsigned int i;

	if (unlikely((req->cryptlen < auth_tag_len) ||
		(req->assoclen != 8 && req->assoclen != 12)))
		return -EINVAL;
1102 1103 1104 1105 1106 1107 1108
	if (unlikely(auth_tag_len != 8 && auth_tag_len != 12 && auth_tag_len != 16))
	        return -EINVAL;
	if (unlikely(key_len != AES_KEYSIZE_128 &&
	             key_len != AES_KEYSIZE_192 &&
	             key_len != AES_KEYSIZE_256))
	        return -EINVAL;

1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
	/* Assuming we are supporting rfc4106 64-bit extended */
	/* sequence numbers We need to have the AAD length */
	/* equal to 8 or 12 bytes */

	tempCipherLen = (unsigned long)(req->cryptlen - auth_tag_len);
	/* IV below built */
	for (i = 0; i < 4; i++)
		*(iv+i) = ctx->nonce[i];
	for (i = 0; i < 8; i++)
		*(iv+4+i) = req->iv[i];
	*((__be32 *)(iv+12)) = counter;

	if ((sg_is_last(req->src)) && (sg_is_last(req->assoc))) {
		one_entry_in_sg = 1;
		scatterwalk_start(&src_sg_walk, req->src);
		scatterwalk_start(&assoc_sg_walk, req->assoc);
1125 1126
		src = scatterwalk_map(&src_sg_walk);
		assoc = scatterwalk_map(&assoc_sg_walk);
1127 1128 1129
		dst = src;
		if (unlikely(req->src != req->dst)) {
			scatterwalk_start(&dst_sg_walk, req->dst);
1130
			dst = scatterwalk_map(&dst_sg_walk);
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
		}

	} else {
		/* Allocate memory for src, dst, assoc */
		src = kmalloc(req->cryptlen + req->assoclen, GFP_ATOMIC);
		if (!src)
			return -ENOMEM;
		assoc = (src + req->cryptlen + auth_tag_len);
		scatterwalk_map_and_copy(src, req->src, 0, req->cryptlen, 0);
		scatterwalk_map_and_copy(assoc, req->assoc, 0,
			req->assoclen, 0);
		dst = src;
	}

1145
	aesni_gcm_dec_tfm(aes_ctx, dst, src, tempCipherLen, iv,
1146 1147 1148 1149
		ctx->hash_subkey, assoc, (unsigned long)req->assoclen,
		authTag, auth_tag_len);

	/* Compare generated tag with passed in tag. */
1150
	retval = crypto_memneq(src + tempCipherLen, authTag, auth_tag_len) ?
1151 1152 1153 1154
		-EBADMSG : 0;

	if (one_entry_in_sg) {
		if (unlikely(req->src != req->dst)) {
1155
			scatterwalk_unmap(dst);
1156 1157
			scatterwalk_done(&dst_sg_walk, 0, 0);
		}
1158 1159
		scatterwalk_unmap(src);
		scatterwalk_unmap(assoc);
1160 1161 1162 1163 1164 1165 1166 1167
		scatterwalk_done(&src_sg_walk, 0, 0);
		scatterwalk_done(&assoc_sg_walk, 0, 0);
	} else {
		scatterwalk_map_and_copy(dst, req->dst, 0, req->cryptlen, 1);
		kfree(src);
	}
	return retval;
}
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239

static int rfc4106_encrypt(struct aead_request *req)
{
	int ret;
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);

	if (!irq_fpu_usable()) {
		struct aead_request *cryptd_req =
			(struct aead_request *) aead_request_ctx(req);

		memcpy(cryptd_req, req, sizeof(*req));
		aead_request_set_tfm(cryptd_req, &ctx->cryptd_tfm->base);
		ret = crypto_aead_encrypt(cryptd_req);
	} else {
		kernel_fpu_begin();
		ret = __driver_rfc4106_encrypt(req);
		kernel_fpu_end();
	}
	return ret;
}

static int rfc4106_decrypt(struct aead_request *req)
{
	int ret;
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);

	if (!irq_fpu_usable()) {
		struct aead_request *cryptd_req =
			(struct aead_request *) aead_request_ctx(req);

		memcpy(cryptd_req, req, sizeof(*req));
		aead_request_set_tfm(cryptd_req, &ctx->cryptd_tfm->base);
		ret = crypto_aead_decrypt(cryptd_req);
	} else {
		kernel_fpu_begin();
		ret = __driver_rfc4106_decrypt(req);
		kernel_fpu_end();
	}
	return ret;
}

static int helper_rfc4106_encrypt(struct aead_request *req)
{
	int ret;

	if (unlikely(!irq_fpu_usable())) {
		WARN_ONCE(1, "__gcm-aes-aesni alg used in invalid context");
		ret = -EINVAL;
	} else {
		kernel_fpu_begin();
		ret = __driver_rfc4106_encrypt(req);
		kernel_fpu_end();
	}
	return ret;
}

static int helper_rfc4106_decrypt(struct aead_request *req)
{
	int ret;

	if (unlikely(!irq_fpu_usable())) {
		WARN_ONCE(1, "__gcm-aes-aesni alg used in invalid context");
		ret = -EINVAL;
	} else {
		kernel_fpu_begin();
		ret = __driver_rfc4106_decrypt(req);
		kernel_fpu_end();
	}
	return ret;
}
1240
#endif
1241

1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
static struct crypto_alg aesni_algs[] = { {
	.cra_name		= "aes",
	.cra_driver_name	= "aes-aesni",
	.cra_priority		= 300,
	.cra_flags		= CRYPTO_ALG_TYPE_CIPHER,
	.cra_blocksize		= AES_BLOCK_SIZE,
	.cra_ctxsize		= sizeof(struct crypto_aes_ctx) +
				  AESNI_ALIGN - 1,
	.cra_alignmask		= 0,
	.cra_module		= THIS_MODULE,
	.cra_u	= {
		.cipher	= {
			.cia_min_keysize	= AES_MIN_KEY_SIZE,
			.cia_max_keysize	= AES_MAX_KEY_SIZE,
			.cia_setkey		= aes_set_key,
			.cia_encrypt		= aes_encrypt,
			.cia_decrypt		= aes_decrypt
		}
	}
}, {
	.cra_name		= "__aes-aesni",
	.cra_driver_name	= "__driver-aes-aesni",
	.cra_priority		= 0,
	.cra_flags		= CRYPTO_ALG_TYPE_CIPHER,
	.cra_blocksize		= AES_BLOCK_SIZE,
	.cra_ctxsize		= sizeof(struct crypto_aes_ctx) +
				  AESNI_ALIGN - 1,
	.cra_alignmask		= 0,
	.cra_module		= THIS_MODULE,
	.cra_u	= {
		.cipher	= {
			.cia_min_keysize	= AES_MIN_KEY_SIZE,
			.cia_max_keysize	= AES_MAX_KEY_SIZE,
			.cia_setkey		= aes_set_key,
			.cia_encrypt		= __aes_encrypt,
			.cia_decrypt		= __aes_decrypt
		}
	}
}, {
	.cra_name		= "__ecb-aes-aesni",
	.cra_driver_name	= "__driver-ecb-aes-aesni",
	.cra_priority		= 0,
	.cra_flags		= CRYPTO_ALG_TYPE_BLKCIPHER,
	.cra_blocksize		= AES_BLOCK_SIZE,
	.cra_ctxsize		= sizeof(struct crypto_aes_ctx) +
				  AESNI_ALIGN - 1,
	.cra_alignmask		= 0,
	.cra_type		= &crypto_blkcipher_type,
	.cra_module		= THIS_MODULE,
	.cra_u = {
		.blkcipher = {
			.min_keysize	= AES_MIN_KEY_SIZE,
			.max_keysize	= AES_MAX_KEY_SIZE,
			.setkey		= aes_set_key,
			.encrypt	= ecb_encrypt,
			.decrypt	= ecb_decrypt,
		},
	},
}, {
	.cra_name		= "__cbc-aes-aesni",
	.cra_driver_name	= "__driver-cbc-aes-aesni",
	.cra_priority		= 0,
	.cra_flags		= CRYPTO_ALG_TYPE_BLKCIPHER,
	.cra_blocksize		= AES_BLOCK_SIZE,
	.cra_ctxsize		= sizeof(struct crypto_aes_ctx) +
				  AESNI_ALIGN - 1,
	.cra_alignmask		= 0,
	.cra_type		= &crypto_blkcipher_type,
	.cra_module		= THIS_MODULE,
	.cra_u = {
		.blkcipher = {
			.min_keysize	= AES_MIN_KEY_SIZE,
			.max_keysize	= AES_MAX_KEY_SIZE,
			.setkey		= aes_set_key,
			.encrypt	= cbc_encrypt,
			.decrypt	= cbc_decrypt,
		},
	},
}, {
	.cra_name		= "ecb(aes)",
	.cra_driver_name	= "ecb-aes-aesni",
	.cra_priority		= 400,
	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
	.cra_blocksize		= AES_BLOCK_SIZE,
1326
	.cra_ctxsize		= sizeof(struct async_helper_ctx),
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
	.cra_alignmask		= 0,
	.cra_type		= &crypto_ablkcipher_type,
	.cra_module		= THIS_MODULE,
	.cra_init		= ablk_ecb_init,
	.cra_exit		= ablk_exit,
	.cra_u = {
		.ablkcipher = {
			.min_keysize	= AES_MIN_KEY_SIZE,
			.max_keysize	= AES_MAX_KEY_SIZE,
			.setkey		= ablk_set_key,
			.encrypt	= ablk_encrypt,
			.decrypt	= ablk_decrypt,
		},
	},
}, {
	.cra_name		= "cbc(aes)",
	.cra_driver_name	= "cbc-aes-aesni",
	.cra_priority		= 400,
	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
	.cra_blocksize		= AES_BLOCK_SIZE,
1347
	.cra_ctxsize		= sizeof(struct async_helper_ctx),
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
	.cra_alignmask		= 0,
	.cra_type		= &crypto_ablkcipher_type,
	.cra_module		= THIS_MODULE,
	.cra_init		= ablk_cbc_init,
	.cra_exit		= ablk_exit,
	.cra_u = {
		.ablkcipher = {
			.min_keysize	= AES_MIN_KEY_SIZE,
			.max_keysize	= AES_MAX_KEY_SIZE,
			.ivsize		= AES_BLOCK_SIZE,
			.setkey		= ablk_set_key,
			.encrypt	= ablk_encrypt,
			.decrypt	= ablk_decrypt,
		},
	},
#ifdef CONFIG_X86_64
}, {
	.cra_name		= "__ctr-aes-aesni",
	.cra_driver_name	= "__driver-ctr-aes-aesni",
	.cra_priority		= 0,
	.cra_flags		= CRYPTO_ALG_TYPE_BLKCIPHER,
	.cra_blocksize		= 1,
	.cra_ctxsize		= sizeof(struct crypto_aes_ctx) +
				  AESNI_ALIGN - 1,
	.cra_alignmask		= 0,
	.cra_type		= &crypto_blkcipher_type,
	.cra_module		= THIS_MODULE,
	.cra_u = {
		.blkcipher = {
			.min_keysize	= AES_MIN_KEY_SIZE,
			.max_keysize	= AES_MAX_KEY_SIZE,
			.ivsize		= AES_BLOCK_SIZE,
			.setkey		= aes_set_key,
			.encrypt	= ctr_crypt,
			.decrypt	= ctr_crypt,
		},
	},
}, {
	.cra_name		= "ctr(aes)",
	.cra_driver_name	= "ctr-aes-aesni",
	.cra_priority		= 400,
	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
	.cra_blocksize		= 1,
1391
	.cra_ctxsize		= sizeof(struct async_helper_ctx),
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
	.cra_alignmask		= 0,
	.cra_type		= &crypto_ablkcipher_type,
	.cra_module		= THIS_MODULE,
	.cra_init		= ablk_ctr_init,
	.cra_exit		= ablk_exit,
	.cra_u = {
		.ablkcipher = {
			.min_keysize	= AES_MIN_KEY_SIZE,
			.max_keysize	= AES_MAX_KEY_SIZE,
			.ivsize		= AES_BLOCK_SIZE,
			.setkey		= ablk_set_key,
			.encrypt	= ablk_encrypt,
			.decrypt	= ablk_encrypt,
			.geniv		= "chainiv",
		},
	},
}, {
	.cra_name		= "__gcm-aes-aesni",
	.cra_driver_name	= "__driver-gcm-aes-aesni",
1411 1412 1413
	.cra_priority		= 0,
	.cra_flags		= CRYPTO_ALG_TYPE_AEAD,
	.cra_blocksize		= 1,
1414 1415
	.cra_ctxsize		= sizeof(struct aesni_rfc4106_gcm_ctx) +
				  AESNI_ALIGN,
1416 1417 1418 1419 1420
	.cra_alignmask		= 0,
	.cra_type		= &crypto_aead_type,
	.cra_module		= THIS_MODULE,
	.cra_u = {
		.aead = {
1421 1422 1423 1424 1425 1426
			.setkey		= common_rfc4106_set_key,
			.setauthsize	= common_rfc4106_set_authsize,
			.encrypt	= helper_rfc4106_encrypt,
			.decrypt	= helper_rfc4106_decrypt,
			.ivsize		= 8,
			.maxauthsize	= 16,
1427 1428
		},
	},
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
}, {
	.cra_name		= "rfc4106(gcm(aes))",
	.cra_driver_name	= "rfc4106-gcm-aesni",
	.cra_priority		= 400,
	.cra_flags		= CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
	.cra_blocksize		= 1,
	.cra_ctxsize		= sizeof(struct aesni_rfc4106_gcm_ctx) +
				  AESNI_ALIGN,
	.cra_alignmask		= 0,
	.cra_type		= &crypto_nivaead_type,
	.cra_module		= THIS_MODULE,
	.cra_init		= rfc4106_init,
	.cra_exit		= rfc4106_exit,
	.cra_u = {
		.aead = {
			.setkey		= rfc4106_set_key,
			.setauthsize	= rfc4106_set_authsize,
			.encrypt	= rfc4106_encrypt,
			.decrypt	= rfc4106_decrypt,
			.geniv		= "seqiv",
			.ivsize		= 8,
			.maxauthsize	= 16,
		},
	},
#endif
1454
#if IS_ENABLED(CONFIG_CRYPTO_PCBC)
1455
}, {
1456 1457
	.cra_name		= "pcbc(aes)",
	.cra_driver_name	= "pcbc-aes-aesni",
1458 1459 1460
	.cra_priority		= 400,
	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
	.cra_blocksize		= AES_BLOCK_SIZE,
1461
	.cra_ctxsize		= sizeof(struct async_helper_ctx),
1462 1463 1464
	.cra_alignmask		= 0,
	.cra_type		= &crypto_ablkcipher_type,
	.cra_module		= THIS_MODULE,
1465
	.cra_init		= ablk_pcbc_init,
1466 1467 1468
	.cra_exit		= ablk_exit,
	.cra_u = {
		.ablkcipher = {
1469 1470
			.min_keysize	= AES_MIN_KEY_SIZE,
			.max_keysize	= AES_MAX_KEY_SIZE,
1471 1472 1473 1474 1475 1476 1477 1478
			.ivsize		= AES_BLOCK_SIZE,
			.setkey		= ablk_set_key,
			.encrypt	= ablk_encrypt,
			.decrypt	= ablk_decrypt,
		},
	},
#endif
}, {
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
	.cra_name		= "__lrw-aes-aesni",
	.cra_driver_name	= "__driver-lrw-aes-aesni",
	.cra_priority		= 0,
	.cra_flags		= CRYPTO_ALG_TYPE_BLKCIPHER,
	.cra_blocksize		= AES_BLOCK_SIZE,
	.cra_ctxsize		= sizeof(struct aesni_lrw_ctx),
	.cra_alignmask		= 0,
	.cra_type		= &crypto_blkcipher_type,
	.cra_module		= THIS_MODULE,
	.cra_exit		= lrw_aesni_exit_tfm,
	.cra_u = {
		.blkcipher = {
			.min_keysize	= AES_MIN_KEY_SIZE + AES_BLOCK_SIZE,
			.max_keysize	= AES_MAX_KEY_SIZE + AES_BLOCK_SIZE,
			.ivsize		= AES_BLOCK_SIZE,
			.setkey		= lrw_aesni_setkey,
			.encrypt	= lrw_encrypt,
			.decrypt	= lrw_decrypt,
		},
	},
}, {
	.cra_name		= "__xts-aes-aesni",
	.cra_driver_name	= "__driver-xts-aes-aesni",
	.cra_priority		= 0,
	.cra_flags		= CRYPTO_ALG_TYPE_BLKCIPHER,
	.cra_blocksize		= AES_BLOCK_SIZE,
	.cra_ctxsize		= sizeof(struct aesni_xts_ctx),
	.cra_alignmask		= 0,
	.cra_type		= &crypto_blkcipher_type,
	.cra_module		= THIS_MODULE,
	.cra_u = {
		.blkcipher = {
			.min_keysize	= 2 * AES_MIN_KEY_SIZE,
			.max_keysize	= 2 * AES_MAX_KEY_SIZE,
			.ivsize		= AES_BLOCK_SIZE,
			.setkey		= xts_aesni_setkey,
			.encrypt	= xts_encrypt,
			.decrypt	= xts_decrypt,
		},
	},
}, {
	.cra_name		= "lrw(aes)",
	.cra_driver_name	= "lrw-aes-aesni",
1522 1523 1524
	.cra_priority		= 400,
	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
	.cra_blocksize		= AES_BLOCK_SIZE,
1525
	.cra_ctxsize		= sizeof(struct async_helper_ctx),
1526 1527 1528
	.cra_alignmask		= 0,
	.cra_type		= &crypto_ablkcipher_type,
	.cra_module		= THIS_MODULE,
1529
	.cra_init		= ablk_init,
1530 1531 1532
	.cra_exit		= ablk_exit,
	.cra_u = {
		.ablkcipher = {
1533 1534
			.min_keysize	= AES_MIN_KEY_SIZE + AES_BLOCK_SIZE,
			.max_keysize	= AES_MAX_KEY_SIZE + AES_BLOCK_SIZE,
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
			.ivsize		= AES_BLOCK_SIZE,
			.setkey		= ablk_set_key,
			.encrypt	= ablk_encrypt,
			.decrypt	= ablk_decrypt,
		},
	},
}, {
	.cra_name		= "xts(aes)",
	.cra_driver_name	= "xts-aes-aesni",
	.cra_priority		= 400,
	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
	.cra_blocksize		= AES_BLOCK_SIZE,
1547
	.cra_ctxsize		= sizeof(struct async_helper_ctx),
1548 1549 1550
	.cra_alignmask		= 0,
	.cra_type		= &crypto_ablkcipher_type,
	.cra_module		= THIS_MODULE,
1551
	.cra_init		= ablk_init,
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
	.cra_exit		= ablk_exit,
	.cra_u = {
		.ablkcipher = {
			.min_keysize	= 2 * AES_MIN_KEY_SIZE,
			.max_keysize	= 2 * AES_MAX_KEY_SIZE,
			.ivsize		= AES_BLOCK_SIZE,
			.setkey		= ablk_set_key,
			.encrypt	= ablk_encrypt,
			.decrypt	= ablk_decrypt,
		},
	},
} };
1564

1565 1566 1567 1568 1569 1570 1571

static const struct x86_cpu_id aesni_cpu_id[] = {
	X86_FEATURE_MATCH(X86_FEATURE_AES),
	{}
};
MODULE_DEVICE_TABLE(x86cpu, aesni_cpu_id);

1572 1573
static int __init aesni_init(void)
{
1574
	int err;
1575

1576
	if (!x86_match_cpu(aesni_cpu_id))
1577
		return -ENODEV;
1578
#ifdef CONFIG_X86_64
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
#ifdef CONFIG_AS_AVX2
	if (boot_cpu_has(X86_FEATURE_AVX2)) {
		pr_info("AVX2 version of gcm_enc/dec engaged.\n");
		aesni_gcm_enc_tfm = aesni_gcm_enc_avx2;
		aesni_gcm_dec_tfm = aesni_gcm_dec_avx2;
	} else
#endif
#ifdef CONFIG_AS_AVX
	if (boot_cpu_has(X86_FEATURE_AVX)) {
		pr_info("AVX version of gcm_enc/dec engaged.\n");
		aesni_gcm_enc_tfm = aesni_gcm_enc_avx;
		aesni_gcm_dec_tfm = aesni_gcm_dec_avx;
	} else
#endif
	{
		pr_info("SSE version of gcm_enc/dec engaged.\n");
		aesni_gcm_enc_tfm = aesni_gcm_enc;
		aesni_gcm_dec_tfm = aesni_gcm_dec;
	}
1598
	aesni_ctr_enc_tfm = aesni_ctr_enc;
1599
#ifdef CONFIG_AS_AVX
1600 1601 1602 1603 1604 1605
	if (cpu_has_avx) {
		/* optimize performance of ctr mode encryption transform */
		aesni_ctr_enc_tfm = aesni_ctr_enc_avx_tfm;
		pr_info("AES CTR mode by8 optimization enabled\n");
	}
#endif
1606
#endif
1607

1608 1609 1610
	err = crypto_fpu_init();
	if (err)
		return err;
1611

1612
	return crypto_register_algs(aesni_algs, ARRAY_SIZE(aesni_algs));
1613 1614 1615 1616
}

static void __exit aesni_exit(void)
{
1617
	crypto_unregister_algs(aesni_algs, ARRAY_SIZE(aesni_algs));
1618 1619

	crypto_fpu_exit();
1620 1621 1622 1623 1624 1625 1626
}

module_init(aesni_init);
module_exit(aesni_exit);

MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm, Intel AES-NI instructions optimized");
MODULE_LICENSE("GPL");
1627
MODULE_ALIAS_CRYPTO("aes");