gk20a.c 12.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright (c) 2015, NVIDIA CORPORATION. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
/*
 * GK20A does not have dedicated video memory, and to accurately represent this
 * fact Nouveau will not create a RAM device for it. Therefore its instmem
 * implementation must be done directly on top of system memory, while providing
 * coherent read and write operations.
 *
 * Instmem can be allocated through two means:
 * 1) If an IOMMU mapping has been probed, the IOMMU API is used to make memory
 *    pages contiguous to the GPU. This is the preferred way.
 * 2) If no IOMMU mapping is probed, the DMA API is used to allocate physically
 *    contiguous memory.
 *
 * In both cases CPU read and writes are performed using PRAMIN (i.e. using the
 * GPU path) to ensure these operations are coherent for the GPU. This allows us
 * to use more "relaxed" allocation parameters when using the DMA API, since we
 * never need a kernel mapping.
 */

41 42 43 44
#include <subdev/fb.h>
#include <core/mm.h>
#include <core/device.h>

45 46
#ifdef __KERNEL__
#include <linux/dma-attrs.h>
47 48
#include <linux/iommu.h>
#include <nouveau_platform.h>
49 50
#endif

51 52 53 54 55 56 57 58
#include "priv.h"

struct gk20a_instobj_priv {
	struct nvkm_instobj base;
	/* Must be second member here - see nouveau_gpuobj_map_vm() */
	struct nvkm_mem *mem;
	/* Pointed by mem */
	struct nvkm_mem _mem;
59 60 61 62 63 64 65 66
};

/*
 * Used for objects allocated using the DMA API
 */
struct gk20a_instobj_dma {
	struct gk20a_instobj_priv base;

67 68 69 70 71
	void *cpuaddr;
	dma_addr_t handle;
	struct nvkm_mm_node r;
};

72 73 74 75 76 77 78 79 80 81
/*
 * Used for objects flattened using the IOMMU API
 */
struct gk20a_instobj_iommu {
	struct gk20a_instobj_priv base;

	/* array of base.mem->size pages */
	struct page *pages[];
};

82 83 84 85
struct gk20a_instmem_priv {
	struct nvkm_instmem base;
	spinlock_t lock;
	u64 addr;
86 87 88 89 90 91 92 93

	/* Only used if IOMMU if present */
	struct mutex *mm_mutex;
	struct nvkm_mm *mm;
	struct iommu_domain *domain;
	unsigned long iommu_pgshift;

	/* Only used by DMA API */
94
	struct dma_attrs attrs;
95 96
};

97 98 99 100 101 102 103 104 105
/*
 * Use PRAMIN to read/write data and avoid coherency issues.
 * PRAMIN uses the GPU path and ensures data will always be coherent.
 *
 * A dynamic mapping based solution would be desirable in the future, but
 * the issue remains of how to maintain coherency efficiently. On ARM it is
 * not easy (if possible at all?) to create uncached temporary mappings.
 */

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
static u32
gk20a_instobj_rd32(struct nvkm_object *object, u64 offset)
{
	struct gk20a_instmem_priv *priv = (void *)nvkm_instmem(object);
	struct gk20a_instobj_priv *node = (void *)object;
	unsigned long flags;
	u64 base = (node->mem->offset + offset) & 0xffffff00000ULL;
	u64 addr = (node->mem->offset + offset) & 0x000000fffffULL;
	u32 data;

	spin_lock_irqsave(&priv->lock, flags);
	if (unlikely(priv->addr != base)) {
		nv_wr32(priv, 0x001700, base >> 16);
		priv->addr = base;
	}
	data = nv_rd32(priv, 0x700000 + addr);
	spin_unlock_irqrestore(&priv->lock, flags);
	return data;
}

static void
gk20a_instobj_wr32(struct nvkm_object *object, u64 offset, u32 data)
{
	struct gk20a_instmem_priv *priv = (void *)nvkm_instmem(object);
	struct gk20a_instobj_priv *node = (void *)object;
	unsigned long flags;
	u64 base = (node->mem->offset + offset) & 0xffffff00000ULL;
	u64 addr = (node->mem->offset + offset) & 0x000000fffffULL;

	spin_lock_irqsave(&priv->lock, flags);
	if (unlikely(priv->addr != base)) {
		nv_wr32(priv, 0x001700, base >> 16);
		priv->addr = base;
	}
	nv_wr32(priv, 0x700000 + addr, data);
	spin_unlock_irqrestore(&priv->lock, flags);
}

static void
145
gk20a_instobj_dtor_dma(struct gk20a_instobj_priv *_node)
146
{
147
	struct gk20a_instobj_dma *node = (void *)_node;
148 149 150 151 152 153
	struct gk20a_instmem_priv *priv = (void *)nvkm_instmem(node);
	struct device *dev = nv_device_base(nv_device(priv));

	if (unlikely(!node->handle))
		return;

154
	dma_free_attrs(dev, _node->mem->size << PAGE_SHIFT, node->cpuaddr,
155
		       node->handle, &priv->attrs);
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
}

static void
gk20a_instobj_dtor_iommu(struct gk20a_instobj_priv *_node)
{
	struct gk20a_instobj_iommu *node = (void *)_node;
	struct gk20a_instmem_priv *priv = (void *)nvkm_instmem(node);
	struct nvkm_mm_node *r;
	int i;

	if (unlikely(list_empty(&_node->mem->regions)))
		return;

	r = list_first_entry(&_node->mem->regions, struct nvkm_mm_node,
			     rl_entry);

	/* clear bit 34 to unmap pages */
	r->offset &= ~BIT(34 - priv->iommu_pgshift);

	/* Unmap pages from GPU address space and free them */
	for (i = 0; i < _node->mem->size; i++) {
		iommu_unmap(priv->domain,
			    (r->offset + i) << priv->iommu_pgshift, PAGE_SIZE);
		__free_page(node->pages[i]);
	}

	/* Release area from GPU address space */
	mutex_lock(priv->mm_mutex);
	nvkm_mm_free(priv->mm, &r);
	mutex_unlock(priv->mm_mutex);
}

static void
gk20a_instobj_dtor(struct nvkm_object *object)
{
	struct gk20a_instobj_priv *node = (void *)object;
	struct gk20a_instmem_priv *priv = (void *)nvkm_instmem(node);

	if (priv->domain)
		gk20a_instobj_dtor_iommu(node);
	else
		gk20a_instobj_dtor_dma(node);
198 199 200 201 202

	nvkm_instobj_destroy(&node->base);
}

static int
203 204 205
gk20a_instobj_ctor_dma(struct nvkm_object *parent, struct nvkm_object *engine,
		       struct nvkm_oclass *oclass, u32 npages, u32 align,
		       struct gk20a_instobj_priv **_node)
206
{
207
	struct gk20a_instobj_dma *node;
208
	struct gk20a_instmem_priv *priv = (void *)nvkm_instmem(parent);
209
	struct device *dev = nv_device_base(nv_device(parent));
210 211 212
	int ret;

	ret = nvkm_instobj_create_(parent, engine, oclass, sizeof(*node),
213 214
				   (void **)&node);
	*_node = &node->base;
215 216 217
	if (ret)
		return ret;

218 219 220
	node->cpuaddr = dma_alloc_attrs(dev, npages << PAGE_SHIFT,
					&node->handle, GFP_KERNEL,
					&priv->attrs);
221 222 223 224 225 226 227 228 229 230
	if (!node->cpuaddr) {
		nv_error(priv, "cannot allocate DMA memory\n");
		return -ENOMEM;
	}

	/* alignment check */
	if (unlikely(node->handle & (align - 1)))
		nv_warn(priv, "memory not aligned as requested: %pad (0x%x)\n",
			&node->handle, align);

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
	/* present memory for being mapped using small pages */
	node->r.type = 12;
	node->r.offset = node->handle >> 12;
	node->r.length = (npages << PAGE_SHIFT) >> 12;

	node->base._mem.offset = node->handle;

	INIT_LIST_HEAD(&node->base._mem.regions);
	list_add_tail(&node->r.rl_entry, &node->base._mem.regions);

	return 0;
}

static int
gk20a_instobj_ctor_iommu(struct nvkm_object *parent, struct nvkm_object *engine,
			 struct nvkm_oclass *oclass, u32 npages, u32 align,
			 struct gk20a_instobj_priv **_node)
{
	struct gk20a_instobj_iommu *node;
	struct gk20a_instmem_priv *priv = (void *)nvkm_instmem(parent);
	struct nvkm_mm_node *r;
	int ret;
	int i;

	ret = nvkm_instobj_create_(parent, engine, oclass,
				sizeof(*node) + sizeof(node->pages[0]) * npages,
				(void **)&node);
	*_node = &node->base;
	if (ret)
		return ret;

	/* Allocate backing memory */
	for (i = 0; i < npages; i++) {
		struct page *p = alloc_page(GFP_KERNEL);

		if (p == NULL) {
			ret = -ENOMEM;
			goto free_pages;
		}
		node->pages[i] = p;
	}

	mutex_lock(priv->mm_mutex);
	/* Reserve area from GPU address space */
	ret = nvkm_mm_head(priv->mm, 0, 1, npages, npages,
			   align >> priv->iommu_pgshift, &r);
	mutex_unlock(priv->mm_mutex);
	if (ret) {
		nv_error(priv, "virtual space is full!\n");
		goto free_pages;
	}

	/* Map into GPU address space */
	for (i = 0; i < npages; i++) {
		struct page *p = node->pages[i];
		u32 offset = (r->offset + i) << priv->iommu_pgshift;

		ret = iommu_map(priv->domain, offset, page_to_phys(p),
				PAGE_SIZE, IOMMU_READ | IOMMU_WRITE);
		if (ret < 0) {
			nv_error(priv, "IOMMU mapping failure: %d\n", ret);

			while (i-- > 0) {
				offset -= PAGE_SIZE;
				iommu_unmap(priv->domain, offset, PAGE_SIZE);
			}
			goto release_area;
		}
	}

	/* Bit 34 tells that an address is to be resolved through the IOMMU */
	r->offset |= BIT(34 - priv->iommu_pgshift);

	node->base._mem.offset = ((u64)r->offset) << priv->iommu_pgshift;

	INIT_LIST_HEAD(&node->base._mem.regions);
	list_add_tail(&r->rl_entry, &node->base._mem.regions);

	return 0;

release_area:
	mutex_lock(priv->mm_mutex);
	nvkm_mm_free(priv->mm, &r);
	mutex_unlock(priv->mm_mutex);

free_pages:
	for (i = 0; i < npages && node->pages[i] != NULL; i++)
		__free_page(node->pages[i]);

	return ret;
}

static int
gk20a_instobj_ctor(struct nvkm_object *parent, struct nvkm_object *engine,
		   struct nvkm_oclass *oclass, void *data, u32 _size,
		   struct nvkm_object **pobject)
{
	struct nvkm_instobj_args *args = data;
	struct gk20a_instmem_priv *priv = (void *)nvkm_instmem(parent);
	struct gk20a_instobj_priv *node;
	u32 size, align;
	int ret;

	nv_debug(parent, "%s (%s): size: %x align: %x\n", __func__,
		 priv->domain ? "IOMMU" : "DMA", args->size, args->align);

	/* Round size and align to page bounds */
	size = max(roundup(args->size, PAGE_SIZE), PAGE_SIZE);
	align = max(roundup(args->align, PAGE_SIZE), PAGE_SIZE);

	if (priv->domain)
		ret = gk20a_instobj_ctor_iommu(parent, engine, oclass,
					      size >> PAGE_SHIFT, align, &node);
	else
		ret = gk20a_instobj_ctor_dma(parent, engine, oclass,
					     size >> PAGE_SHIFT, align, &node);
	*pobject = nv_object(node);
	if (ret)
		return ret;

	node->mem = &node->_mem;

	/* present memory for being mapped using small pages */
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
	node->mem->size = size >> 12;
	node->mem->memtype = 0;
	node->mem->page_shift = 12;

	node->base.addr = node->mem->offset;
	node->base.size = size;

	nv_debug(parent, "alloc size: 0x%x, align: 0x%x, gaddr: 0x%llx\n",
		 size, align, node->mem->offset);

	return 0;
}

static struct nvkm_instobj_impl
gk20a_instobj_oclass = {
	.base.ofuncs = &(struct nvkm_ofuncs) {
		.ctor = gk20a_instobj_ctor,
		.dtor = gk20a_instobj_dtor,
		.init = _nvkm_instobj_init,
		.fini = _nvkm_instobj_fini,
		.rd32 = gk20a_instobj_rd32,
		.wr32 = gk20a_instobj_wr32,
	},
};



static int
gk20a_instmem_fini(struct nvkm_object *object, bool suspend)
{
	struct gk20a_instmem_priv *priv = (void *)object;
	priv->addr = ~0ULL;
	return nvkm_instmem_fini(&priv->base, suspend);
}

static int
gk20a_instmem_ctor(struct nvkm_object *parent, struct nvkm_object *engine,
		   struct nvkm_oclass *oclass, void *data, u32 size,
		   struct nvkm_object **pobject)
{
	struct gk20a_instmem_priv *priv;
395
	struct nouveau_platform_device *plat;
396 397 398 399 400 401 402 403 404
	int ret;

	ret = nvkm_instmem_create(parent, engine, oclass, &priv);
	*pobject = nv_object(priv);
	if (ret)
		return ret;

	spin_lock_init(&priv->lock);

405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
	plat = nv_device_to_platform(nv_device(parent));
	if (plat->gpu->iommu.domain) {
		priv->domain = plat->gpu->iommu.domain;
		priv->mm = plat->gpu->iommu.mm;
		priv->iommu_pgshift = plat->gpu->iommu.pgshift;
		priv->mm_mutex = &plat->gpu->iommu.mutex;

		nv_info(priv, "using IOMMU\n");
	} else {
		init_dma_attrs(&priv->attrs);
		/*
		 * We will access instmem through PRAMIN and thus do not need a
		 * consistent CPU pointer or kernel mapping
		 */
		dma_set_attr(DMA_ATTR_NON_CONSISTENT, &priv->attrs);
		dma_set_attr(DMA_ATTR_WEAK_ORDERING, &priv->attrs);
		dma_set_attr(DMA_ATTR_WRITE_COMBINE, &priv->attrs);
		dma_set_attr(DMA_ATTR_NO_KERNEL_MAPPING, &priv->attrs);

		nv_info(priv, "using DMA API\n");
	}
426

427 428 429 430 431 432 433 434 435 436 437 438 439 440
	return 0;
}

struct nvkm_oclass *
gk20a_instmem_oclass = &(struct nvkm_instmem_impl) {
	.base.handle = NV_SUBDEV(INSTMEM, 0xea),
	.base.ofuncs = &(struct nvkm_ofuncs) {
		.ctor = gk20a_instmem_ctor,
		.dtor = _nvkm_instmem_dtor,
		.init = _nvkm_instmem_init,
		.fini = gk20a_instmem_fini,
	},
	.instobj = &gk20a_instobj_oclass.base,
}.base;