coresight-etm-perf.c 12.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Copyright(C) 2015 Linaro Limited. All rights reserved.
 * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published by
 * the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <linux/coresight.h>
#include <linux/coresight-pmu.h>
#include <linux/cpumask.h>
#include <linux/device.h>
#include <linux/list.h>
#include <linux/mm.h>
24
#include <linux/init.h>
25 26 27 28 29
#include <linux/perf_event.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/workqueue.h>

30
#include "coresight-etm-perf.h"
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
#include "coresight-priv.h"

static struct pmu etm_pmu;
static bool etm_perf_up;

/**
 * struct etm_event_data - Coresight specifics associated to an event
 * @work:		Handle to free allocated memory outside IRQ context.
 * @mask:		Hold the CPU(s) this event was set for.
 * @snk_config:		The sink configuration.
 * @path:		An array of path, each slot for one CPU.
 */
struct etm_event_data {
	struct work_struct work;
	cpumask_t mask;
	void *snk_config;
	struct list_head **path;
};

static DEFINE_PER_CPU(struct perf_output_handle, ctx_handle);
static DEFINE_PER_CPU(struct coresight_device *, csdev_src);

/* ETMv3.5/PTM's ETMCR is 'config' */
PMU_FORMAT_ATTR(cycacc,		"config:" __stringify(ETM_OPT_CYCACC));
PMU_FORMAT_ATTR(timestamp,	"config:" __stringify(ETM_OPT_TS));

static struct attribute *etm_config_formats_attr[] = {
	&format_attr_cycacc.attr,
	&format_attr_timestamp.attr,
	NULL,
};

static struct attribute_group etm_pmu_format_group = {
	.name   = "format",
	.attrs  = etm_config_formats_attr,
};

static const struct attribute_group *etm_pmu_attr_groups[] = {
	&etm_pmu_format_group,
	NULL,
};

static void etm_event_read(struct perf_event *event) {}

75
static int etm_addr_filters_alloc(struct perf_event *event)
76
{
77 78 79 80 81 82 83 84 85 86 87 88
	struct etm_filters *filters;
	int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu);

	filters = kzalloc_node(sizeof(struct etm_filters), GFP_KERNEL, node);
	if (!filters)
		return -ENOMEM;

	if (event->parent)
		memcpy(filters, event->parent->hw.addr_filters,
		       sizeof(*filters));

	event->hw.addr_filters = filters;
89 90 91 92

	return 0;
}

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
static void etm_event_destroy(struct perf_event *event)
{
	kfree(event->hw.addr_filters);
	event->hw.addr_filters = NULL;
}

static int etm_event_init(struct perf_event *event)
{
	int ret = 0;

	if (event->attr.type != etm_pmu.type) {
		ret = -ENOENT;
		goto out;
	}

	ret = etm_addr_filters_alloc(event);
	if (ret)
		goto out;

	event->destroy = etm_event_destroy;
out:
	return ret;
}

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
static void free_event_data(struct work_struct *work)
{
	int cpu;
	cpumask_t *mask;
	struct etm_event_data *event_data;
	struct coresight_device *sink;

	event_data = container_of(work, struct etm_event_data, work);
	mask = &event_data->mask;
	/*
	 * First deal with the sink configuration.  See comment in
	 * etm_setup_aux() about why we take the first available path.
	 */
	if (event_data->snk_config) {
		cpu = cpumask_first(mask);
		sink = coresight_get_sink(event_data->path[cpu]);
		if (sink_ops(sink)->free_buffer)
			sink_ops(sink)->free_buffer(event_data->snk_config);
	}

	for_each_cpu(cpu, mask) {
138
		if (!(IS_ERR_OR_NULL(event_data->path[cpu])))
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
			coresight_release_path(event_data->path[cpu]);
	}

	kfree(event_data->path);
	kfree(event_data);
}

static void *alloc_event_data(int cpu)
{
	int size;
	cpumask_t *mask;
	struct etm_event_data *event_data;

	/* First get memory for the session's data */
	event_data = kzalloc(sizeof(struct etm_event_data), GFP_KERNEL);
	if (!event_data)
		return NULL;

	/* Make sure nothing disappears under us */
	get_online_cpus();
	size = num_online_cpus();

	mask = &event_data->mask;
	if (cpu != -1)
		cpumask_set_cpu(cpu, mask);
	else
		cpumask_copy(mask, cpu_online_mask);
	put_online_cpus();

	/*
	 * Each CPU has a single path between source and destination.  As such
	 * allocate an array using CPU numbers as indexes.  That way a path
	 * for any CPU can easily be accessed at any given time.  We proceed
	 * the same way for sessions involving a single CPU.  The cost of
	 * unused memory when dealing with single CPU trace scenarios is small
	 * compared to the cost of searching through an optimized array.
	 */
	event_data->path = kcalloc(size,
				   sizeof(struct list_head *), GFP_KERNEL);
	if (!event_data->path) {
		kfree(event_data);
		return NULL;
	}

	return event_data;
}

static void etm_free_aux(void *data)
{
	struct etm_event_data *event_data = data;

	schedule_work(&event_data->work);
}

static void *etm_setup_aux(int event_cpu, void **pages,
			   int nr_pages, bool overwrite)
{
	int cpu;
	cpumask_t *mask;
	struct coresight_device *sink;
	struct etm_event_data *event_data = NULL;

	event_data = alloc_event_data(event_cpu);
	if (!event_data)
		return NULL;
204
	INIT_WORK(&event_data->work, free_event_data);
205

206 207 208 209 210 211 212 213 214 215 216 217 218
	/*
	 * In theory nothing prevent tracers in a trace session from being
	 * associated with different sinks, nor having a sink per tracer.  But
	 * until we have HW with this kind of topology we need to assume tracers
	 * in a trace session are using the same sink.  Therefore go through
	 * the coresight bus and pick the first enabled sink.
	 *
	 * When operated from sysFS users are responsible to enable the sink
	 * while from perf, the perf tools will do it based on the choice made
	 * on the cmd line.  As such the "enable_sink" flag in sysFS is reset.
	 */
	sink = coresight_get_enabled_sink(true);
	if (!sink)
219
		goto err;
220

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
	mask = &event_data->mask;

	/* Setup the path for each CPU in a trace session */
	for_each_cpu(cpu, mask) {
		struct coresight_device *csdev;

		csdev = per_cpu(csdev_src, cpu);
		if (!csdev)
			goto err;

		/*
		 * Building a path doesn't enable it, it simply builds a
		 * list of devices from source to sink that can be
		 * referenced later when the path is actually needed.
		 */
236
		event_data->path[cpu] = coresight_build_path(csdev, sink);
237
		if (IS_ERR(event_data->path[cpu]))
238 239 240 241 242 243
			goto err;
	}

	if (!sink_ops(sink)->alloc_buffer)
		goto err;

244
	cpu = cpumask_first(mask);
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
	/* Get the AUX specific data from the sink buffer */
	event_data->snk_config =
			sink_ops(sink)->alloc_buffer(sink, cpu, pages,
						     nr_pages, overwrite);
	if (!event_data->snk_config)
		goto err;

out:
	return event_data;

err:
	etm_free_aux(event_data);
	event_data = NULL;
	goto out;
}

static void etm_event_start(struct perf_event *event, int flags)
{
	int cpu = smp_processor_id();
	struct etm_event_data *event_data;
	struct perf_output_handle *handle = this_cpu_ptr(&ctx_handle);
	struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);

	if (!csdev)
		goto fail;

	/*
	 * Deal with the ring buffer API and get a handle on the
	 * session's information.
	 */
	event_data = perf_aux_output_begin(handle, event);
	if (!event_data)
		goto fail;

	/* We need a sink, no need to continue without one */
	sink = coresight_get_sink(event_data->path[cpu]);
	if (WARN_ON_ONCE(!sink || !sink_ops(sink)->set_buffer))
		goto fail_end_stop;

	/* Configure the sink */
	if (sink_ops(sink)->set_buffer(sink, handle,
				       event_data->snk_config))
		goto fail_end_stop;

	/* Nothing will happen without a path */
	if (coresight_enable_path(event_data->path[cpu], CS_MODE_PERF))
		goto fail_end_stop;

	/* Tell the perf core the event is alive */
	event->hw.state = 0;

	/* Finally enable the tracer */
297
	if (source_ops(csdev)->enable(csdev, event, CS_MODE_PERF))
298 299 300 301 302 303
		goto fail_end_stop;

out:
	return;

fail_end_stop:
304 305
	perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
	perf_aux_output_end(handle, 0);
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
fail:
	event->hw.state = PERF_HES_STOPPED;
	goto out;
}

static void etm_event_stop(struct perf_event *event, int mode)
{
	int cpu = smp_processor_id();
	unsigned long size;
	struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
	struct perf_output_handle *handle = this_cpu_ptr(&ctx_handle);
	struct etm_event_data *event_data = perf_get_aux(handle);

	if (event->hw.state == PERF_HES_STOPPED)
		return;

	if (!csdev)
		return;

	sink = coresight_get_sink(event_data->path[cpu]);
	if (!sink)
		return;

	/* stop tracer */
330
	source_ops(csdev)->disable(csdev, event);
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349

	/* tell the core */
	event->hw.state = PERF_HES_STOPPED;

	if (mode & PERF_EF_UPDATE) {
		if (WARN_ON_ONCE(handle->event != event))
			return;

		/* update trace information */
		if (!sink_ops(sink)->update_buffer)
			return;

		sink_ops(sink)->update_buffer(sink, handle,
					      event_data->snk_config);

		if (!sink_ops(sink)->reset_buffer)
			return;

		size = sink_ops(sink)->reset_buffer(sink, handle,
350
						    event_data->snk_config);
351

352
		perf_aux_output_end(handle, size);
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
	}

	/* Disabling the path make its elements available to other sessions */
	coresight_disable_path(event_data->path[cpu]);
}

static int etm_event_add(struct perf_event *event, int mode)
{
	int ret = 0;
	struct hw_perf_event *hwc = &event->hw;

	if (mode & PERF_EF_START) {
		etm_event_start(event, 0);
		if (hwc->state & PERF_HES_STOPPED)
			ret = -EINVAL;
	} else {
		hwc->state = PERF_HES_STOPPED;
	}

	return ret;
}

static void etm_event_del(struct perf_event *event, int mode)
{
	etm_event_stop(event, PERF_EF_UPDATE);
}

380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
static int etm_addr_filters_validate(struct list_head *filters)
{
	bool range = false, address = false;
	int index = 0;
	struct perf_addr_filter *filter;

	list_for_each_entry(filter, filters, entry) {
		/*
		 * No need to go further if there's no more
		 * room for filters.
		 */
		if (++index > ETM_ADDR_CMP_MAX)
			return -EOPNOTSUPP;

		/*
		 * As taken from the struct perf_addr_filter documentation:
		 *	@range:	1: range, 0: address
		 *
		 * At this time we don't allow range and start/stop filtering
		 * to cohabitate, they have to be mutually exclusive.
		 */
		if ((filter->range == 1) && address)
			return -EOPNOTSUPP;

		if ((filter->range == 0) && range)
			return -EOPNOTSUPP;

		/*
		 * For range filtering, the second address in the address
		 * range comparator needs to be higher than the first.
		 * Invalid otherwise.
		 */
		if (filter->range && filter->size == 0)
			return -EINVAL;

		/*
		 * Everything checks out with this filter, record what we've
		 * received before moving on to the next one.
		 */
		if (filter->range)
			range = true;
		else
			address = true;
	}

	return 0;
}

static void etm_addr_filters_sync(struct perf_event *event)
{
	struct perf_addr_filters_head *head = perf_event_addr_filters(event);
	unsigned long start, stop, *offs = event->addr_filters_offs;
	struct etm_filters *filters = event->hw.addr_filters;
	struct etm_filter *etm_filter;
	struct perf_addr_filter *filter;
	int i = 0;

	list_for_each_entry(filter, &head->list, entry) {
		start = filter->offset + offs[i];
		stop = start + filter->size;
		etm_filter = &filters->etm_filter[i];

		if (filter->range == 1) {
			etm_filter->start_addr = start;
			etm_filter->stop_addr = stop;
			etm_filter->type = ETM_ADDR_TYPE_RANGE;
		} else {
			if (filter->filter == 1) {
				etm_filter->start_addr = start;
				etm_filter->type = ETM_ADDR_TYPE_START;
			} else {
				etm_filter->stop_addr = stop;
				etm_filter->type = ETM_ADDR_TYPE_STOP;
			}
		}
		i++;
	}

	filters->nr_filters = i;
}

461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
int etm_perf_symlink(struct coresight_device *csdev, bool link)
{
	char entry[sizeof("cpu9999999")];
	int ret = 0, cpu = source_ops(csdev)->cpu_id(csdev);
	struct device *pmu_dev = etm_pmu.dev;
	struct device *cs_dev = &csdev->dev;

	sprintf(entry, "cpu%d", cpu);

	if (!etm_perf_up)
		return -EPROBE_DEFER;

	if (link) {
		ret = sysfs_create_link(&pmu_dev->kobj, &cs_dev->kobj, entry);
		if (ret)
			return ret;
		per_cpu(csdev_src, cpu) = csdev;
	} else {
		sysfs_remove_link(&pmu_dev->kobj, entry);
		per_cpu(csdev_src, cpu) = NULL;
	}

	return 0;
}

static int __init etm_perf_init(void)
{
	int ret;

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
	etm_pmu.capabilities		= PERF_PMU_CAP_EXCLUSIVE;

	etm_pmu.attr_groups		= etm_pmu_attr_groups;
	etm_pmu.task_ctx_nr		= perf_sw_context;
	etm_pmu.read			= etm_event_read;
	etm_pmu.event_init		= etm_event_init;
	etm_pmu.setup_aux		= etm_setup_aux;
	etm_pmu.free_aux		= etm_free_aux;
	etm_pmu.start			= etm_event_start;
	etm_pmu.stop			= etm_event_stop;
	etm_pmu.add			= etm_event_add;
	etm_pmu.del			= etm_event_del;
	etm_pmu.addr_filters_sync	= etm_addr_filters_sync;
	etm_pmu.addr_filters_validate	= etm_addr_filters_validate;
	etm_pmu.nr_addr_filters		= ETM_ADDR_CMP_MAX;
505 506 507 508 509 510 511

	ret = perf_pmu_register(&etm_pmu, CORESIGHT_ETM_PMU_NAME, -1);
	if (ret == 0)
		etm_perf_up = true;

	return ret;
}
512
device_initcall(etm_perf_init);