intel_hdmi_audio.c 48.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
/*
 *   intel_hdmi_audio.c - Intel HDMI audio driver
 *
 *  Copyright (C) 2016 Intel Corp
 *  Authors:	Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>
 *		Ramesh Babu K V	<ramesh.babu@intel.com>
 *		Vaibhav Agarwal <vaibhav.agarwal@intel.com>
 *		Jerome Anand <jerome.anand@intel.com>
 *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; version 2 of the License.
 *
 *  This program is distributed in the hope that it will be useful, but
 *  WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  General Public License for more details.
 *
 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 * ALSA driver for Intel HDMI audio
 */

#define pr_fmt(fmt)	"had: " fmt

#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/acpi.h>
#include <asm/cacheflush.h>
#include <sound/pcm.h>
#include <sound/core.h>
#include <sound/pcm_params.h>
#include <sound/initval.h>
#include <sound/control.h>
#include <sound/initval.h>
#include "intel_hdmi_audio.h"

/*standard module options for ALSA. This module supports only one card*/
static int hdmi_card_index = SNDRV_DEFAULT_IDX1;
static char *hdmi_card_id = SNDRV_DEFAULT_STR1;
43
static int underrun_count;
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171

module_param_named(index, hdmi_card_index, int, 0444);
MODULE_PARM_DESC(index,
		"Index value for INTEL Intel HDMI Audio controller.");
module_param_named(id, hdmi_card_id, charp, 0444);
MODULE_PARM_DESC(id,
		"ID string for INTEL Intel HDMI Audio controller.");

/*
 * ELD SA bits in the CEA Speaker Allocation data block
 */
static int eld_speaker_allocation_bits[] = {
	[0] = FL | FR,
	[1] = LFE,
	[2] = FC,
	[3] = RL | RR,
	[4] = RC,
	[5] = FLC | FRC,
	[6] = RLC | RRC,
	/* the following are not defined in ELD yet */
	[7] = 0,
};

/*
 * This is an ordered list!
 *
 * The preceding ones have better chances to be selected by
 * hdmi_channel_allocation().
 */
static struct cea_channel_speaker_allocation channel_allocations[] = {
/*                        channel:   7     6    5    4    3     2    1    0  */
{ .ca_index = 0x00,  .speakers = {   0,    0,   0,   0,   0,    0,  FR,  FL } },
				/* 2.1 */
{ .ca_index = 0x01,  .speakers = {   0,    0,   0,   0,   0,  LFE,  FR,  FL } },
				/* Dolby Surround */
{ .ca_index = 0x02,  .speakers = {   0,    0,   0,   0,  FC,    0,  FR,  FL } },
				/* surround40 */
{ .ca_index = 0x08,  .speakers = {   0,    0,  RR,  RL,   0,    0,  FR,  FL } },
				/* surround41 */
{ .ca_index = 0x09,  .speakers = {   0,    0,  RR,  RL,   0,  LFE,  FR,  FL } },
				/* surround50 */
{ .ca_index = 0x0a,  .speakers = {   0,    0,  RR,  RL,  FC,    0,  FR,  FL } },
				/* surround51 */
{ .ca_index = 0x0b,  .speakers = {   0,    0,  RR,  RL,  FC,  LFE,  FR,  FL } },
				/* 6.1 */
{ .ca_index = 0x0f,  .speakers = {   0,   RC,  RR,  RL,  FC,  LFE,  FR,  FL } },
				/* surround71 */
{ .ca_index = 0x13,  .speakers = { RRC,  RLC,  RR,  RL,  FC,  LFE,  FR,  FL } },

{ .ca_index = 0x03,  .speakers = {   0,    0,   0,   0,  FC,  LFE,  FR,  FL } },
{ .ca_index = 0x04,  .speakers = {   0,    0,   0,  RC,   0,    0,  FR,  FL } },
{ .ca_index = 0x05,  .speakers = {   0,    0,   0,  RC,   0,  LFE,  FR,  FL } },
{ .ca_index = 0x06,  .speakers = {   0,    0,   0,  RC,  FC,    0,  FR,  FL } },
{ .ca_index = 0x07,  .speakers = {   0,    0,   0,  RC,  FC,  LFE,  FR,  FL } },
{ .ca_index = 0x0c,  .speakers = {   0,   RC,  RR,  RL,   0,    0,  FR,  FL } },
{ .ca_index = 0x0d,  .speakers = {   0,   RC,  RR,  RL,   0,  LFE,  FR,  FL } },
{ .ca_index = 0x0e,  .speakers = {   0,   RC,  RR,  RL,  FC,    0,  FR,  FL } },
{ .ca_index = 0x10,  .speakers = { RRC,  RLC,  RR,  RL,   0,    0,  FR,  FL } },
{ .ca_index = 0x11,  .speakers = { RRC,  RLC,  RR,  RL,   0,  LFE,  FR,  FL } },
{ .ca_index = 0x12,  .speakers = { RRC,  RLC,  RR,  RL,  FC,    0,  FR,  FL } },
{ .ca_index = 0x14,  .speakers = { FRC,  FLC,   0,   0,   0,    0,  FR,  FL } },
{ .ca_index = 0x15,  .speakers = { FRC,  FLC,   0,   0,   0,  LFE,  FR,  FL } },
{ .ca_index = 0x16,  .speakers = { FRC,  FLC,   0,   0,  FC,    0,  FR,  FL } },
{ .ca_index = 0x17,  .speakers = { FRC,  FLC,   0,   0,  FC,  LFE,  FR,  FL } },
{ .ca_index = 0x18,  .speakers = { FRC,  FLC,   0,  RC,   0,    0,  FR,  FL } },
{ .ca_index = 0x19,  .speakers = { FRC,  FLC,   0,  RC,   0,  LFE,  FR,  FL } },
{ .ca_index = 0x1a,  .speakers = { FRC,  FLC,   0,  RC,  FC,    0,  FR,  FL } },
{ .ca_index = 0x1b,  .speakers = { FRC,  FLC,   0,  RC,  FC,  LFE,  FR,  FL } },
{ .ca_index = 0x1c,  .speakers = { FRC,  FLC,  RR,  RL,   0,    0,  FR,  FL } },
{ .ca_index = 0x1d,  .speakers = { FRC,  FLC,  RR,  RL,   0,  LFE,  FR,  FL } },
{ .ca_index = 0x1e,  .speakers = { FRC,  FLC,  RR,  RL,  FC,    0,  FR,  FL } },
{ .ca_index = 0x1f,  .speakers = { FRC,  FLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
};

static struct channel_map_table map_tables[] = {
	{ SNDRV_CHMAP_FL,       0x00,   FL },
	{ SNDRV_CHMAP_FR,       0x01,   FR },
	{ SNDRV_CHMAP_RL,       0x04,   RL },
	{ SNDRV_CHMAP_RR,       0x05,   RR },
	{ SNDRV_CHMAP_LFE,      0x02,   LFE },
	{ SNDRV_CHMAP_FC,       0x03,   FC },
	{ SNDRV_CHMAP_RLC,      0x06,   RLC },
	{ SNDRV_CHMAP_RRC,      0x07,   RRC },
	{} /* terminator */
};

/* hardware capability structure */
static const struct snd_pcm_hardware snd_intel_hadstream = {
	.info =	(SNDRV_PCM_INFO_INTERLEAVED |
		SNDRV_PCM_INFO_DOUBLE |
		SNDRV_PCM_INFO_MMAP|
		SNDRV_PCM_INFO_MMAP_VALID |
		SNDRV_PCM_INFO_BATCH),
	.formats = (SNDRV_PCM_FMTBIT_S24 |
		SNDRV_PCM_FMTBIT_U24),
	.rates = SNDRV_PCM_RATE_32000 |
		SNDRV_PCM_RATE_44100 |
		SNDRV_PCM_RATE_48000 |
		SNDRV_PCM_RATE_88200 |
		SNDRV_PCM_RATE_96000 |
		SNDRV_PCM_RATE_176400 |
		SNDRV_PCM_RATE_192000,
	.rate_min = HAD_MIN_RATE,
	.rate_max = HAD_MAX_RATE,
	.channels_min = HAD_MIN_CHANNEL,
	.channels_max = HAD_MAX_CHANNEL,
	.buffer_bytes_max = HAD_MAX_BUFFER,
	.period_bytes_min = HAD_MIN_PERIOD_BYTES,
	.period_bytes_max = HAD_MAX_PERIOD_BYTES,
	.periods_min = HAD_MIN_PERIODS,
	.periods_max = HAD_MAX_PERIODS,
	.fifo_size = HAD_FIFO_SIZE,
};

/* Register access functions */

int had_get_hwstate(struct snd_intelhad *intelhaddata)
{
	/* Check for device presence -SW state */
	if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED) {
		pr_debug("%s:Device not connected:%d\n", __func__,
				intelhaddata->drv_status);
		return -ENODEV;
	}

	return 0;
}

172 173
int had_get_caps(struct snd_intelhad *intelhaddata,
		 enum had_caps_list query, void *caps)
174 175 176 177 178
{
	int retval;

	retval = had_get_hwstate(intelhaddata);
	if (!retval)
179
		retval = mid_hdmi_audio_get_caps(query, caps);
180 181 182 183

	return retval;
}

184 185
int had_set_caps(struct snd_intelhad *intelhaddata,
		 enum had_caps_list set_element, void *caps)
186 187 188 189 190
{
	int retval;

	retval = had_get_hwstate(intelhaddata);
	if (!retval)
191
		retval = mid_hdmi_audio_set_caps(set_element, caps);
192 193 194 195

	return retval;
}

196
int had_read_register(struct snd_intelhad *intelhaddata, u32 offset, u32 *data)
197 198 199 200 201
{
	int retval;

	retval = had_get_hwstate(intelhaddata);
	if (!retval)
202
		retval = mid_hdmi_audio_read(offset, data);
203 204 205 206

	return retval;
}

207
int had_write_register(struct snd_intelhad *intelhaddata, u32 offset, u32 data)
208 209 210 211 212
{
	int retval;

	retval = had_get_hwstate(intelhaddata);
	if (!retval)
213
		retval = mid_hdmi_audio_write(offset, data);
214 215 216 217

	return retval;
}

218 219
int had_read_modify(struct snd_intelhad *intelhaddata, u32 offset,
		    u32 data, u32 mask)
220 221 222 223 224
{
	int retval;

	retval = had_get_hwstate(intelhaddata);
	if (!retval)
225
		retval = mid_hdmi_audio_rmw(offset, data, mask);
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250

	return retval;
}
/**
 * function to read-modify
 * AUD_CONFIG register on VLV2.The had_read_modify() function should not
 * directly be used on VLV2 for updating AUD_CONFIG register.
 * This is because:
 * Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2
 * HDMI IP. As a result a read-modify of AUD_CONFIG regiter will always
 * clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the
 * register. This field should be 1xy binary for configuration with 6 or
 * more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio)
 * causes the "channels" field to be updated as 0xy binary resulting in
 * bad audio. The fix is to always write the AUD_CONFIG[6:4] with
 * appropriate value when doing read-modify of AUD_CONFIG register.
 *
 * @substream: the current substream or NULL if no active substream
 * @data : data to be written
 * @mask : mask
 *
 */
static int had_read_modify_aud_config_v2(struct snd_pcm_substream *substream,
					u32 data, u32 mask)
{
251
	struct snd_intelhad *intelhaddata = snd_pcm_substream_chip(substream);
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
	union aud_cfg cfg_val = {.cfg_regval = 0};
	u8 channels;

	/*
	 * If substream is NULL, there is no active stream.
	 * In this case just set channels to 2
	 */
	if (substream)
		channels = substream->runtime->channels;
	else
		channels = 2;
	cfg_val.cfg_regx_v2.num_ch = channels - 2;

	data = data | cfg_val.cfg_regval;
	mask = mask | AUD_CONFIG_CH_MASK_V2;

	pr_debug("%s : data = %x, mask =%x\n", __func__, data, mask);

270
	return had_read_modify(intelhaddata, AUD_CONFIG, data, mask);
271 272
}

273
void snd_intelhad_enable_audio(struct snd_pcm_substream *substream, u8 enable)
274 275 276 277
{
	had_read_modify_aud_config_v2(substream, enable, BIT(0));
}

278 279
static void snd_intelhad_reset_audio(struct snd_intelhad *intelhaddata,
				     u8 reset)
280
{
281
	had_write_register(intelhaddata, AUD_HDMI_STATUS_v2, reset);
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
}

/**
 * initialize audio channel status registers
 * This function is called in the prepare callback
 */
static int had_prog_status_reg(struct snd_pcm_substream *substream,
			struct snd_intelhad *intelhaddata)
{
	union aud_cfg cfg_val = {.cfg_regval = 0};
	union aud_ch_status_0 ch_stat0 = {.status_0_regval = 0};
	union aud_ch_status_1 ch_stat1 = {.status_1_regval = 0};
	int format;

	pr_debug("Entry %s\n", __func__);

	ch_stat0.status_0_regx.lpcm_id = (intelhaddata->aes_bits &
						IEC958_AES0_NONAUDIO)>>1;
	ch_stat0.status_0_regx.clk_acc = (intelhaddata->aes_bits &
						IEC958_AES3_CON_CLOCK)>>4;
302
	cfg_val.cfg_regx_v2.val_bit = ch_stat0.status_0_regx.lpcm_id;
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333

	switch (substream->runtime->rate) {
	case AUD_SAMPLE_RATE_32:
		ch_stat0.status_0_regx.samp_freq = CH_STATUS_MAP_32KHZ;
		break;

	case AUD_SAMPLE_RATE_44_1:
		ch_stat0.status_0_regx.samp_freq = CH_STATUS_MAP_44KHZ;
		break;
	case AUD_SAMPLE_RATE_48:
		ch_stat0.status_0_regx.samp_freq = CH_STATUS_MAP_48KHZ;
		break;
	case AUD_SAMPLE_RATE_88_2:
		ch_stat0.status_0_regx.samp_freq = CH_STATUS_MAP_88KHZ;
		break;
	case AUD_SAMPLE_RATE_96:
		ch_stat0.status_0_regx.samp_freq = CH_STATUS_MAP_96KHZ;
		break;
	case AUD_SAMPLE_RATE_176_4:
		ch_stat0.status_0_regx.samp_freq = CH_STATUS_MAP_176KHZ;
		break;
	case AUD_SAMPLE_RATE_192:
		ch_stat0.status_0_regx.samp_freq = CH_STATUS_MAP_192KHZ;
		break;

	default:
		/* control should never come here */
		return -EINVAL;
	break;

	}
334 335
	had_write_register(intelhaddata,
			   AUD_CH_STATUS_0, ch_stat0.status_0_regval);
336 337 338 339 340 341 342 343 344 345 346 347 348

	format = substream->runtime->format;

	if (format == SNDRV_PCM_FORMAT_S16_LE) {
		ch_stat1.status_1_regx.max_wrd_len = MAX_SMPL_WIDTH_20;
		ch_stat1.status_1_regx.wrd_len = SMPL_WIDTH_16BITS;
	} else if (format == SNDRV_PCM_FORMAT_S24_LE) {
		ch_stat1.status_1_regx.max_wrd_len = MAX_SMPL_WIDTH_24;
		ch_stat1.status_1_regx.wrd_len = SMPL_WIDTH_24BITS;
	} else {
		ch_stat1.status_1_regx.max_wrd_len = 0;
		ch_stat1.status_1_regx.wrd_len = 0;
	}
349 350
	had_write_register(intelhaddata,
			   AUD_CH_STATUS_1, ch_stat1.status_1_regval);
351 352 353
	return 0;
}

354
/*
355 356 357 358
 * function to initialize audio
 * registers and buffer confgiuration registers
 * This function is called in the prepare callback
 */
359 360
static int snd_intelhad_audio_ctrl(struct snd_pcm_substream *substream,
				   struct snd_intelhad *intelhaddata)
361 362 363 364 365 366 367 368 369 370
{
	union aud_cfg cfg_val = {.cfg_regval = 0};
	union aud_buf_config buf_cfg = {.buf_cfgval = 0};
	u8 channels;

	had_prog_status_reg(substream, intelhaddata);

	buf_cfg.buf_cfg_regx_v2.audio_fifo_watermark = FIFO_THRESHOLD;
	buf_cfg.buf_cfg_regx_v2.dma_fifo_watermark = DMA_FIFO_THRESHOLD;
	buf_cfg.buf_cfg_regx_v2.aud_delay = 0;
371
	had_write_register(intelhaddata, AUD_BUF_CONFIG, buf_cfg.buf_cfgval);
372 373 374 375 376 377 378 379

	channels = substream->runtime->channels;
	cfg_val.cfg_regx_v2.num_ch = channels - 2;
	if (channels <= 2)
		cfg_val.cfg_regx_v2.layout = LAYOUT0;
	else
		cfg_val.cfg_regx_v2.layout = LAYOUT1;

380
	cfg_val.cfg_regx_v2.val_bit = 1;
381
	had_write_register(intelhaddata, AUD_CONFIG, cfg_val.cfg_regval);
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
	return 0;
}

/*
 * Compute derived values in channel_allocations[].
 */
static void init_channel_allocations(void)
{
	int i, j;
	struct cea_channel_speaker_allocation *p;

	pr_debug("%s: Enter\n", __func__);

	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
		p = channel_allocations + i;
		p->channels = 0;
		p->spk_mask = 0;
		for (j = 0; j < ARRAY_SIZE(p->speakers); j++)
			if (p->speakers[j]) {
				p->channels++;
				p->spk_mask |= p->speakers[j];
			}
	}
}

/*
 * The transformation takes two steps:
 *
 *      eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask
 *            spk_mask => (channel_allocations[])         => ai->CA
 *
 * TODO: it could select the wrong CA from multiple candidates.
 */
static int snd_intelhad_channel_allocation(struct snd_intelhad *intelhaddata,
					int channels)
{
	int i;
	int ca = 0;
	int spk_mask = 0;

	/*
	 * CA defaults to 0 for basic stereo audio
	 */
	if (channels <= 2)
		return 0;

	/*
	 * expand ELD's speaker allocation mask
	 *
	 * ELD tells the speaker mask in a compact(paired) form,
	 * expand ELD's notions to match the ones used by Audio InfoFrame.
	 */

	for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
		if (intelhaddata->eeld.speaker_allocation_block & (1 << i))
			spk_mask |= eld_speaker_allocation_bits[i];
	}

	/* search for the first working match in the CA table */
	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
		if (channels == channel_allocations[i].channels &&
		(spk_mask & channel_allocations[i].spk_mask) ==
				channel_allocations[i].spk_mask) {
			ca = channel_allocations[i].ca_index;
			break;
		}
	}

	pr_debug("HDMI: select CA 0x%x for %d\n", ca, channels);

	return ca;
}

/* from speaker bit mask to ALSA API channel position */
static int spk_to_chmap(int spk)
{
	struct channel_map_table *t = map_tables;

	for (; t->map; t++) {
		if (t->spk_mask == spk)
			return t->map;
	}
	return 0;
}

void had_build_channel_allocation_map(struct snd_intelhad *intelhaddata)
{
	int i = 0, c = 0;
	int spk_mask = 0;
	struct snd_pcm_chmap_elem *chmap;
	u8 eld_high, eld_high_mask = 0xF0;
	u8 high_msb;

	chmap = kzalloc(sizeof(*chmap), GFP_KERNEL);
	if (chmap == NULL) {
		intelhaddata->chmap->chmap = NULL;
		return;
	}

481 482
	had_get_caps(intelhaddata, HAD_GET_ELD, &intelhaddata->eeld);
	had_get_caps(intelhaddata, HAD_GET_DP_OUTPUT, &intelhaddata->dp_output);
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590

	pr_debug("eeld.speaker_allocation_block = %x\n",
			intelhaddata->eeld.speaker_allocation_block);

	/* WA: Fix the max channel supported to 8 */

	/*
	 * Sink may support more than 8 channels, if eld_high has more than
	 * one bit set. SOC supports max 8 channels.
	 * Refer eld_speaker_allocation_bits, for sink speaker allocation
	 */

	/* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */
	eld_high = intelhaddata->eeld.speaker_allocation_block & eld_high_mask;
	if ((eld_high & (eld_high-1)) && (eld_high > 0x1F)) {
		/* eld_high & (eld_high-1): if more than 1 bit set */
		/* 0x1F: 7 channels */
		for (i = 1; i < 4; i++) {
			high_msb = eld_high & (0x80 >> i);
			if (high_msb) {
				intelhaddata->eeld.speaker_allocation_block &=
					high_msb | 0xF;
				break;
			}
		}
	}

	for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
		if (intelhaddata->eeld.speaker_allocation_block & (1 << i))
			spk_mask |= eld_speaker_allocation_bits[i];
	}

	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
		if (spk_mask == channel_allocations[i].spk_mask) {
			for (c = 0; c < channel_allocations[i].channels; c++) {
				chmap->map[c] = spk_to_chmap(
					channel_allocations[i].speakers[
						(MAX_SPEAKERS - 1)-c]);
			}
			chmap->channels = channel_allocations[i].channels;
			intelhaddata->chmap->chmap = chmap;
			break;
		}
	}
	if (i >= ARRAY_SIZE(channel_allocations)) {
		intelhaddata->chmap->chmap = NULL;
		kfree(chmap);
	}
}

/*
 * ALSA API channel-map control callbacks
 */
static int had_chmap_ctl_info(struct snd_kcontrol *kcontrol,
				struct snd_ctl_elem_info *uinfo)
{
	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
	struct snd_intelhad *intelhaddata = info->private_data;

	if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED)
		return -ENODEV;
	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
	uinfo->count = HAD_MAX_CHANNEL;
	uinfo->value.integer.min = 0;
	uinfo->value.integer.max = SNDRV_CHMAP_LAST;
	return 0;
}

static int had_chmap_ctl_get(struct snd_kcontrol *kcontrol,
				struct snd_ctl_elem_value *ucontrol)
{
	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
	struct snd_intelhad *intelhaddata = info->private_data;
	int i = 0;
	const struct snd_pcm_chmap_elem *chmap;

	if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED)
		return -ENODEV;
	if (intelhaddata->chmap->chmap ==  NULL)
		return -ENODATA;
	chmap = intelhaddata->chmap->chmap;
	for (i = 0; i < chmap->channels; i++) {
		ucontrol->value.integer.value[i] = chmap->map[i];
		pr_debug("chmap->map[%d] = %d\n", i, chmap->map[i]);
	}

	return 0;
}

static int had_register_chmap_ctls(struct snd_intelhad *intelhaddata,
						struct snd_pcm *pcm)
{
	int err = 0;

	err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
			NULL, 0, (unsigned long)intelhaddata,
			&intelhaddata->chmap);
	if (err < 0)
		return err;

	intelhaddata->chmap->private_data = intelhaddata;
	intelhaddata->kctl = intelhaddata->chmap->kctl;
	intelhaddata->kctl->info = had_chmap_ctl_info;
	intelhaddata->kctl->get = had_chmap_ctl_get;
	intelhaddata->chmap->chmap = NULL;
	return 0;
}

591 592
/*
 * snd_intelhad_prog_dip - to initialize Data Island Packets registers
593 594 595 596 597 598
 *
 * @substream:substream for which the prepare function is called
 * @intelhaddata:substream private data
 *
 * This function is called in the prepare callback
 */
599 600
static void snd_intelhad_prog_dip(struct snd_pcm_substream *substream,
				  struct snd_intelhad *intelhaddata)
601 602 603 604 605 606
{
	int i;
	union aud_ctrl_st ctrl_state = {.ctrl_val = 0};
	union aud_info_frame2 frame2 = {.fr2_val = 0};
	union aud_info_frame3 frame3 = {.fr3_val = 0};
	u8 checksum = 0;
607
	u32 info_frame;
608 609 610 611
	int channels;

	channels = substream->runtime->channels;

612
	had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.ctrl_val);
613

614 615 616 617 618 619
	if (intelhaddata->dp_output) {
		info_frame = DP_INFO_FRAME_WORD1;
		frame2.fr2_val = 1;
	} else {
		info_frame = HDMI_INFO_FRAME_WORD1;
		frame2.fr2_regx.chnl_cnt = substream->runtime->channels - 1;
620

621 622
		frame3.fr3_regx.chnl_alloc = snd_intelhad_channel_allocation(
			intelhaddata, channels);
623

624 625 626 627 628 629 630
		/*Calculte the byte wide checksum for all valid DIP words*/
		for (i = 0; i < BYTES_PER_WORD; i++)
			checksum += (info_frame >> i*BITS_PER_BYTE) & MASK_BYTE0;
		for (i = 0; i < BYTES_PER_WORD; i++)
			checksum += (frame2.fr2_val >> i*BITS_PER_BYTE) & MASK_BYTE0;
		for (i = 0; i < BYTES_PER_WORD; i++)
			checksum += (frame3.fr3_val >> i*BITS_PER_BYTE) & MASK_BYTE0;
631

632 633
		frame2.fr2_regx.chksum = -(checksum);
	}
634

635 636 637
	had_write_register(intelhaddata, AUD_HDMIW_INFOFR_v2, info_frame);
	had_write_register(intelhaddata, AUD_HDMIW_INFOFR_v2, frame2.fr2_val);
	had_write_register(intelhaddata, AUD_HDMIW_INFOFR_v2, frame3.fr3_val);
638 639 640

	/* program remaining DIP words with zero */
	for (i = 0; i < HAD_MAX_DIP_WORDS-VALID_DIP_WORDS; i++)
641
		had_write_register(intelhaddata, AUD_HDMIW_INFOFR_v2, 0x0);
642 643 644

	ctrl_state.ctrl_regx.dip_freq = 1;
	ctrl_state.ctrl_regx.dip_en_sta = 1;
645
	had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.ctrl_val);
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
}

/**
 * snd_intelhad_prog_buffer - programs buffer
 * address and length registers
 *
 * @substream:substream for which the prepare function is called
 * @intelhaddata:substream private data
 *
 * This function programs ring buffer address and length into registers.
 */
int snd_intelhad_prog_buffer(struct snd_intelhad *intelhaddata,
					int start, int end)
{
	u32 ring_buf_addr, ring_buf_size, period_bytes;
	u8 i, num_periods;
	struct snd_pcm_substream *substream;

	substream = intelhaddata->stream_info.had_substream;
	if (!substream) {
		pr_err("substream is NULL\n");
		dump_stack();
		return 0;
	}

	ring_buf_addr = substream->runtime->dma_addr;
	ring_buf_size = snd_pcm_lib_buffer_bytes(substream);
	intelhaddata->stream_info.ring_buf_size = ring_buf_size;
	period_bytes = frames_to_bytes(substream->runtime,
				substream->runtime->period_size);
	num_periods = substream->runtime->periods;

	/*
	 * buffer addr should  be 64 byte aligned, period bytes
	 * will be used to calculate addr offset
	 */
	period_bytes &= ~0x3F;

	/* Hardware supports MAX_PERIODS buffers */
	if (end >= HAD_MAX_PERIODS)
		return -EINVAL;

	for (i = start; i <= end; i++) {
		/* Program the buf registers with addr and len */
		intelhaddata->buf_info[i].buf_addr = ring_buf_addr +
							 (i * period_bytes);
		if (i < num_periods-1)
			intelhaddata->buf_info[i].buf_size = period_bytes;
		else
			intelhaddata->buf_info[i].buf_size = ring_buf_size -
							(period_bytes*i);

698 699
		had_write_register(intelhaddata,
				   AUD_BUF_A_ADDR + (i * HAD_REG_WIDTH),
700 701
					intelhaddata->buf_info[i].buf_addr |
					BIT(0) | BIT(1));
702 703
		had_write_register(intelhaddata,
				   AUD_BUF_A_LENGTH + (i * HAD_REG_WIDTH),
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
					period_bytes);
		intelhaddata->buf_info[i].is_valid = true;
	}
	pr_debug("%s:buf[%d-%d] addr=%#x  and size=%d\n", __func__, start, end,
			intelhaddata->buf_info[start].buf_addr,
			intelhaddata->buf_info[start].buf_size);
	intelhaddata->valid_buf_cnt = num_periods;
	return 0;
}

int snd_intelhad_read_len(struct snd_intelhad *intelhaddata)
{
	int i, retval = 0;
	u32 len[4];

	for (i = 0; i < 4 ; i++) {
720 721 722
		had_read_register(intelhaddata,
				  AUD_BUF_A_LENGTH + (i * HAD_REG_WIDTH),
				  &len[i]);
723 724 725 726 727 728 729 730 731 732 733
		if (!len[i])
			retval++;
	}
	if (retval != 1) {
		for (i = 0; i < 4 ; i++)
			pr_debug("buf[%d] size=%d\n", i, len[i]);
	}

	return retval;
}

734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
static int had_calculate_maud_value(u32 aud_samp_freq, u32 link_rate)
{
	u32 maud_val;

	/* Select maud according to DP 1.2 spec*/
	if (link_rate == DP_2_7_GHZ) {
		switch (aud_samp_freq) {
		case AUD_SAMPLE_RATE_32:
			maud_val = AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL;
			break;

		case AUD_SAMPLE_RATE_44_1:
			maud_val = AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL;
			break;

		case AUD_SAMPLE_RATE_48:
			maud_val = AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL;
			break;

		case AUD_SAMPLE_RATE_88_2:
			maud_val = AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL;
			break;

		case AUD_SAMPLE_RATE_96:
			maud_val = AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL;
			break;

		case AUD_SAMPLE_RATE_176_4:
			maud_val = AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL;
			break;

		case HAD_MAX_RATE:
			maud_val = HAD_MAX_RATE_DP_2_7_MAUD_VAL;
			break;

		default:
			maud_val = -EINVAL;
			break;
		}
	} else if (link_rate == DP_1_62_GHZ) {
		switch (aud_samp_freq) {
		case AUD_SAMPLE_RATE_32:
			maud_val = AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL;
			break;

		case AUD_SAMPLE_RATE_44_1:
			maud_val = AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL;
			break;

		case AUD_SAMPLE_RATE_48:
			maud_val = AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL;
			break;

		case AUD_SAMPLE_RATE_88_2:
			maud_val = AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL;
			break;

		case AUD_SAMPLE_RATE_96:
			maud_val = AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL;
			break;

		case AUD_SAMPLE_RATE_176_4:
			maud_val = AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL;
			break;

		case HAD_MAX_RATE:
			maud_val = HAD_MAX_RATE_DP_1_62_MAUD_VAL;
			break;

		default:
			maud_val = -EINVAL;
			break;
		}
	} else
		maud_val = -EINVAL;

	return maud_val;
}

813 814
/*
 * snd_intelhad_prog_cts - Program HDMI audio CTS value
815 816 817 818 819 820 821 822
 *
 * @aud_samp_freq: sampling frequency of audio data
 * @tmds: sampling frequency of the display data
 * @n_param: N value, depends on aud_samp_freq
 * @intelhaddata:substream private data
 *
 * Program CTS register based on the audio and display sampling frequency
 */
823 824 825
static void snd_intelhad_prog_cts(u32 aud_samp_freq, u32 tmds,
				  u32 link_rate, u32 n_param,
				  struct snd_intelhad *intelhaddata)
826 827 828 829
{
	u32 cts_val;
	u64 dividend, divisor;

830 831 832 833 834 835 836 837 838
	if (intelhaddata->dp_output) {
		/* Substitute cts_val with Maud according to DP 1.2 spec*/
		cts_val = had_calculate_maud_value(aud_samp_freq, link_rate);
	} else {
		/* Calculate CTS according to HDMI 1.3a spec*/
		dividend = (u64)tmds * n_param*1000;
		divisor = 128 * aud_samp_freq;
		cts_val = div64_u64(dividend, divisor);
	}
839
	pr_debug("TMDS value=%d, N value=%d, CTS Value=%d\n",
840
		 tmds, n_param, cts_val);
841
	had_write_register(intelhaddata, AUD_HDMI_CTS, (BIT(24) | cts_val));
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
}

static int had_calculate_n_value(u32 aud_samp_freq)
{
	s32 n_val;

	/* Select N according to HDMI 1.3a spec*/
	switch (aud_samp_freq) {
	case AUD_SAMPLE_RATE_32:
		n_val = 4096;
	break;

	case AUD_SAMPLE_RATE_44_1:
		n_val = 6272;
	break;

	case AUD_SAMPLE_RATE_48:
		n_val = 6144;
	break;

	case AUD_SAMPLE_RATE_88_2:
		n_val = 12544;
	break;

	case AUD_SAMPLE_RATE_96:
		n_val = 12288;
	break;

	case AUD_SAMPLE_RATE_176_4:
		n_val = 25088;
	break;

	case HAD_MAX_RATE:
		n_val = 24576;
	break;

	default:
		n_val = -EINVAL;
	break;
	}
	return n_val;
}

885 886
/*
 * snd_intelhad_prog_n - Program HDMI audio N value
887 888 889 890 891 892 893 894
 *
 * @aud_samp_freq: sampling frequency of audio data
 * @n_param: N value, depends on aud_samp_freq
 * @intelhaddata:substream private data
 *
 * This function is called in the prepare callback.
 * It programs based on the audio and display sampling frequency
 */
895 896
static int snd_intelhad_prog_n(u32 aud_samp_freq, u32 *n_param,
			       struct snd_intelhad *intelhaddata)
897 898 899
{
	s32 n_val;

900 901 902 903 904 905 906 907 908 909 910 911
	if (intelhaddata->dp_output) {
		/*
		 * According to DP specs, Maud and Naud values hold
		 * a relationship, which is stated as:
		 * Maud/Naud = 512 * fs / f_LS_Clk
		 * where, fs is the sampling frequency of the audio stream
		 * and Naud is 32768 for Async clock.
		 */

		n_val = DP_NAUD_VAL;
	} else
		n_val =	had_calculate_n_value(aud_samp_freq);
912 913 914 915

	if (n_val < 0)
		return n_val;

916
	had_write_register(intelhaddata, AUD_N_ENABLE, (BIT(24) | n_val));
917 918 919 920
	*n_param = n_val;
	return 0;
}

921
void snd_intelhad_handle_underrun(struct snd_intelhad *intelhaddata)
922 923 924 925
{
	u32 hdmi_status, i = 0;

	/* Handle Underrun interrupt within Audio Unit */
926
	had_write_register(intelhaddata, AUD_CONFIG, 0);
927
	/* Reset buffer pointers */
928 929
	had_write_register(intelhaddata, AUD_HDMI_STATUS_v2, 1);
	had_write_register(intelhaddata, AUD_HDMI_STATUS_v2, 0);
930 931 932 933 934
	/**
	 * The interrupt status 'sticky' bits might not be cleared by
	 * setting '1' to that bit once...
	 */
	do { /* clear bit30, 31 AUD_HDMI_STATUS */
935 936
		had_read_register(intelhaddata, AUD_HDMI_STATUS_v2,
				  &hdmi_status);
937 938 939
		pr_debug("HDMI status =0x%x\n", hdmi_status);
		if (hdmi_status & AUD_CONFIG_MASK_UNDERRUN) {
			i++;
940 941
			had_write_register(intelhaddata,
					   AUD_HDMI_STATUS_v2, hdmi_status);
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
		} else
			break;
	} while (i < MAX_CNT);
	if (i >= MAX_CNT)
		pr_err("Unable to clear UNDERRUN bits\n");
}

/**
 * snd_intelhad_open - stream initializations are done here
 * @substream:substream for which the stream function is called
 *
 * This function is called whenever a PCM stream is opened
 */
static int snd_intelhad_open(struct snd_pcm_substream *substream)
{
	struct snd_intelhad *intelhaddata;
	struct snd_pcm_runtime *runtime;
	struct had_stream_pvt *stream;
	struct had_pvt_data *had_stream;
	int retval;

	pr_debug("snd_intelhad_open called\n");
	intelhaddata = snd_pcm_substream_chip(substream);
	had_stream = intelhaddata->private_data;
	runtime = substream->runtime;
967
	underrun_count = 0;
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206

	pm_runtime_get(intelhaddata->dev);

	if (had_get_hwstate(intelhaddata)) {
		pr_err("%s: HDMI cable plugged-out\n", __func__);
		retval = -ENODEV;
		goto exit_put_handle;
	}

	/* Check, if device already in use */
	if (runtime->private_data) {
		pr_err("Device already in use\n");
		retval = -EBUSY;
		goto exit_put_handle;
	}

	/* set the runtime hw parameter with local snd_pcm_hardware struct */
	runtime->hw = snd_intel_hadstream;

	stream = kzalloc(sizeof(*stream), GFP_KERNEL);
	if (!stream) {
		retval = -ENOMEM;
		goto exit_put_handle;
	}
	stream->stream_status = STREAM_INIT;
	runtime->private_data = stream;

	retval = snd_pcm_hw_constraint_integer(runtime,
			 SNDRV_PCM_HW_PARAM_PERIODS);
	if (retval < 0)
		goto exit_err;

	/* Make sure, that the period size is always aligned
	 * 64byte boundary
	 */
	retval = snd_pcm_hw_constraint_step(substream->runtime, 0,
			SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64);
	if (retval < 0) {
		pr_err("%s:step_size=64 failed,err=%d\n", __func__, retval);
		goto exit_err;
	}

	return retval;
exit_err:
	kfree(stream);
exit_put_handle:
	pm_runtime_put(intelhaddata->dev);
	runtime->private_data = NULL;
	return retval;
}

/**
 * had_period_elapsed - updates the hardware pointer status
 * @had_substream:substream for which the stream function is called
 *
 */
static void had_period_elapsed(void *had_substream)
{
	struct snd_pcm_substream *substream = had_substream;
	struct had_stream_pvt *stream;

	/* pr_debug("had_period_elapsed called\n"); */

	if (!substream || !substream->runtime)
		return;
	stream = substream->runtime->private_data;
	if (!stream)
		return;

	if (stream->stream_status != STREAM_RUNNING)
		return;
	snd_pcm_period_elapsed(substream);
}

/**
 * snd_intelhad_init_stream - internal function to initialize stream info
 * @substream:substream for which the stream function is called
 *
 */
static int snd_intelhad_init_stream(struct snd_pcm_substream *substream)
{
	struct snd_intelhad *intelhaddata = snd_pcm_substream_chip(substream);

	pr_debug("snd_intelhad_init_stream called\n");

	pr_debug("setting buffer ptr param\n");
	intelhaddata->stream_info.period_elapsed = had_period_elapsed;
	intelhaddata->stream_info.had_substream = substream;
	intelhaddata->stream_info.buffer_ptr = 0;
	intelhaddata->stream_info.buffer_rendered = 0;
	intelhaddata->stream_info.sfreq = substream->runtime->rate;
	return 0;
}

/**
 * snd_intelhad_close- to free parameteres when stream is stopped
 *
 * @substream:  substream for which the function is called
 *
 * This function is called by ALSA framework when stream is stopped
 */
static int snd_intelhad_close(struct snd_pcm_substream *substream)
{
	struct snd_intelhad *intelhaddata;
	struct snd_pcm_runtime *runtime;

	pr_debug("snd_intelhad_close called\n");

	intelhaddata = snd_pcm_substream_chip(substream);
	runtime = substream->runtime;

	if (!runtime->private_data) {
		pr_debug("close() might have called after failed open");
		return 0;
	}

	intelhaddata->stream_info.buffer_rendered = 0;
	intelhaddata->stream_info.buffer_ptr = 0;
	intelhaddata->stream_info.str_id = 0;
	intelhaddata->stream_info.had_substream = NULL;

	/* Check if following drv_status modification is required - VA */
	if (intelhaddata->drv_status != HAD_DRV_DISCONNECTED) {
		intelhaddata->drv_status = HAD_DRV_CONNECTED;
		pr_debug("%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n",
			__func__, __LINE__);
	}
	kfree(runtime->private_data);
	runtime->private_data = NULL;
	pm_runtime_put(intelhaddata->dev);
	return 0;
}

/**
 * snd_intelhad_hw_params- to setup the hardware parameters
 * like allocating the buffers
 *
 * @substream:  substream for which the function is called
 * @hw_params: hardware parameters
 *
 * This function is called by ALSA framework when hardware params are set
 */
static int snd_intelhad_hw_params(struct snd_pcm_substream *substream,
				    struct snd_pcm_hw_params *hw_params)
{
	unsigned long addr;
	int pages, buf_size, retval;

	pr_debug("snd_intelhad_hw_params called\n");

	if (!hw_params)
		return -EINVAL;

	buf_size = params_buffer_bytes(hw_params);
	retval = snd_pcm_lib_malloc_pages(substream, buf_size);
	if (retval < 0)
		return retval;
	pr_debug("%s:allocated memory = %d\n", __func__, buf_size);
	/* mark the pages as uncached region */
	addr = (unsigned long) substream->runtime->dma_area;
	pages = (substream->runtime->dma_bytes + PAGE_SIZE - 1) / PAGE_SIZE;
	retval = set_memory_uc(addr, pages);
	if (retval) {
		pr_err("set_memory_uc failed.Error:%d\n", retval);
		return retval;
	}
	memset(substream->runtime->dma_area, 0, buf_size);

	return retval;
}

/**
 * snd_intelhad_hw_free- to release the resources allocated during
 * hardware params setup
 *
 * @substream:  substream for which the function is called
 *
 * This function is called by ALSA framework before close callback.
 *
 */
static int snd_intelhad_hw_free(struct snd_pcm_substream *substream)
{
	unsigned long addr;
	u32 pages;

	pr_debug("snd_intelhad_hw_free called\n");

	/* mark back the pages as cached/writeback region before the free */
	if (substream->runtime->dma_area != NULL) {
		addr = (unsigned long) substream->runtime->dma_area;
		pages = (substream->runtime->dma_bytes + PAGE_SIZE - 1) /
								PAGE_SIZE;
		set_memory_wb(addr, pages);
		return snd_pcm_lib_free_pages(substream);
	}
	return 0;
}

/**
 * snd_intelhad_pcm_trigger - stream activities are handled here
 * @substream:substream for which the stream function is called
 * @cmd:the stream commamd thats requested from upper layer
 * This function is called whenever an a stream activity is invoked
 */
static int snd_intelhad_pcm_trigger(struct snd_pcm_substream *substream,
					int cmd)
{
	int caps, retval = 0;
	unsigned long flag_irq;
	struct snd_intelhad *intelhaddata;
	struct had_stream_pvt *stream;
	struct had_pvt_data *had_stream;

	pr_debug("snd_intelhad_pcm_trigger called\n");

	intelhaddata = snd_pcm_substream_chip(substream);
	stream = substream->runtime->private_data;
	had_stream = intelhaddata->private_data;

	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
		pr_debug("Trigger Start\n");

		/* Disable local INTRs till register prgmng is done */
		if (had_get_hwstate(intelhaddata)) {
			pr_err("_START: HDMI cable plugged-out\n");
			retval = -ENODEV;
			break;
		}
		stream->stream_status = STREAM_RUNNING;

		had_stream->stream_type = HAD_RUNNING_STREAM;

		/* Enable Audio */
		/*
		 * ToDo: Need to enable UNDERRUN interrupts as well
		 *   caps = HDMI_AUDIO_UNDERRUN | HDMI_AUDIO_BUFFER_DONE;
		 */
		caps = HDMI_AUDIO_BUFFER_DONE;
1207 1208 1209
		retval = had_set_caps(intelhaddata, HAD_SET_ENABLE_AUDIO_INT,
				      &caps);
		retval = had_set_caps(intelhaddata, HAD_SET_ENABLE_AUDIO, NULL);
1210
		snd_intelhad_enable_audio(substream, 1);
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231

		pr_debug("Processed _Start\n");

		break;

	case SNDRV_PCM_TRIGGER_STOP:
		pr_debug("Trigger Stop\n");
		spin_lock_irqsave(&intelhaddata->had_spinlock, flag_irq);
		intelhaddata->stream_info.str_id = 0;
		intelhaddata->curr_buf = 0;

		/* Stop reporting BUFFER_DONE/UNDERRUN to above layers*/

		had_stream->stream_type = HAD_INIT;
		spin_unlock_irqrestore(&intelhaddata->had_spinlock, flag_irq);
		/* Disable Audio */
		/*
		 * ToDo: Need to disable UNDERRUN interrupts as well
		 *   caps = HDMI_AUDIO_UNDERRUN | HDMI_AUDIO_BUFFER_DONE;
		 */
		caps = HDMI_AUDIO_BUFFER_DONE;
1232
		had_set_caps(intelhaddata, HAD_SET_DISABLE_AUDIO_INT, &caps);
1233
		snd_intelhad_enable_audio(substream, 0);
1234
		/* Reset buffer pointers */
1235 1236
		snd_intelhad_reset_audio(intelhaddata, 1);
		snd_intelhad_reset_audio(intelhaddata, 0);
1237
		stream->stream_status = STREAM_DROPPED;
1238
		had_set_caps(intelhaddata, HAD_SET_DISABLE_AUDIO, NULL);
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
		break;

	default:
		retval = -EINVAL;
	}
	return retval;
}

/**
 * snd_intelhad_pcm_prepare- internal preparation before starting a stream
 *
 * @substream:  substream for which the function is called
 *
 * This function is called when a stream is started for internal preparation.
 */
static int snd_intelhad_pcm_prepare(struct snd_pcm_substream *substream)
{
	int retval;
	u32 disp_samp_freq, n_param;
1258
	u32 link_rate = 0;
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
	struct snd_intelhad *intelhaddata;
	struct snd_pcm_runtime *runtime;
	struct had_pvt_data *had_stream;

	pr_debug("snd_intelhad_pcm_prepare called\n");

	intelhaddata = snd_pcm_substream_chip(substream);
	runtime = substream->runtime;
	had_stream = intelhaddata->private_data;

	if (had_get_hwstate(intelhaddata)) {
		pr_err("%s: HDMI cable plugged-out\n", __func__);
		retval = -ENODEV;
		goto prep_end;
	}

	pr_debug("period_size=%d\n",
		(int)frames_to_bytes(runtime, runtime->period_size));
	pr_debug("periods=%d\n", runtime->periods);
	pr_debug("buffer_size=%d\n", (int)snd_pcm_lib_buffer_bytes(substream));
	pr_debug("rate=%d\n", runtime->rate);
	pr_debug("channels=%d\n", runtime->channels);

	if (intelhaddata->stream_info.str_id) {
		pr_debug("_prepare is called for existing str_id#%d\n",
					intelhaddata->stream_info.str_id);
		retval = snd_intelhad_pcm_trigger(substream,
						SNDRV_PCM_TRIGGER_STOP);
		return retval;
	}

	retval = snd_intelhad_init_stream(substream);
	if (retval)
		goto prep_end;


	/* Get N value in KHz */
1296 1297
	retval = had_get_caps(intelhaddata, HAD_GET_DISPLAY_RATE,
			      &disp_samp_freq);
1298 1299 1300 1301 1302
	if (retval) {
		pr_err("querying display sampling freq failed %#x\n", retval);
		goto prep_end;
	}

1303 1304
	had_get_caps(intelhaddata, HAD_GET_ELD, &intelhaddata->eeld);
	had_get_caps(intelhaddata, HAD_GET_DP_OUTPUT, &intelhaddata->dp_output);
1305

1306 1307
	retval = snd_intelhad_prog_n(substream->runtime->rate, &n_param,
				     intelhaddata);
1308 1309 1310 1311
	if (retval) {
		pr_err("programming N value failed %#x\n", retval);
		goto prep_end;
	}
1312 1313

	if (intelhaddata->dp_output)
1314
		had_get_caps(intelhaddata, HAD_GET_LINK_RATE, &link_rate);
1315 1316


1317 1318 1319
	snd_intelhad_prog_cts(substream->runtime->rate,
			      disp_samp_freq, link_rate,
			      n_param, intelhaddata);
1320

1321
	snd_intelhad_prog_dip(substream, intelhaddata);
1322

1323
	retval = snd_intelhad_audio_ctrl(substream, intelhaddata);
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333

	/* Prog buffer address */
	retval = snd_intelhad_prog_buffer(intelhaddata,
			HAD_BUF_TYPE_A, HAD_BUF_TYPE_D);

	/*
	 * Program channel mapping in following order:
	 * FL, FR, C, LFE, RL, RR
	 */

1334
	had_write_register(intelhaddata, AUD_BUF_CH_SWAP, SWAP_LFE_CENTER);
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369

prep_end:
	return retval;
}

/**
 * snd_intelhad_pcm_pointer- to send the current buffer pointerprocessed by hw
 *
 * @substream:  substream for which the function is called
 *
 * This function is called by ALSA framework to get the current hw buffer ptr
 * when a period is elapsed
 */
static snd_pcm_uframes_t snd_intelhad_pcm_pointer(
					struct snd_pcm_substream *substream)
{
	struct snd_intelhad *intelhaddata;
	u32 bytes_rendered = 0;
	u32 t;
	int buf_id;

	/* pr_debug("snd_intelhad_pcm_pointer called\n"); */

	intelhaddata = snd_pcm_substream_chip(substream);

	if (intelhaddata->flag_underrun) {
		intelhaddata->flag_underrun = 0;
		return SNDRV_PCM_POS_XRUN;
	}

	/* Use a hw register to calculate sub-period position reports.
	 * This makes PulseAudio happier.
	 */

	buf_id = intelhaddata->curr_buf % 4;
1370 1371
	had_read_register(intelhaddata,
			  AUD_BUF_A_LENGTH + (buf_id * HAD_REG_WIDTH), &t);
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386

	if ((t == 0) || (t == ((u32)-1L))) {
		underrun_count++;
		pr_debug("discovered buffer done for buf %d, count = %d\n",
			buf_id, underrun_count);

		if (underrun_count > (HAD_MIN_PERIODS/2)) {
			pr_debug("assume audio_codec_reset, underrun = %d - do xrun\n",
				underrun_count);
			underrun_count = 0;
			return SNDRV_PCM_POS_XRUN;
		}
	} else {
		/* Reset Counter */
		underrun_count = 0;
1387
	}
1388

1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
	t = intelhaddata->buf_info[buf_id].buf_size - t;

	if (intelhaddata->stream_info.buffer_rendered)
		div_u64_rem(intelhaddata->stream_info.buffer_rendered,
			intelhaddata->stream_info.ring_buf_size,
			&(bytes_rendered));

	intelhaddata->stream_info.buffer_ptr = bytes_to_frames(
						substream->runtime,
						bytes_rendered + t);
	return intelhaddata->stream_info.buffer_ptr;
}

/**
 * snd_intelhad_pcm_mmap- mmaps a kernel buffer to user space for copying data
 *
 * @substream:  substream for which the function is called
 * @vma:		struct instance of memory VMM memory area
 *
 * This function is called by OS when a user space component
 * tries to get mmap memory from driver
 */
static int snd_intelhad_pcm_mmap(struct snd_pcm_substream *substream,
	struct vm_area_struct *vma)
{

	pr_debug("snd_intelhad_pcm_mmap called\n");

	pr_debug("entry with prot:%s\n", __func__);
	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
	return remap_pfn_range(vma, vma->vm_start,
			substream->dma_buffer.addr >> PAGE_SHIFT,
			vma->vm_end - vma->vm_start, vma->vm_page_prot);
}

int hdmi_audio_mode_change(struct snd_pcm_substream *substream)
{
	int retval = 0;
	u32 disp_samp_freq, n_param;
1428
	u32 link_rate = 0;
1429 1430 1431 1432 1433
	struct snd_intelhad *intelhaddata;

	intelhaddata = snd_pcm_substream_chip(substream);

	/* Disable Audio */
1434
	snd_intelhad_enable_audio(substream, 0);
1435 1436

	/* Update CTS value */
1437 1438
	retval = had_get_caps(intelhaddata, HAD_GET_DISPLAY_RATE,
			      &disp_samp_freq);
1439 1440 1441 1442 1443
	if (retval) {
		pr_err("querying display sampling freq failed %#x\n", retval);
		goto out;
	}

1444 1445
	retval = snd_intelhad_prog_n(substream->runtime->rate, &n_param,
				     intelhaddata);
1446 1447 1448 1449
	if (retval) {
		pr_err("programming N value failed %#x\n", retval);
		goto out;
	}
1450 1451

	if (intelhaddata->dp_output)
1452
		had_get_caps(intelhaddata, HAD_GET_LINK_RATE, &link_rate);
1453

1454 1455 1456
	snd_intelhad_prog_cts(substream->runtime->rate,
			      disp_samp_freq, link_rate,
			      n_param, intelhaddata);
1457 1458

	/* Enable Audio */
1459
	snd_intelhad_enable_audio(substream, 1);
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578

out:
	return retval;
}

/*PCM operations structure and the calls back for the same */
struct snd_pcm_ops snd_intelhad_playback_ops = {
	.open =		snd_intelhad_open,
	.close =	snd_intelhad_close,
	.ioctl =	snd_pcm_lib_ioctl,
	.hw_params =	snd_intelhad_hw_params,
	.hw_free =	snd_intelhad_hw_free,
	.prepare =	snd_intelhad_pcm_prepare,
	.trigger =	snd_intelhad_pcm_trigger,
	.pointer =	snd_intelhad_pcm_pointer,
	.mmap =	snd_intelhad_pcm_mmap,
};

/**
 * snd_intelhad_create - to crete alsa card instance
 *
 * @intelhaddata: pointer to internal context
 * @card: pointer to card
 *
 * This function is called when the hdmi cable is plugged in
 */
static int snd_intelhad_create(
		struct snd_intelhad *intelhaddata,
		struct snd_card *card)
{
	int retval;
	static struct snd_device_ops ops = {
	};

	pr_debug("snd_intelhad_create called\n");

	if (!intelhaddata)
		return -EINVAL;

	/* ALSA api to register the device */
	retval = snd_device_new(card, SNDRV_DEV_LOWLEVEL, intelhaddata, &ops);
	return retval;
}
/**
 * snd_intelhad_pcm_free - to free the memory allocated
 *
 * @pcm: pointer to pcm instance
 * This function is called when the device is removed
 */
static void snd_intelhad_pcm_free(struct snd_pcm *pcm)
{
	pr_debug("Freeing PCM preallocated pages\n");
	snd_pcm_lib_preallocate_free_for_all(pcm);
}

static int had_iec958_info(struct snd_kcontrol *kcontrol,
				struct snd_ctl_elem_info *uinfo)
{
	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
	uinfo->count = 1;
	return 0;
}

static int had_iec958_get(struct snd_kcontrol *kcontrol,
				struct snd_ctl_elem_value *ucontrol)
{
	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);

	ucontrol->value.iec958.status[0] = (intelhaddata->aes_bits >> 0) & 0xff;
	ucontrol->value.iec958.status[1] = (intelhaddata->aes_bits >> 8) & 0xff;
	ucontrol->value.iec958.status[2] =
					(intelhaddata->aes_bits >> 16) & 0xff;
	ucontrol->value.iec958.status[3] =
					(intelhaddata->aes_bits >> 24) & 0xff;
	return 0;
}
static int had_iec958_mask_get(struct snd_kcontrol *kcontrol,
				struct snd_ctl_elem_value *ucontrol)
{
	ucontrol->value.iec958.status[0] = 0xff;
	ucontrol->value.iec958.status[1] = 0xff;
	ucontrol->value.iec958.status[2] = 0xff;
	ucontrol->value.iec958.status[3] = 0xff;
	return 0;
}
static int had_iec958_put(struct snd_kcontrol *kcontrol,
				struct snd_ctl_elem_value *ucontrol)
{
	unsigned int val;
	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);

	pr_debug("entered had_iec958_put\n");
	val = (ucontrol->value.iec958.status[0] << 0) |
		(ucontrol->value.iec958.status[1] << 8) |
		(ucontrol->value.iec958.status[2] << 16) |
		(ucontrol->value.iec958.status[3] << 24);
	if (intelhaddata->aes_bits != val) {
		intelhaddata->aes_bits = val;
		return 1;
	}
	return 1;
}

static struct snd_kcontrol_new had_control_iec958_mask = {
	.access =   SNDRV_CTL_ELEM_ACCESS_READ,
	.iface =    SNDRV_CTL_ELEM_IFACE_PCM,
	.name =     SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK),
	.info =     had_iec958_info, /* shared */
	.get =      had_iec958_mask_get,
};

static struct snd_kcontrol_new had_control_iec958 = {
	.iface =    SNDRV_CTL_ELEM_IFACE_PCM,
	.name =         SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
	.info =         had_iec958_info,
	.get =          had_iec958_get,
	.put =          had_iec958_put
};

1579
/*
1580 1581
 * hdmi_audio_probe - to create sound card instance for HDMI audio playabck
 *
1582 1583
 * @devptr: platform device
 * @had_ret: pointer to store the created snd_intelhad object
1584
 *
1585
 * This function is called when the platform device is probed. This function
1586 1587
 * creates and registers the sound card with ALSA
 */
1588 1589
int hdmi_audio_probe(struct platform_device *devptr,
		     struct snd_intelhad **had_ret)
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
{
	int retval;
	struct snd_pcm *pcm;
	struct snd_card *card;
	struct snd_intelhad *intelhaddata;
	struct had_pvt_data *had_stream;

	pr_debug("Enter %s\n", __func__);

	pr_debug("hdmi_audio_probe dma_mask: %p\n", devptr->dev.dma_mask);

	/* allocate memory for saving internal context and working */
	intelhaddata = kzalloc(sizeof(*intelhaddata), GFP_KERNEL);
	if (!intelhaddata)
		return -ENOMEM;

	had_stream = kzalloc(sizeof(*had_stream), GFP_KERNEL);
	if (!had_stream) {
		retval = -ENOMEM;
		goto free_haddata;
	}

	spin_lock_init(&intelhaddata->had_spinlock);
	intelhaddata->drv_status = HAD_DRV_DISCONNECTED;
	pr_debug("%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n",
			__func__, __LINE__);

	/* create a card instance with ALSA framework */
	retval = snd_card_new(&devptr->dev, hdmi_card_index, hdmi_card_id,
				THIS_MODULE, 0, &card);

	if (retval)
1622
		goto free_hadstream;
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
	intelhaddata->card = card;
	intelhaddata->card_id = hdmi_card_id;
	intelhaddata->card_index = card->number;
	intelhaddata->private_data = had_stream;
	intelhaddata->flag_underrun = 0;
	intelhaddata->aes_bits = SNDRV_PCM_DEFAULT_CON_SPDIF;
	strncpy(card->driver, INTEL_HAD, strlen(INTEL_HAD));
	strncpy(card->shortname, INTEL_HAD, strlen(INTEL_HAD));

	retval = snd_pcm_new(card, INTEL_HAD, PCM_INDEX, MAX_PB_STREAMS,
						MAX_CAP_STREAMS, &pcm);
	if (retval)
		goto err;

	/* setup private data which can be retrieved when required */
	pcm->private_data = intelhaddata;
	pcm->private_free = snd_intelhad_pcm_free;
	pcm->info_flags = 0;
	strncpy(pcm->name, card->shortname, strlen(card->shortname));
	/* setup the ops for palyabck */
	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
			    &snd_intelhad_playback_ops);
	/* allocate dma pages for ALSA stream operations
	 * memory allocated is based on size, not max value
	 * thus using same argument for max & size
	 */
	retval = snd_pcm_lib_preallocate_pages_for_all(pcm,
			SNDRV_DMA_TYPE_DEV, NULL,
			HAD_MAX_BUFFER, HAD_MAX_BUFFER);

	if (card->dev == NULL)
		pr_debug("card->dev is NULL!!!!! Should not be this case\n");
	else if (card->dev->dma_mask == NULL)
		pr_debug("hdmi_audio_probe dma_mask is NULL!!!!!\n");
	else
		pr_debug("hdmi_audio_probe dma_mask is : %p\n",
				card->dev->dma_mask);

	if (retval)
		goto err;

	/* internal function call to register device with ALSA */
	retval = snd_intelhad_create(intelhaddata, card);
	if (retval)
		goto err;

	card->private_data = &intelhaddata;
	retval = snd_card_register(card);
	if (retval)
		goto err;

	/* IEC958 controls */
	retval = snd_ctl_add(card, snd_ctl_new1(&had_control_iec958_mask,
						intelhaddata));
	if (retval < 0)
		goto err;
	retval = snd_ctl_add(card, snd_ctl_new1(&had_control_iec958,
						intelhaddata));
	if (retval < 0)
		goto err;

	init_channel_allocations();

	/* Register channel map controls */
	retval = had_register_chmap_ctls(intelhaddata, pcm);
	if (retval < 0)
		goto err;

	intelhaddata->dev = &devptr->dev;
	pm_runtime_set_active(intelhaddata->dev);
	pm_runtime_enable(intelhaddata->dev);

	intelhaddata->hw_silence = 1;
1696
	*had_ret = intelhaddata;
1697

1698
	return 0;
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
err:
	snd_card_free(card);
free_hadstream:
	kfree(had_stream);
	pm_runtime_disable(intelhaddata->dev);
	intelhaddata->dev = NULL;
free_haddata:
	kfree(intelhaddata);
	intelhaddata = NULL;
	pr_err("Error returned from %s api %#x\n", __func__, retval);
	return retval;
}

1712
/*
1713 1714 1715 1716 1717 1718 1719
 * hdmi_audio_remove - removes the alsa card
 *
 *@haddata: pointer to HAD private data
 *
 * This function is called when the hdmi cable is un-plugged. This function
 * free the sound card.
 */
1720
int hdmi_audio_remove(struct snd_intelhad *intelhaddata)
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
{
	int caps;

	pr_debug("Enter %s\n", __func__);

	if (!intelhaddata)
		return 0;

	if (intelhaddata->drv_status != HAD_DRV_DISCONNECTED) {
		caps = HDMI_AUDIO_UNDERRUN | HDMI_AUDIO_BUFFER_DONE;
1731 1732
		had_set_caps(intelhaddata, HAD_SET_DISABLE_AUDIO_INT, &caps);
		had_set_caps(intelhaddata, HAD_SET_DISABLE_AUDIO, NULL);
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
	}
	snd_card_free(intelhaddata->card);
	kfree(intelhaddata->private_data);
	kfree(intelhaddata);
	return 0;
}

MODULE_AUTHOR("Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>");
MODULE_AUTHOR("Ramesh Babu K V <ramesh.babu@intel.com>");
MODULE_AUTHOR("Vaibhav Agarwal <vaibhav.agarwal@intel.com>");
MODULE_AUTHOR("Jerome Anand <jerome.anand@intel.com>");
MODULE_DESCRIPTION("Intel HDMI Audio driver");
MODULE_LICENSE("GPL v2");
MODULE_SUPPORTED_DEVICE("{Intel,Intel_HAD}");