hal.c 14.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
/*
 * Intel Wireless Multicomm 3200 WiFi driver
 *
 * Copyright (C) 2009 Intel Corporation. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in
 *     the documentation and/or other materials provided with the
 *     distribution.
 *   * Neither the name of Intel Corporation nor the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 *
 * Intel Corporation <ilw@linux.intel.com>
 * Samuel Ortiz <samuel.ortiz@intel.com>
 * Zhu Yi <yi.zhu@intel.com>
 *
 */

/*
 * Hardware Abstraction Layer for iwm.
 *
 * This file mostly defines an abstraction API for
 * sending various commands to the target.
 *
 * We have 2 types of commands: wifi and non-wifi ones.
 *
 * - wifi commands:
 *   They are used for sending LMAC and UMAC commands,
 *   and thus are the most commonly used ones.
 *   There are 2 different wifi command types, the regular
 *   one and the LMAC one. The former is used to send
 *   UMAC commands (see UMAC_CMD_OPCODE_* from umac.h)
 *   while the latter is used for sending commands to the
 *   LMAC. If you look at LMAC commands you'll se that they
 *   are actually regular iwlwifi target commands encapsulated
 *   into a special UMAC command called UMAC passthrough.
 *   This is due to the fact the the host talks exclusively
 *   to the UMAC and so there needs to be a special UMAC
 *   command for talking to the LMAC.
 *   This is how a wifi command is layed out:
 *    ------------------------
 *   | iwm_udma_out_wifi_hdr  |
 *    ------------------------
 *   | SW meta_data (32 bits) |
 *    ------------------------
 *   | iwm_dev_cmd_hdr        |
 *    ------------------------
 *   | payload                |
 *   | ....                   |
 *
 * - non-wifi, or general commands:
 *   Those commands are handled by the device's bootrom,
 *   and are typically sent when the UMAC and the LMAC
 *   are not yet available.
 *    *   This is how a non-wifi command is layed out:
 *    ---------------------------
 *   | iwm_udma_out_nonwifi_hdr  |
 *    ---------------------------
 *   | payload                   |
 *   | ....                      |

 *
 * All the commands start with a UDMA header, which is
 * basically a 32 bits field. The 4 LSB there define
 * an opcode that allows the target to differentiate
 * between wifi (opcode is 0xf) and non-wifi commands
 * (opcode is [0..0xe]).
 *
 * When a command (wifi or non-wifi) is supposed to receive
 * an answer, we queue the command buffer. When we do receive
 * a command response from the UMAC, we go through the list
 * of pending command, and pass both the command and the answer
 * to the rx handler. Each command is sent with a unique
 * sequence id, and the answer is sent with the same one. This
 * is how we're supposed to match an answer with its command.
 * See rx.c:iwm_rx_handle_[non]wifi() and iwm_get_pending_[non]wifi()
 * for the implementation details.
 */
#include <linux/kernel.h>
#include <linux/netdevice.h>

#include "iwm.h"
#include "bus.h"
#include "hal.h"
#include "umac.h"
#include "debug.h"

Z
Zhu Yi 已提交
108 109 110
static int iwm_nonwifi_cmd_init(struct iwm_priv *iwm,
				struct iwm_nonwifi_cmd *cmd,
				struct iwm_udma_nonwifi_cmd *udma_cmd)
111 112 113 114 115 116 117 118 119 120
{
	INIT_LIST_HEAD(&cmd->pending);

	spin_lock(&iwm->cmd_lock);

	cmd->resp_received = 0;

	cmd->seq_num = iwm->nonwifi_seq_num;
	udma_cmd->seq_num = cpu_to_le16(cmd->seq_num);

Z
Zhu Yi 已提交
121
	iwm->nonwifi_seq_num++;
122 123 124 125 126 127 128 129 130 131 132
	iwm->nonwifi_seq_num %= UMAC_NONWIFI_SEQ_NUM_MAX;

	if (udma_cmd->resp)
		list_add_tail(&cmd->pending, &iwm->nonwifi_pending_cmd);

	spin_unlock(&iwm->cmd_lock);

	cmd->buf.start = cmd->buf.payload;
	cmd->buf.len = 0;

	memcpy(&cmd->udma_cmd, udma_cmd, sizeof(*udma_cmd));
Z
Zhu Yi 已提交
133 134

	return cmd->seq_num;
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
}

u16 iwm_alloc_wifi_cmd_seq(struct iwm_priv *iwm)
{
	u16 seq_num = iwm->wifi_seq_num;

	iwm->wifi_seq_num++;
	iwm->wifi_seq_num %= UMAC_WIFI_SEQ_NUM_MAX;

	return seq_num;
}

static void iwm_wifi_cmd_init(struct iwm_priv *iwm,
			      struct iwm_wifi_cmd *cmd,
			      struct iwm_udma_wifi_cmd *udma_cmd,
			      struct iwm_umac_cmd *umac_cmd,
			      struct iwm_lmac_cmd *lmac_cmd,
			      u16 payload_size)
{
	INIT_LIST_HEAD(&cmd->pending);

	spin_lock(&iwm->cmd_lock);

	cmd->seq_num = iwm_alloc_wifi_cmd_seq(iwm);
	umac_cmd->seq_num = cpu_to_le16(cmd->seq_num);

	if (umac_cmd->resp)
		list_add_tail(&cmd->pending, &iwm->wifi_pending_cmd);

	spin_unlock(&iwm->cmd_lock);

	cmd->buf.start = cmd->buf.payload;
	cmd->buf.len = 0;

	if (lmac_cmd) {
		cmd->buf.start -= sizeof(struct iwm_lmac_hdr);

		lmac_cmd->seq_num = cpu_to_le16(cmd->seq_num);
		lmac_cmd->count = cpu_to_le16(payload_size);

		memcpy(&cmd->lmac_cmd, lmac_cmd, sizeof(*lmac_cmd));

		umac_cmd->count = cpu_to_le16(sizeof(struct iwm_lmac_hdr));
	} else
		umac_cmd->count = 0;

	umac_cmd->count = cpu_to_le16(payload_size +
				      le16_to_cpu(umac_cmd->count));
	udma_cmd->count = cpu_to_le16(sizeof(struct iwm_umac_fw_cmd_hdr) +
				      le16_to_cpu(umac_cmd->count));

	memcpy(&cmd->udma_cmd, udma_cmd, sizeof(*udma_cmd));
	memcpy(&cmd->umac_cmd, umac_cmd, sizeof(*umac_cmd));
}

void iwm_cmd_flush(struct iwm_priv *iwm)
{
	struct iwm_wifi_cmd *wcmd, *wnext;
	struct iwm_nonwifi_cmd *nwcmd, *nwnext;

	list_for_each_entry_safe(wcmd, wnext, &iwm->wifi_pending_cmd, pending) {
		list_del(&wcmd->pending);
		kfree(wcmd);
	}

	list_for_each_entry_safe(nwcmd, nwnext, &iwm->nonwifi_pending_cmd,
				 pending) {
		list_del(&nwcmd->pending);
		kfree(nwcmd);
	}
}

struct iwm_wifi_cmd *iwm_get_pending_wifi_cmd(struct iwm_priv *iwm, u16 seq_num)
{
	struct iwm_wifi_cmd *cmd, *next;

	list_for_each_entry_safe(cmd, next, &iwm->wifi_pending_cmd, pending)
		if (cmd->seq_num == seq_num) {
			list_del(&cmd->pending);
			return cmd;
		}

	return NULL;
}

struct iwm_nonwifi_cmd *
iwm_get_pending_nonwifi_cmd(struct iwm_priv *iwm, u8 seq_num, u8 cmd_opcode)
{
	struct iwm_nonwifi_cmd *cmd, *next;

	list_for_each_entry_safe(cmd, next, &iwm->nonwifi_pending_cmd, pending)
		if ((cmd->seq_num == seq_num) &&
		    (cmd->udma_cmd.opcode == cmd_opcode) &&
		    (cmd->resp_received)) {
			list_del(&cmd->pending);
			return cmd;
		}

	return NULL;
}

static void iwm_build_udma_nonwifi_hdr(struct iwm_priv *iwm,
				       struct iwm_udma_out_nonwifi_hdr *hdr,
				       struct iwm_udma_nonwifi_cmd *cmd)
{
	memset(hdr, 0, sizeof(*hdr));

	SET_VAL32(hdr->cmd, UMAC_HDI_OUT_CMD_OPCODE, cmd->opcode);
	SET_VAL32(hdr->cmd, UDMA_HDI_OUT_NW_CMD_RESP, cmd->resp);
	SET_VAL32(hdr->cmd, UMAC_HDI_OUT_CMD_EOT, 1);
	SET_VAL32(hdr->cmd, UDMA_HDI_OUT_NW_CMD_HANDLE_BY_HW,
		  cmd->handle_by_hw);
	SET_VAL32(hdr->cmd, UMAC_HDI_OUT_CMD_SIGNATURE, UMAC_HDI_OUT_SIGNATURE);
	SET_VAL32(hdr->cmd, UDMA_HDI_OUT_CMD_NON_WIFI_HW_SEQ_NUM,
		  le16_to_cpu(cmd->seq_num));

	hdr->addr = cmd->addr;
	hdr->op1_sz = cmd->op1_sz;
	hdr->op2 = cmd->op2;
}

static int iwm_send_udma_nonwifi_cmd(struct iwm_priv *iwm,
				     struct iwm_nonwifi_cmd *cmd)
{
	struct iwm_udma_out_nonwifi_hdr *udma_hdr;
	struct iwm_nonwifi_cmd_buff *buf;
	struct iwm_udma_nonwifi_cmd *udma_cmd = &cmd->udma_cmd;

	buf = &cmd->buf;

	buf->start -= sizeof(struct iwm_umac_nonwifi_out_hdr);
	buf->len += sizeof(struct iwm_umac_nonwifi_out_hdr);

	udma_hdr = (struct iwm_udma_out_nonwifi_hdr *)(buf->start);

	iwm_build_udma_nonwifi_hdr(iwm, udma_hdr, udma_cmd);

	IWM_DBG_CMD(iwm, DBG,
		    "Send UDMA nonwifi cmd: opcode = 0x%x, resp = 0x%x, "
		    "hw = 0x%x, seqnum = %d, addr = 0x%x, op1_sz = 0x%x, "
		    "op2 = 0x%x\n", udma_cmd->opcode, udma_cmd->resp,
		    udma_cmd->handle_by_hw, cmd->seq_num, udma_cmd->addr,
		    udma_cmd->op1_sz, udma_cmd->op2);

	return iwm_bus_send_chunk(iwm, buf->start, buf->len);
}

void iwm_udma_wifi_hdr_set_eop(struct iwm_priv *iwm, u8 *buf, u8 eop)
{
	struct iwm_udma_out_wifi_hdr *hdr = (struct iwm_udma_out_wifi_hdr *)buf;

	SET_VAL32(hdr->cmd, UMAC_HDI_OUT_CMD_EOT, eop);
}

void iwm_build_udma_wifi_hdr(struct iwm_priv *iwm,
			     struct iwm_udma_out_wifi_hdr *hdr,
			     struct iwm_udma_wifi_cmd *cmd)
{
	memset(hdr, 0, sizeof(*hdr));

	SET_VAL32(hdr->cmd, UMAC_HDI_OUT_CMD_OPCODE, UMAC_HDI_OUT_OPCODE_WIFI);
	SET_VAL32(hdr->cmd, UMAC_HDI_OUT_CMD_EOT, cmd->eop);
	SET_VAL32(hdr->cmd, UMAC_HDI_OUT_CMD_SIGNATURE, UMAC_HDI_OUT_SIGNATURE);

	SET_VAL32(hdr->meta_data, UMAC_HDI_OUT_BYTE_COUNT,
		  le16_to_cpu(cmd->count));
	SET_VAL32(hdr->meta_data, UMAC_HDI_OUT_CREDIT_GRP, cmd->credit_group);
	SET_VAL32(hdr->meta_data, UMAC_HDI_OUT_RATID, cmd->ra_tid);
	SET_VAL32(hdr->meta_data, UMAC_HDI_OUT_LMAC_OFFSET, cmd->lmac_offset);
}

void iwm_build_umac_hdr(struct iwm_priv *iwm,
			struct iwm_umac_fw_cmd_hdr *hdr,
			struct iwm_umac_cmd *cmd)
{
	memset(hdr, 0, sizeof(*hdr));

	SET_VAL32(hdr->meta_data, UMAC_FW_CMD_BYTE_COUNT,
		  le16_to_cpu(cmd->count));
	SET_VAL32(hdr->meta_data, UMAC_FW_CMD_TX_STA_COLOR, cmd->color);
	SET_VAL8(hdr->cmd.flags, UMAC_DEV_CMD_FLAGS_RESP_REQ, cmd->resp);

	hdr->cmd.cmd = cmd->id;
	hdr->cmd.seq_num = cmd->seq_num;
}

static int iwm_send_udma_wifi_cmd(struct iwm_priv *iwm,
				  struct iwm_wifi_cmd *cmd)
{
	struct iwm_umac_wifi_out_hdr *umac_hdr;
	struct iwm_wifi_cmd_buff *buf;
	struct iwm_udma_wifi_cmd *udma_cmd = &cmd->udma_cmd;
	struct iwm_umac_cmd *umac_cmd = &cmd->umac_cmd;
	int ret;

	buf = &cmd->buf;

	buf->start -= sizeof(struct iwm_umac_wifi_out_hdr);
	buf->len += sizeof(struct iwm_umac_wifi_out_hdr);

	umac_hdr = (struct iwm_umac_wifi_out_hdr *)(buf->start);

	iwm_build_udma_wifi_hdr(iwm, &umac_hdr->hw_hdr, udma_cmd);
	iwm_build_umac_hdr(iwm, &umac_hdr->sw_hdr, umac_cmd);

	IWM_DBG_CMD(iwm, DBG,
		    "Send UDMA wifi cmd: opcode = 0x%x, UMAC opcode = 0x%x, "
		    "eop = 0x%x, count = 0x%x, credit_group = 0x%x, "
		    "ra_tid = 0x%x, lmac_offset = 0x%x, seqnum = %d\n",
		    UMAC_HDI_OUT_OPCODE_WIFI, umac_cmd->id,
		    udma_cmd->eop, udma_cmd->count, udma_cmd->credit_group,
		    udma_cmd->ra_tid, udma_cmd->lmac_offset, cmd->seq_num);

	if (umac_cmd->id == UMAC_CMD_OPCODE_WIFI_PASS_THROUGH)
		IWM_DBG_CMD(iwm, DBG, "\tLMAC opcode: 0x%x\n",
			    cmd->lmac_cmd.id);

	ret = iwm_tx_credit_alloc(iwm, udma_cmd->credit_group, buf->len);

	/* We keep sending UMAC reset regardless of the command credits.
	 * The UMAC is supposed to be reset anyway and the Tx credits are
	 * reinitialized afterwards. If we are lucky, the reset could
	 * still be done even though we have run out of credits for the
	 * command pool at this moment.*/
	if (ret && (umac_cmd->id != UMAC_CMD_OPCODE_RESET)) {
		IWM_DBG_TX(iwm, DBG, "Failed to alloc tx credit for cmd %d\n",
			   umac_cmd->id);
		return ret;
	}

	return iwm_bus_send_chunk(iwm, buf->start, buf->len);
}

/* target_cmd a.k.a udma_nonwifi_cmd can be sent when UMAC is not available */
int iwm_hal_send_target_cmd(struct iwm_priv *iwm,
			    struct iwm_udma_nonwifi_cmd *udma_cmd,
			    const void *payload)
{
	struct iwm_nonwifi_cmd *cmd;
Z
Zhu Yi 已提交
374
	int ret, seq_num;
375 376 377 378 379 380 381

	cmd = kzalloc(sizeof(struct iwm_nonwifi_cmd), GFP_KERNEL);
	if (!cmd) {
		IWM_ERR(iwm, "Couldn't alloc memory for hal cmd\n");
		return -ENOMEM;
	}

Z
Zhu Yi 已提交
382
	seq_num = iwm_nonwifi_cmd_init(iwm, cmd, udma_cmd);
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397

	if (cmd->udma_cmd.opcode == UMAC_HDI_OUT_OPCODE_WRITE ||
	    cmd->udma_cmd.opcode == UMAC_HDI_OUT_OPCODE_WRITE_PERSISTENT) {
		cmd->buf.len = le32_to_cpu(cmd->udma_cmd.op1_sz);
		memcpy(&cmd->buf.payload, payload, cmd->buf.len);
	}

	ret = iwm_send_udma_nonwifi_cmd(iwm, cmd);

	if (!udma_cmd->resp)
		kfree(cmd);

	if (ret < 0)
		return ret;

Z
Zhu Yi 已提交
398
	return seq_num;
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
}

static void iwm_build_lmac_hdr(struct iwm_priv *iwm, struct iwm_lmac_hdr *hdr,
			       struct iwm_lmac_cmd *cmd)
{
	memset(hdr, 0, sizeof(*hdr));

	hdr->id = cmd->id;
	hdr->flags = 0; /* Is this ever used? */
	hdr->seq_num = cmd->seq_num;
}

/*
 * iwm_hal_send_host_cmd(): sends commands to the UMAC or the LMAC.
 * Sending command to the LMAC is equivalent to sending a
414
 * regular UMAC command with the LMAC passthrough or the LMAC
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
 * wrapper UMAC command IDs.
 */
int iwm_hal_send_host_cmd(struct iwm_priv *iwm,
			  struct iwm_udma_wifi_cmd *udma_cmd,
			  struct iwm_umac_cmd *umac_cmd,
			  struct iwm_lmac_cmd *lmac_cmd,
			  const void *payload, u16 payload_size)
{
	struct iwm_wifi_cmd *cmd;
	struct iwm_lmac_hdr *hdr;
	int lmac_hdr_len = 0;
	int ret;

	cmd = kzalloc(sizeof(struct iwm_wifi_cmd), GFP_KERNEL);
	if (!cmd) {
		IWM_ERR(iwm, "Couldn't alloc memory for wifi hal cmd\n");
		return -ENOMEM;
	}

	iwm_wifi_cmd_init(iwm, cmd, udma_cmd, umac_cmd, lmac_cmd, payload_size);

	if (lmac_cmd) {
		hdr = (struct iwm_lmac_hdr *)(cmd->buf.start);

		iwm_build_lmac_hdr(iwm, hdr, &cmd->lmac_cmd);
		lmac_hdr_len = sizeof(struct iwm_lmac_hdr);
	}

	memcpy(cmd->buf.payload, payload, payload_size);
	cmd->buf.len = le16_to_cpu(umac_cmd->count);

	ret = iwm_send_udma_wifi_cmd(iwm, cmd);

	/* We free the cmd if we're not expecting any response */
	if (!umac_cmd->resp)
		kfree(cmd);
	return ret;
}

/*
 * iwm_hal_send_umac_cmd(): This is a special case for
 * iwm_hal_send_host_cmd() to send direct UMAC cmd (without
 * LMAC involved).
 */
int iwm_hal_send_umac_cmd(struct iwm_priv *iwm,
			  struct iwm_udma_wifi_cmd *udma_cmd,
			  struct iwm_umac_cmd *umac_cmd,
			  const void *payload, u16 payload_size)
{
	return iwm_hal_send_host_cmd(iwm, udma_cmd, umac_cmd, NULL,
				     payload, payload_size);
}