iwl-calib.c 29.6 KB
Newer Older
1 2 3 4 5 6 7
/******************************************************************************
 *
 * This file is provided under a dual BSD/GPLv2 license.  When using or
 * redistributing this file, you may do so under either license.
 *
 * GPL LICENSE SUMMARY
 *
8
 * Copyright(c) 2008 - 2009 Intel Corporation. All rights reserved.
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
 * USA
 *
 * The full GNU General Public License is included in this distribution
 * in the file called LICENSE.GPL.
 *
 * Contact Information:
28
 *  Intel Linux Wireless <ilw@linux.intel.com>
29 30 31 32
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 * BSD LICENSE
 *
33
 * Copyright(c) 2005 - 2009 Intel Corporation. All rights reserved.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 *  * Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *  * Neither the name Intel Corporation nor the names of its
 *    contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *****************************************************************************/

#include <net/mac80211.h>

65
#include "iwl-dev.h"
66 67 68
#include "iwl-core.h"
#include "iwl-calib.h"

69 70 71 72
/*****************************************************************************
 * INIT calibrations framework
 *****************************************************************************/

W
Winkler, Tomas 已提交
73 74 75 76 77 78 79 80 81
struct statistics_general_data {
	u32 beacon_silence_rssi_a;
	u32 beacon_silence_rssi_b;
	u32 beacon_silence_rssi_c;
	u32 beacon_energy_a;
	u32 beacon_energy_b;
	u32 beacon_energy_c;
};

82
int iwl_send_calib_results(struct iwl_priv *priv)
83 84 85 86 87 88
{
	int ret = 0;
	int i = 0;

	struct iwl_host_cmd hcmd = {
		.id = REPLY_PHY_CALIBRATION_CMD,
J
Johannes Berg 已提交
89
		.flags = CMD_SIZE_HUGE,
90 91
	};

92 93 94
	for (i = 0; i < IWL_CALIB_MAX; i++) {
		if ((BIT(i) & priv->hw_params.calib_init_cfg) &&
		    priv->calib_results[i].buf) {
95 96 97 98 99 100
			hcmd.len = priv->calib_results[i].buf_len;
			hcmd.data = priv->calib_results[i].buf;
			ret = iwl_send_cmd_sync(priv, &hcmd);
			if (ret)
				goto err;
		}
101
	}
102 103 104

	return 0;
err:
105
	IWL_ERR(priv, "Error %d iteration %d\n", ret, i);
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
	return ret;
}
EXPORT_SYMBOL(iwl_send_calib_results);

int iwl_calib_set(struct iwl_calib_result *res, const u8 *buf, int len)
{
	if (res->buf_len != len) {
		kfree(res->buf);
		res->buf = kzalloc(len, GFP_ATOMIC);
	}
	if (unlikely(res->buf == NULL))
		return -ENOMEM;

	res->buf_len = len;
	memcpy(res->buf, buf, len);
	return 0;
}
EXPORT_SYMBOL(iwl_calib_set);

void iwl_calib_free_results(struct iwl_priv *priv)
{
	int i;

	for (i = 0; i < IWL_CALIB_MAX; i++) {
		kfree(priv->calib_results[i].buf);
		priv->calib_results[i].buf = NULL;
		priv->calib_results[i].buf_len = 0;
	}
}
135
EXPORT_SYMBOL(iwl_calib_free_results);
136 137 138 139 140

/*****************************************************************************
 * RUNTIME calibrations framework
 *****************************************************************************/

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
/* "false alarms" are signals that our DSP tries to lock onto,
 *   but then determines that they are either noise, or transmissions
 *   from a distant wireless network (also "noise", really) that get
 *   "stepped on" by stronger transmissions within our own network.
 * This algorithm attempts to set a sensitivity level that is high
 *   enough to receive all of our own network traffic, but not so
 *   high that our DSP gets too busy trying to lock onto non-network
 *   activity/noise. */
static int iwl_sens_energy_cck(struct iwl_priv *priv,
				   u32 norm_fa,
				   u32 rx_enable_time,
				   struct statistics_general_data *rx_info)
{
	u32 max_nrg_cck = 0;
	int i = 0;
	u8 max_silence_rssi = 0;
	u32 silence_ref = 0;
	u8 silence_rssi_a = 0;
	u8 silence_rssi_b = 0;
	u8 silence_rssi_c = 0;
	u32 val;

	/* "false_alarms" values below are cross-multiplications to assess the
	 *   numbers of false alarms within the measured period of actual Rx
	 *   (Rx is off when we're txing), vs the min/max expected false alarms
	 *   (some should be expected if rx is sensitive enough) in a
	 *   hypothetical listening period of 200 time units (TU), 204.8 msec:
	 *
	 * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
	 *
	 * */
	u32 false_alarms = norm_fa * 200 * 1024;
	u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
	u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
	struct iwl_sensitivity_data *data = NULL;
	const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;

	data = &(priv->sensitivity_data);

	data->nrg_auto_corr_silence_diff = 0;

	/* Find max silence rssi among all 3 receivers.
	 * This is background noise, which may include transmissions from other
	 *    networks, measured during silence before our network's beacon */
	silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a &
			    ALL_BAND_FILTER) >> 8);
	silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b &
			    ALL_BAND_FILTER) >> 8);
	silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c &
			    ALL_BAND_FILTER) >> 8);

	val = max(silence_rssi_b, silence_rssi_c);
	max_silence_rssi = max(silence_rssi_a, (u8) val);

	/* Store silence rssi in 20-beacon history table */
	data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
	data->nrg_silence_idx++;
	if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L)
		data->nrg_silence_idx = 0;

	/* Find max silence rssi across 20 beacon history */
	for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
		val = data->nrg_silence_rssi[i];
		silence_ref = max(silence_ref, val);
	}
206
	IWL_DEBUG_CALIB(priv, "silence a %u, b %u, c %u, 20-bcn max %u\n",
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
			silence_rssi_a, silence_rssi_b, silence_rssi_c,
			silence_ref);

	/* Find max rx energy (min value!) among all 3 receivers,
	 *   measured during beacon frame.
	 * Save it in 10-beacon history table. */
	i = data->nrg_energy_idx;
	val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
	data->nrg_value[i] = min(rx_info->beacon_energy_a, val);

	data->nrg_energy_idx++;
	if (data->nrg_energy_idx >= 10)
		data->nrg_energy_idx = 0;

	/* Find min rx energy (max value) across 10 beacon history.
	 * This is the minimum signal level that we want to receive well.
	 * Add backoff (margin so we don't miss slightly lower energy frames).
	 * This establishes an upper bound (min value) for energy threshold. */
	max_nrg_cck = data->nrg_value[0];
	for (i = 1; i < 10; i++)
		max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
	max_nrg_cck += 6;

230
	IWL_DEBUG_CALIB(priv, "rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
231 232 233 234 235 236 237 238 239
			rx_info->beacon_energy_a, rx_info->beacon_energy_b,
			rx_info->beacon_energy_c, max_nrg_cck - 6);

	/* Count number of consecutive beacons with fewer-than-desired
	 *   false alarms. */
	if (false_alarms < min_false_alarms)
		data->num_in_cck_no_fa++;
	else
		data->num_in_cck_no_fa = 0;
240
	IWL_DEBUG_CALIB(priv, "consecutive bcns with few false alarms = %u\n",
241 242 243 244 245
			data->num_in_cck_no_fa);

	/* If we got too many false alarms this time, reduce sensitivity */
	if ((false_alarms > max_false_alarms) &&
		(data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) {
246
		IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u\n",
247
		     false_alarms, max_false_alarms);
248
		IWL_DEBUG_CALIB(priv, "... reducing sensitivity\n");
249 250 251 252 253 254
		data->nrg_curr_state = IWL_FA_TOO_MANY;
		/* Store for "fewer than desired" on later beacon */
		data->nrg_silence_ref = silence_ref;

		/* increase energy threshold (reduce nrg value)
		 *   to decrease sensitivity */
255
		data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK;
256 257 258 259 260 261 262 263 264
	/* Else if we got fewer than desired, increase sensitivity */
	} else if (false_alarms < min_false_alarms) {
		data->nrg_curr_state = IWL_FA_TOO_FEW;

		/* Compare silence level with silence level for most recent
		 *   healthy number or too many false alarms */
		data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref -
						   (s32)silence_ref;

265
		IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u, silence diff %d\n",
266 267 268 269 270 271 272 273 274 275 276 277 278
			 false_alarms, min_false_alarms,
			 data->nrg_auto_corr_silence_diff);

		/* Increase value to increase sensitivity, but only if:
		 * 1a) previous beacon did *not* have *too many* false alarms
		 * 1b) AND there's a significant difference in Rx levels
		 *      from a previous beacon with too many, or healthy # FAs
		 * OR 2) We've seen a lot of beacons (100) with too few
		 *       false alarms */
		if ((data->nrg_prev_state != IWL_FA_TOO_MANY) &&
			((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
			(data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {

279
			IWL_DEBUG_CALIB(priv, "... increasing sensitivity\n");
280 281 282 283
			/* Increase nrg value to increase sensitivity */
			val = data->nrg_th_cck + NRG_STEP_CCK;
			data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val);
		} else {
284
			IWL_DEBUG_CALIB(priv, "... but not changing sensitivity\n");
285 286 287 288
		}

	/* Else we got a healthy number of false alarms, keep status quo */
	} else {
289
		IWL_DEBUG_CALIB(priv, " FA in safe zone\n");
290 291 292 293 294 295 296 297 298
		data->nrg_curr_state = IWL_FA_GOOD_RANGE;

		/* Store for use in "fewer than desired" with later beacon */
		data->nrg_silence_ref = silence_ref;

		/* If previous beacon had too many false alarms,
		 *   give it some extra margin by reducing sensitivity again
		 *   (but don't go below measured energy of desired Rx) */
		if (IWL_FA_TOO_MANY == data->nrg_prev_state) {
299
			IWL_DEBUG_CALIB(priv, "... increasing margin\n");
300 301 302 303 304 305 306 307 308 309 310 311 312
			if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN))
				data->nrg_th_cck -= NRG_MARGIN;
			else
				data->nrg_th_cck = max_nrg_cck;
		}
	}

	/* Make sure the energy threshold does not go above the measured
	 * energy of the desired Rx signals (reduced by backoff margin),
	 * or else we might start missing Rx frames.
	 * Lower value is higher energy, so we use max()!
	 */
	data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
313
	IWL_DEBUG_CALIB(priv, "new nrg_th_cck %u\n", data->nrg_th_cck);
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365

	data->nrg_prev_state = data->nrg_curr_state;

	/* Auto-correlation CCK algorithm */
	if (false_alarms > min_false_alarms) {

		/* increase auto_corr values to decrease sensitivity
		 * so the DSP won't be disturbed by the noise
		 */
		if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK)
			data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1;
		else {
			val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
			data->auto_corr_cck =
				min((u32)ranges->auto_corr_max_cck, val);
		}
		val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK;
		data->auto_corr_cck_mrc =
			min((u32)ranges->auto_corr_max_cck_mrc, val);
	} else if ((false_alarms < min_false_alarms) &&
	   ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
	   (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {

		/* Decrease auto_corr values to increase sensitivity */
		val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
		data->auto_corr_cck =
			max((u32)ranges->auto_corr_min_cck, val);
		val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK;
		data->auto_corr_cck_mrc =
			max((u32)ranges->auto_corr_min_cck_mrc, val);
	}

	return 0;
}


static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv,
				       u32 norm_fa,
				       u32 rx_enable_time)
{
	u32 val;
	u32 false_alarms = norm_fa * 200 * 1024;
	u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
	u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
	struct iwl_sensitivity_data *data = NULL;
	const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;

	data = &(priv->sensitivity_data);

	/* If we got too many false alarms this time, reduce sensitivity */
	if (false_alarms > max_false_alarms) {

366
		IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u)\n",
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
			     false_alarms, max_false_alarms);

		val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
		data->auto_corr_ofdm =
			min((u32)ranges->auto_corr_max_ofdm, val);

		val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM;
		data->auto_corr_ofdm_mrc =
			min((u32)ranges->auto_corr_max_ofdm_mrc, val);

		val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM;
		data->auto_corr_ofdm_x1 =
			min((u32)ranges->auto_corr_max_ofdm_x1, val);

		val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM;
		data->auto_corr_ofdm_mrc_x1 =
			min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val);
	}

	/* Else if we got fewer than desired, increase sensitivity */
	else if (false_alarms < min_false_alarms) {

389
		IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u\n",
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
			     false_alarms, min_false_alarms);

		val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
		data->auto_corr_ofdm =
			max((u32)ranges->auto_corr_min_ofdm, val);

		val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM;
		data->auto_corr_ofdm_mrc =
			max((u32)ranges->auto_corr_min_ofdm_mrc, val);

		val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM;
		data->auto_corr_ofdm_x1 =
			max((u32)ranges->auto_corr_min_ofdm_x1, val);

		val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM;
		data->auto_corr_ofdm_mrc_x1 =
			max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val);
	} else {
408
		IWL_DEBUG_CALIB(priv, "min FA %u < norm FA %u < max FA %u OK\n",
409 410 411 412 413 414 415 416 417 418 419 420 421 422
			 min_false_alarms, false_alarms, max_false_alarms);
	}
	return 0;
}

/* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
static int iwl_sensitivity_write(struct iwl_priv *priv)
{
	int ret = 0;
	struct iwl_sensitivity_cmd cmd ;
	struct iwl_sensitivity_data *data = NULL;
	struct iwl_host_cmd cmd_out = {
		.id = SENSITIVITY_CMD,
		.len = sizeof(struct iwl_sensitivity_cmd),
J
Johannes Berg 已提交
423
		.flags = CMD_ASYNC,
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
		.data = &cmd,
	};

	data = &(priv->sensitivity_data);

	memset(&cmd, 0, sizeof(cmd));

	cmd.table[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] =
				cpu_to_le16((u16)data->auto_corr_ofdm);
	cmd.table[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] =
				cpu_to_le16((u16)data->auto_corr_ofdm_mrc);
	cmd.table[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] =
				cpu_to_le16((u16)data->auto_corr_ofdm_x1);
	cmd.table[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] =
				cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1);

	cmd.table[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] =
				cpu_to_le16((u16)data->auto_corr_cck);
	cmd.table[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] =
				cpu_to_le16((u16)data->auto_corr_cck_mrc);

	cmd.table[HD_MIN_ENERGY_CCK_DET_INDEX] =
				cpu_to_le16((u16)data->nrg_th_cck);
	cmd.table[HD_MIN_ENERGY_OFDM_DET_INDEX] =
				cpu_to_le16((u16)data->nrg_th_ofdm);

	cmd.table[HD_BARKER_CORR_TH_ADD_MIN_INDEX] =
451
				cpu_to_le16(data->barker_corr_th_min);
452
	cmd.table[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] =
453
				cpu_to_le16(data->barker_corr_th_min_mrc);
454
	cmd.table[HD_OFDM_ENERGY_TH_IN_INDEX] =
455
				cpu_to_le16(data->nrg_th_cca);
456

457
	IWL_DEBUG_CALIB(priv, "ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
458 459 460 461
			data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
			data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1,
			data->nrg_th_ofdm);

462
	IWL_DEBUG_CALIB(priv, "cck: ac %u mrc %u thresh %u\n",
463 464 465 466 467 468 469 470 471
			data->auto_corr_cck, data->auto_corr_cck_mrc,
			data->nrg_th_cck);

	/* Update uCode's "work" table, and copy it to DSP */
	cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;

	/* Don't send command to uCode if nothing has changed */
	if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]),
		    sizeof(u16)*HD_TABLE_SIZE)) {
472
		IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
473 474 475 476 477 478 479 480 481
		return 0;
	}

	/* Copy table for comparison next time */
	memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]),
	       sizeof(u16)*HD_TABLE_SIZE);

	ret = iwl_send_cmd(priv, &cmd_out);
	if (ret)
482
		IWL_ERR(priv, "SENSITIVITY_CMD failed\n");
483 484 485 486 487 488 489 490 491 492 493

	return ret;
}

void iwl_init_sensitivity(struct iwl_priv *priv)
{
	int ret = 0;
	int i;
	struct iwl_sensitivity_data *data = NULL;
	const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;

494 495 496
	if (priv->disable_sens_cal)
		return;

497
	IWL_DEBUG_CALIB(priv, "Start iwl_init_sensitivity\n");
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519

	/* Clear driver's sensitivity algo data */
	data = &(priv->sensitivity_data);

	if (ranges == NULL)
		return;

	memset(data, 0, sizeof(struct iwl_sensitivity_data));

	data->num_in_cck_no_fa = 0;
	data->nrg_curr_state = IWL_FA_TOO_MANY;
	data->nrg_prev_state = IWL_FA_TOO_MANY;
	data->nrg_silence_ref = 0;
	data->nrg_silence_idx = 0;
	data->nrg_energy_idx = 0;

	for (i = 0; i < 10; i++)
		data->nrg_value[i] = 0;

	for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
		data->nrg_silence_rssi[i] = 0;

520
	data->auto_corr_ofdm =  ranges->auto_corr_min_ofdm;
521 522 523 524 525 526 527
	data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc;
	data->auto_corr_ofdm_x1  = ranges->auto_corr_min_ofdm_x1;
	data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1;
	data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF;
	data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc;
	data->nrg_th_cck = ranges->nrg_th_cck;
	data->nrg_th_ofdm = ranges->nrg_th_ofdm;
528 529 530
	data->barker_corr_th_min = ranges->barker_corr_th_min;
	data->barker_corr_th_min_mrc = ranges->barker_corr_th_min_mrc;
	data->nrg_th_cca = ranges->nrg_th_cca;
531 532 533 534 535 536 537

	data->last_bad_plcp_cnt_ofdm = 0;
	data->last_fa_cnt_ofdm = 0;
	data->last_bad_plcp_cnt_cck = 0;
	data->last_fa_cnt_cck = 0;

	ret |= iwl_sensitivity_write(priv);
538
	IWL_DEBUG_CALIB(priv, "<<return 0x%X\n", ret);
539 540 541 542
}
EXPORT_SYMBOL(iwl_init_sensitivity);

void iwl_sensitivity_calibration(struct iwl_priv *priv,
543
				    struct iwl_notif_statistics *resp)
544 545 546 547 548 549 550 551 552 553 554 555 556 557
{
	u32 rx_enable_time;
	u32 fa_cck;
	u32 fa_ofdm;
	u32 bad_plcp_cck;
	u32 bad_plcp_ofdm;
	u32 norm_fa_ofdm;
	u32 norm_fa_cck;
	struct iwl_sensitivity_data *data = NULL;
	struct statistics_rx_non_phy *rx_info = &(resp->rx.general);
	struct statistics_rx *statistics = &(resp->rx);
	unsigned long flags;
	struct statistics_general_data statis;

558 559 560
	if (priv->disable_sens_cal)
		return;

561 562 563
	data = &(priv->sensitivity_data);

	if (!iwl_is_associated(priv)) {
564
		IWL_DEBUG_CALIB(priv, "<< - not associated\n");
565 566 567 568 569
		return;
	}

	spin_lock_irqsave(&priv->lock, flags);
	if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
570
		IWL_DEBUG_CALIB(priv, "<< invalid data.\n");
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
		spin_unlock_irqrestore(&priv->lock, flags);
		return;
	}

	/* Extract Statistics: */
	rx_enable_time = le32_to_cpu(rx_info->channel_load);
	fa_cck = le32_to_cpu(statistics->cck.false_alarm_cnt);
	fa_ofdm = le32_to_cpu(statistics->ofdm.false_alarm_cnt);
	bad_plcp_cck = le32_to_cpu(statistics->cck.plcp_err);
	bad_plcp_ofdm = le32_to_cpu(statistics->ofdm.plcp_err);

	statis.beacon_silence_rssi_a =
			le32_to_cpu(statistics->general.beacon_silence_rssi_a);
	statis.beacon_silence_rssi_b =
			le32_to_cpu(statistics->general.beacon_silence_rssi_b);
	statis.beacon_silence_rssi_c =
			le32_to_cpu(statistics->general.beacon_silence_rssi_c);
	statis.beacon_energy_a =
			le32_to_cpu(statistics->general.beacon_energy_a);
	statis.beacon_energy_b =
			le32_to_cpu(statistics->general.beacon_energy_b);
	statis.beacon_energy_c =
			le32_to_cpu(statistics->general.beacon_energy_c);

	spin_unlock_irqrestore(&priv->lock, flags);

597
	IWL_DEBUG_CALIB(priv, "rx_enable_time = %u usecs\n", rx_enable_time);
598 599

	if (!rx_enable_time) {
600
		IWL_DEBUG_CALIB(priv, "<< RX Enable Time == 0! \n");
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
		return;
	}

	/* These statistics increase monotonically, and do not reset
	 *   at each beacon.  Calculate difference from last value, or just
	 *   use the new statistics value if it has reset or wrapped around. */
	if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
		data->last_bad_plcp_cnt_cck = bad_plcp_cck;
	else {
		bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
		data->last_bad_plcp_cnt_cck += bad_plcp_cck;
	}

	if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
		data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
	else {
		bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
		data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
	}

	if (data->last_fa_cnt_ofdm > fa_ofdm)
		data->last_fa_cnt_ofdm = fa_ofdm;
	else {
		fa_ofdm -= data->last_fa_cnt_ofdm;
		data->last_fa_cnt_ofdm += fa_ofdm;
	}

	if (data->last_fa_cnt_cck > fa_cck)
		data->last_fa_cnt_cck = fa_cck;
	else {
		fa_cck -= data->last_fa_cnt_cck;
		data->last_fa_cnt_cck += fa_cck;
	}

	/* Total aborted signal locks */
	norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
	norm_fa_cck = fa_cck + bad_plcp_cck;

639
	IWL_DEBUG_CALIB(priv, "cck: fa %u badp %u  ofdm: fa %u badp %u\n", fa_cck,
640 641 642 643 644 645 646 647 648 649
			bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);

	iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time);
	iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis);
	iwl_sensitivity_write(priv);

	return;
}
EXPORT_SYMBOL(iwl_sensitivity_calibration);

650 651 652 653 654 655 656 657 658
static inline u8 find_first_chain(u8 mask)
{
	if (mask & ANT_A)
		return CHAIN_A;
	if (mask & ANT_B)
		return CHAIN_B;
	return CHAIN_C;
}

659 660 661 662 663 664 665
/*
 * Accumulate 20 beacons of signal and noise statistics for each of
 *   3 receivers/antennas/rx-chains, then figure out:
 * 1)  Which antennas are connected.
 * 2)  Differential rx gain settings to balance the 3 receivers.
 */
void iwl_chain_noise_calibration(struct iwl_priv *priv,
666
				 struct iwl_notif_statistics *stat_resp)
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
{
	struct iwl_chain_noise_data *data = NULL;

	u32 chain_noise_a;
	u32 chain_noise_b;
	u32 chain_noise_c;
	u32 chain_sig_a;
	u32 chain_sig_b;
	u32 chain_sig_c;
	u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
	u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
	u32 max_average_sig;
	u16 max_average_sig_antenna_i;
	u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
	u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
	u16 i = 0;
	u16 rxon_chnum = INITIALIZATION_VALUE;
	u16 stat_chnum = INITIALIZATION_VALUE;
	u8 rxon_band24;
	u8 stat_band24;
	u32 active_chains = 0;
	u8 num_tx_chains;
	unsigned long flags;
	struct statistics_rx_non_phy *rx_info = &(stat_resp->rx.general);
691
	u8 first_chain;
692

693 694 695
	if (priv->disable_chain_noise_cal)
		return;

696 697
	data = &(priv->chain_noise_data);

698 699 700 701
	/*
	 * Accumulate just the first "chain_noise_num_beacons" after
	 * the first association, then we're done forever.
	 */
702 703
	if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) {
		if (data->state == IWL_CHAIN_NOISE_ALIVE)
704
			IWL_DEBUG_CALIB(priv, "Wait for noise calib reset\n");
705 706 707 708 709
		return;
	}

	spin_lock_irqsave(&priv->lock, flags);
	if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
710
		IWL_DEBUG_CALIB(priv, " << Interference data unavailable\n");
711 712 713 714 715 716 717 718 719 720 721 722
		spin_unlock_irqrestore(&priv->lock, flags);
		return;
	}

	rxon_band24 = !!(priv->staging_rxon.flags & RXON_FLG_BAND_24G_MSK);
	rxon_chnum = le16_to_cpu(priv->staging_rxon.channel);
	stat_band24 = !!(stat_resp->flag & STATISTICS_REPLY_FLG_BAND_24G_MSK);
	stat_chnum = le32_to_cpu(stat_resp->flag) >> 16;

	/* Make sure we accumulate data for just the associated channel
	 *   (even if scanning). */
	if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) {
723
		IWL_DEBUG_CALIB(priv, "Stats not from chan=%d, band24=%d\n",
724 725 726 727 728
				rxon_chnum, rxon_band24);
		spin_unlock_irqrestore(&priv->lock, flags);
		return;
	}

729 730 731 732
	/*
	 *  Accumulate beacon statistics values across
	 * "chain_noise_num_beacons"
	 */
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
	chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) &
				IN_BAND_FILTER;
	chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) &
				IN_BAND_FILTER;
	chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) &
				IN_BAND_FILTER;

	chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
	chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
	chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;

	spin_unlock_irqrestore(&priv->lock, flags);

	data->beacon_count++;

	data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
	data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
	data->chain_noise_c = (chain_noise_c + data->chain_noise_c);

	data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
	data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
	data->chain_signal_c = (chain_sig_c + data->chain_signal_c);

756
	IWL_DEBUG_CALIB(priv, "chan=%d, band24=%d, beacon=%d\n",
757
			rxon_chnum, rxon_band24, data->beacon_count);
758
	IWL_DEBUG_CALIB(priv, "chain_sig: a %d b %d c %d\n",
759
			chain_sig_a, chain_sig_b, chain_sig_c);
760
	IWL_DEBUG_CALIB(priv, "chain_noise: a %d b %d c %d\n",
761 762
			chain_noise_a, chain_noise_b, chain_noise_c);

763
	/* If this is the "chain_noise_num_beacons", determine:
764 765
	 * 1)  Disconnected antennas (using signal strengths)
	 * 2)  Differential gain (using silence noise) to balance receivers */
766
	if (data->beacon_count != priv->cfg->chain_noise_num_beacons)
767 768 769
		return;

	/* Analyze signal for disconnected antenna */
770 771 772 773 774 775
	average_sig[0] =
		(data->chain_signal_a) / priv->cfg->chain_noise_num_beacons;
	average_sig[1] =
		(data->chain_signal_b) / priv->cfg->chain_noise_num_beacons;
	average_sig[2] =
		(data->chain_signal_c) / priv->cfg->chain_noise_num_beacons;
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792

	if (average_sig[0] >= average_sig[1]) {
		max_average_sig = average_sig[0];
		max_average_sig_antenna_i = 0;
		active_chains = (1 << max_average_sig_antenna_i);
	} else {
		max_average_sig = average_sig[1];
		max_average_sig_antenna_i = 1;
		active_chains = (1 << max_average_sig_antenna_i);
	}

	if (average_sig[2] >= max_average_sig) {
		max_average_sig = average_sig[2];
		max_average_sig_antenna_i = 2;
		active_chains = (1 << max_average_sig_antenna_i);
	}

793
	IWL_DEBUG_CALIB(priv, "average_sig: a %d b %d c %d\n",
794
		     average_sig[0], average_sig[1], average_sig[2]);
795
	IWL_DEBUG_CALIB(priv, "max_average_sig = %d, antenna %d\n",
796 797 798 799 800 801 802 803 804 805 806 807 808
		     max_average_sig, max_average_sig_antenna_i);

	/* Compare signal strengths for all 3 receivers. */
	for (i = 0; i < NUM_RX_CHAINS; i++) {
		if (i != max_average_sig_antenna_i) {
			s32 rssi_delta = (max_average_sig - average_sig[i]);

			/* If signal is very weak, compared with
			 * strongest, mark it as disconnected. */
			if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
				data->disconn_array[i] = 1;
			else
				active_chains |= (1 << i);
809
			IWL_DEBUG_CALIB(priv, "i = %d  rssiDelta = %d  "
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
			     "disconn_array[i] = %d\n",
			     i, rssi_delta, data->disconn_array[i]);
		}
	}

	num_tx_chains = 0;
	for (i = 0; i < NUM_RX_CHAINS; i++) {
		/* loops on all the bits of
		 * priv->hw_setting.valid_tx_ant */
		u8 ant_msk = (1 << i);
		if (!(priv->hw_params.valid_tx_ant & ant_msk))
			continue;

		num_tx_chains++;
		if (data->disconn_array[i] == 0)
			/* there is a Tx antenna connected */
			break;
		if (num_tx_chains == priv->hw_params.tx_chains_num &&
828 829 830 831 832 833 834 835 836 837 838
		    data->disconn_array[i]) {
			/*
			 * If all chains are disconnected
			 * connect the first valid tx chain
			 */
			first_chain =
				find_first_chain(priv->cfg->valid_tx_ant);
			data->disconn_array[first_chain] = 0;
			active_chains |= BIT(first_chain);
			IWL_DEBUG_CALIB(priv, "All Tx chains are disconnected W/A - declare %d as connected\n",
					first_chain);
839 840 841 842
			break;
		}
	}

843 844
	/* Save for use within RXON, TX, SCAN commands, etc. */
	priv->chain_noise_data.active_chains = active_chains;
845
	IWL_DEBUG_CALIB(priv, "active_chains (bitwise) = 0x%x\n",
846 847 848
			active_chains);

	/* Analyze noise for rx balance */
849 850 851 852 853 854
	average_noise[0] =
		((data->chain_noise_a) / priv->cfg->chain_noise_num_beacons);
	average_noise[1] =
		((data->chain_noise_b) / priv->cfg->chain_noise_num_beacons);
	average_noise[2] =
		((data->chain_noise_c) / priv->cfg->chain_noise_num_beacons);
855 856 857 858 859 860 861 862 863 864 865

	for (i = 0; i < NUM_RX_CHAINS; i++) {
		if (!(data->disconn_array[i]) &&
		   (average_noise[i] <= min_average_noise)) {
			/* This means that chain i is active and has
			 * lower noise values so far: */
			min_average_noise = average_noise[i];
			min_average_noise_antenna_i = i;
		}
	}

866
	IWL_DEBUG_CALIB(priv, "average_noise: a %d b %d c %d\n",
867 868 869
			average_noise[0], average_noise[1],
			average_noise[2]);

870
	IWL_DEBUG_CALIB(priv, "min_average_noise = %d, antenna %d\n",
871 872
			min_average_noise, min_average_noise_antenna_i);

873 874
	if (priv->cfg->ops->utils->gain_computation)
		priv->cfg->ops->utils->gain_computation(priv, average_noise,
875 876
				min_average_noise_antenna_i, min_average_noise,
				find_first_chain(priv->cfg->valid_rx_ant));
877 878 879 880 881 882 883 884

	/* Some power changes may have been made during the calibration.
	 * Update and commit the RXON
	 */
	if (priv->cfg->ops->lib->update_chain_flags)
		priv->cfg->ops->lib->update_chain_flags(priv);

	data->state = IWL_CHAIN_NOISE_DONE;
885
	iwl_power_update_mode(priv, false);
886 887 888
}
EXPORT_SYMBOL(iwl_chain_noise_calibration);

889 890 891 892 893 894 895 896 897 898 899 900 901 902

void iwl_reset_run_time_calib(struct iwl_priv *priv)
{
	int i;
	memset(&(priv->sensitivity_data), 0,
	       sizeof(struct iwl_sensitivity_data));
	memset(&(priv->chain_noise_data), 0,
	       sizeof(struct iwl_chain_noise_data));
	for (i = 0; i < NUM_RX_CHAINS; i++)
		priv->chain_noise_data.delta_gain_code[i] =
				CHAIN_NOISE_DELTA_GAIN_INIT_VAL;

	/* Ask for statistics now, the uCode will send notification
	 * periodically after association */
903
	iwl_send_statistics_request(priv, CMD_ASYNC, true);
904 905 906
}
EXPORT_SYMBOL(iwl_reset_run_time_calib);