mtdcore.c 54.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
L
Linus Torvalds 已提交
2 3 4 5
/*
 * Core registration and callback routines for MTD
 * drivers and users.
 *
D
David Woodhouse 已提交
6 7
 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
 * Copyright © 2006      Red Hat UK Limited 
L
Linus Torvalds 已提交
8 9 10 11 12
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/ptrace.h>
13
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
14 15 16 17
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/major.h>
#include <linux/fs.h>
18
#include <linux/err.h>
L
Linus Torvalds 已提交
19 20
#include <linux/ioctl.h>
#include <linux/init.h>
21
#include <linux/of.h>
L
Linus Torvalds 已提交
22
#include <linux/proc_fs.h>
23
#include <linux/idr.h>
24
#include <linux/backing-dev.h>
T
Tejun Heo 已提交
25
#include <linux/gfp.h>
26
#include <linux/slab.h>
27
#include <linux/reboot.h>
28
#include <linux/leds.h>
29
#include <linux/debugfs.h>
30
#include <linux/nvmem-provider.h>
L
Linus Torvalds 已提交
31 32

#include <linux/mtd/mtd.h>
33
#include <linux/mtd/partitions.h>
L
Linus Torvalds 已提交
34

35
#include "mtdcore.h"
36

37
struct backing_dev_info *mtd_bdi;
38

L
Lars-Peter Clausen 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
#ifdef CONFIG_PM_SLEEP

static int mtd_cls_suspend(struct device *dev)
{
	struct mtd_info *mtd = dev_get_drvdata(dev);

	return mtd ? mtd_suspend(mtd) : 0;
}

static int mtd_cls_resume(struct device *dev)
{
	struct mtd_info *mtd = dev_get_drvdata(dev);

	if (mtd)
		mtd_resume(mtd);
	return 0;
}

static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
#define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
#else
#define MTD_CLS_PM_OPS NULL
#endif
62 63 64 65

static struct class mtd_class = {
	.name = "mtd",
	.owner = THIS_MODULE,
L
Lars-Peter Clausen 已提交
66
	.pm = MTD_CLS_PM_OPS,
67
};
D
David Brownell 已提交
68

69 70
static DEFINE_IDR(mtd_idr);

71
/* These are exported solely for the purpose of mtd_blkdevs.c. You
L
Linus Torvalds 已提交
72
   should not use them for _anything_ else */
I
Ingo Molnar 已提交
73
DEFINE_MUTEX(mtd_table_mutex);
L
Linus Torvalds 已提交
74
EXPORT_SYMBOL_GPL(mtd_table_mutex);
75 76 77 78 79 80

struct mtd_info *__mtd_next_device(int i)
{
	return idr_get_next(&mtd_idr, &i);
}
EXPORT_SYMBOL_GPL(__mtd_next_device);
L
Linus Torvalds 已提交
81 82 83

static LIST_HEAD(mtd_notifiers);

D
David Brownell 已提交
84 85 86 87 88 89 90 91

#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)

/* REVISIT once MTD uses the driver model better, whoever allocates
 * the mtd_info will probably want to use the release() hook...
 */
static void mtd_release(struct device *dev)
{
B
Brian Norris 已提交
92
	struct mtd_info *mtd = dev_get_drvdata(dev);
A
Artem Bityutskiy 已提交
93
	dev_t index = MTD_DEVT(mtd->index);
D
David Brownell 已提交
94

B
Brian Norris 已提交
95 96
	/* remove /dev/mtdXro node */
	device_destroy(&mtd_class, index + 1);
97 98
}

D
David Brownell 已提交
99 100 101
static ssize_t mtd_type_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
A
Artem Bityutskiy 已提交
102
	struct mtd_info *mtd = dev_get_drvdata(dev);
D
David Brownell 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
	char *type;

	switch (mtd->type) {
	case MTD_ABSENT:
		type = "absent";
		break;
	case MTD_RAM:
		type = "ram";
		break;
	case MTD_ROM:
		type = "rom";
		break;
	case MTD_NORFLASH:
		type = "nor";
		break;
	case MTD_NANDFLASH:
		type = "nand";
		break;
	case MTD_DATAFLASH:
		type = "dataflash";
		break;
	case MTD_UBIVOLUME:
		type = "ubi";
		break;
127 128 129
	case MTD_MLCNANDFLASH:
		type = "mlc-nand";
		break;
D
David Brownell 已提交
130 131 132 133 134 135
	default:
		type = "unknown";
	}

	return snprintf(buf, PAGE_SIZE, "%s\n", type);
}
136 137 138 139 140
static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);

static ssize_t mtd_flags_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
A
Artem Bityutskiy 已提交
141
	struct mtd_info *mtd = dev_get_drvdata(dev);
142 143 144 145 146 147 148 149

	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
}
static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);

static ssize_t mtd_size_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
A
Artem Bityutskiy 已提交
150
	struct mtd_info *mtd = dev_get_drvdata(dev);
151 152 153 154 155 156 157 158 159

	return snprintf(buf, PAGE_SIZE, "%llu\n",
		(unsigned long long)mtd->size);
}
static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);

static ssize_t mtd_erasesize_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
A
Artem Bityutskiy 已提交
160
	struct mtd_info *mtd = dev_get_drvdata(dev);
161 162 163 164 165 166 167 168

	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
}
static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);

static ssize_t mtd_writesize_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
A
Artem Bityutskiy 已提交
169
	struct mtd_info *mtd = dev_get_drvdata(dev);
170 171 172 173 174

	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
}
static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);

175 176 177
static ssize_t mtd_subpagesize_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
A
Artem Bityutskiy 已提交
178
	struct mtd_info *mtd = dev_get_drvdata(dev);
179 180 181 182 183 184
	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;

	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
}
static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);

185 186 187
static ssize_t mtd_oobsize_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
A
Artem Bityutskiy 已提交
188
	struct mtd_info *mtd = dev_get_drvdata(dev);
189 190 191 192 193

	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
}
static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);

194 195 196 197 198 199 200 201 202
static ssize_t mtd_oobavail_show(struct device *dev,
				 struct device_attribute *attr, char *buf)
{
	struct mtd_info *mtd = dev_get_drvdata(dev);

	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->oobavail);
}
static DEVICE_ATTR(oobavail, S_IRUGO, mtd_oobavail_show, NULL);

203 204 205
static ssize_t mtd_numeraseregions_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
A
Artem Bityutskiy 已提交
206
	struct mtd_info *mtd = dev_get_drvdata(dev);
207 208 209 210 211 212 213 214 215

	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
}
static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
	NULL);

static ssize_t mtd_name_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
A
Artem Bityutskiy 已提交
216
	struct mtd_info *mtd = dev_get_drvdata(dev);
217 218 219 220

	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
}
static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
D
David Brownell 已提交
221

222 223 224 225 226 227 228 229 230
static ssize_t mtd_ecc_strength_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct mtd_info *mtd = dev_get_drvdata(dev);

	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
}
static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
static ssize_t mtd_bitflip_threshold_show(struct device *dev,
					  struct device_attribute *attr,
					  char *buf)
{
	struct mtd_info *mtd = dev_get_drvdata(dev);

	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
}

static ssize_t mtd_bitflip_threshold_store(struct device *dev,
					   struct device_attribute *attr,
					   const char *buf, size_t count)
{
	struct mtd_info *mtd = dev_get_drvdata(dev);
	unsigned int bitflip_threshold;
	int retval;

	retval = kstrtouint(buf, 0, &bitflip_threshold);
	if (retval)
		return retval;

	mtd->bitflip_threshold = bitflip_threshold;
	return count;
}
static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
		   mtd_bitflip_threshold_show,
		   mtd_bitflip_threshold_store);

259 260 261 262 263 264 265 266 267 268
static ssize_t mtd_ecc_step_size_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct mtd_info *mtd = dev_get_drvdata(dev);

	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);

}
static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct mtd_info *mtd = dev_get_drvdata(dev);
	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;

	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
}
static DEVICE_ATTR(corrected_bits, S_IRUGO,
		   mtd_ecc_stats_corrected_show, NULL);

static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct mtd_info *mtd = dev_get_drvdata(dev);
	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;

	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
}
static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);

static ssize_t mtd_badblocks_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct mtd_info *mtd = dev_get_drvdata(dev);
	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;

	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
}
static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);

static ssize_t mtd_bbtblocks_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct mtd_info *mtd = dev_get_drvdata(dev);
	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;

	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
}
static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);

D
David Brownell 已提交
310
static struct attribute *mtd_attrs[] = {
311 312 313 314 315
	&dev_attr_type.attr,
	&dev_attr_flags.attr,
	&dev_attr_size.attr,
	&dev_attr_erasesize.attr,
	&dev_attr_writesize.attr,
316
	&dev_attr_subpagesize.attr,
317
	&dev_attr_oobsize.attr,
318
	&dev_attr_oobavail.attr,
319 320
	&dev_attr_numeraseregions.attr,
	&dev_attr_name.attr,
321
	&dev_attr_ecc_strength.attr,
322
	&dev_attr_ecc_step_size.attr,
323 324 325 326
	&dev_attr_corrected_bits.attr,
	&dev_attr_ecc_failures.attr,
	&dev_attr_bad_blocks.attr,
	&dev_attr_bbt_blocks.attr,
327
	&dev_attr_bitflip_threshold.attr,
D
David Brownell 已提交
328 329
	NULL,
};
A
Axel Lin 已提交
330
ATTRIBUTE_GROUPS(mtd);
D
David Brownell 已提交
331

B
Bhumika Goyal 已提交
332
static const struct device_type mtd_devtype = {
D
David Brownell 已提交
333 334 335 336 337
	.name		= "mtd",
	.groups		= mtd_groups,
	.release	= mtd_release,
};

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
static int mtd_partid_show(struct seq_file *s, void *p)
{
	struct mtd_info *mtd = s->private;

	seq_printf(s, "%s\n", mtd->dbg.partid);

	return 0;
}

static int mtd_partid_debugfs_open(struct inode *inode, struct file *file)
{
	return single_open(file, mtd_partid_show, inode->i_private);
}

static const struct file_operations mtd_partid_debug_fops = {
	.open           = mtd_partid_debugfs_open,
	.read           = seq_read,
	.llseek         = seq_lseek,
	.release        = single_release,
};

static int mtd_partname_show(struct seq_file *s, void *p)
{
	struct mtd_info *mtd = s->private;

	seq_printf(s, "%s\n", mtd->dbg.partname);

	return 0;
}

static int mtd_partname_debugfs_open(struct inode *inode, struct file *file)
{
	return single_open(file, mtd_partname_show, inode->i_private);
}

static const struct file_operations mtd_partname_debug_fops = {
	.open           = mtd_partname_debugfs_open,
	.read           = seq_read,
	.llseek         = seq_lseek,
	.release        = single_release,
};

static struct dentry *dfs_dir_mtd;

static void mtd_debugfs_populate(struct mtd_info *mtd)
{
	struct device *dev = &mtd->dev;
385
	struct dentry *root;
386 387 388 389 390 391 392

	if (IS_ERR_OR_NULL(dfs_dir_mtd))
		return;

	root = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
	mtd->dbg.dfs_dir = root;

393 394 395
	if (mtd->dbg.partid)
		debugfs_create_file("partid", 0400, root, mtd,
				    &mtd_partid_debug_fops);
396

397 398 399
	if (mtd->dbg.partname)
		debugfs_create_file("partname", 0400, root, mtd,
				    &mtd_partname_debug_fops);
400 401
}

402 403 404 405 406 407 408 409 410 411 412 413 414 415
#ifndef CONFIG_MMU
unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
{
	switch (mtd->type) {
	case MTD_RAM:
		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
	case MTD_ROM:
		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
			NOMMU_MAP_READ;
	default:
		return NOMMU_MAP_COPY;
	}
}
416
EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
417 418
#endif

419 420 421 422 423 424 425 426 427 428 429
static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
			       void *cmd)
{
	struct mtd_info *mtd;

	mtd = container_of(n, struct mtd_info, reboot_notifier);
	mtd->_reboot(mtd);

	return NOTIFY_DONE;
}

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
/**
 * mtd_wunit_to_pairing_info - get pairing information of a wunit
 * @mtd: pointer to new MTD device info structure
 * @wunit: write unit we are interested in
 * @info: returned pairing information
 *
 * Retrieve pairing information associated to the wunit.
 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
 * paired together, and where programming a page may influence the page it is
 * paired with.
 * The notion of page is replaced by the term wunit (write-unit) to stay
 * consistent with the ->writesize field.
 *
 * The @wunit argument can be extracted from an absolute offset using
 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
 * to @wunit.
 *
 * From the pairing info the MTD user can find all the wunits paired with
 * @wunit using the following loop:
 *
 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
 *	info.pair = i;
 *	mtd_pairing_info_to_wunit(mtd, &info);
 *	...
 * }
 */
int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
			      struct mtd_pairing_info *info)
{
459 460
	struct mtd_info *master = mtd_get_master(mtd);
	int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
461 462 463 464

	if (wunit < 0 || wunit >= npairs)
		return -EINVAL;

465 466
	if (master->pairing && master->pairing->get_info)
		return master->pairing->get_info(master, wunit, info);
467 468 469 470 471 472 473 474 475

	info->group = 0;
	info->pair = wunit;

	return 0;
}
EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);

/**
476
 * mtd_pairing_info_to_wunit - get wunit from pairing information
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
 * @mtd: pointer to new MTD device info structure
 * @info: pairing information struct
 *
 * Returns a positive number representing the wunit associated to the info
 * struct, or a negative error code.
 *
 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
 * doc).
 *
 * It can also be used to only program the first page of each pair (i.e.
 * page attached to group 0), which allows one to use an MLC NAND in
 * software-emulated SLC mode:
 *
 * info.group = 0;
 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
 * for (info.pair = 0; info.pair < npairs; info.pair++) {
 *	wunit = mtd_pairing_info_to_wunit(mtd, &info);
 *	mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
 *		  mtd->writesize, &retlen, buf + (i * mtd->writesize));
 * }
 */
int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
			      const struct mtd_pairing_info *info)
{
502 503 504
	struct mtd_info *master = mtd_get_master(mtd);
	int ngroups = mtd_pairing_groups(master);
	int npairs = mtd_wunit_per_eb(master) / ngroups;
505 506 507 508 509

	if (!info || info->pair < 0 || info->pair >= npairs ||
	    info->group < 0 || info->group >= ngroups)
		return -EINVAL;

510 511
	if (master->pairing && master->pairing->get_wunit)
		return mtd->pairing->get_wunit(master, info);
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528

	return info->pair;
}
EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);

/**
 * mtd_pairing_groups - get the number of pairing groups
 * @mtd: pointer to new MTD device info structure
 *
 * Returns the number of pairing groups.
 *
 * This number is usually equal to the number of bits exposed by a single
 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
 * to iterate over all pages of a given pair.
 */
int mtd_pairing_groups(struct mtd_info *mtd)
{
529 530 531
	struct mtd_info *master = mtd_get_master(mtd);

	if (!master->pairing || !master->pairing->ngroups)
532 533
		return 1;

534
	return master->pairing->ngroups;
535 536 537
}
EXPORT_SYMBOL_GPL(mtd_pairing_groups);

538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
			      void *val, size_t bytes)
{
	struct mtd_info *mtd = priv;
	size_t retlen;
	int err;

	err = mtd_read(mtd, offset, bytes, &retlen, val);
	if (err && err != -EUCLEAN)
		return err;

	return retlen == bytes ? 0 : -EIO;
}

static int mtd_nvmem_add(struct mtd_info *mtd)
{
	struct nvmem_config config = {};

556
	config.id = -1;
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
	config.dev = &mtd->dev;
	config.name = mtd->name;
	config.owner = THIS_MODULE;
	config.reg_read = mtd_nvmem_reg_read;
	config.size = mtd->size;
	config.word_size = 1;
	config.stride = 1;
	config.read_only = true;
	config.root_only = true;
	config.no_of_node = true;
	config.priv = mtd;

	mtd->nvmem = nvmem_register(&config);
	if (IS_ERR(mtd->nvmem)) {
		/* Just ignore if there is no NVMEM support in the kernel */
572
		if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) {
573 574 575 576 577 578 579 580 581 582
			mtd->nvmem = NULL;
		} else {
			dev_err(&mtd->dev, "Failed to register NVMEM device\n");
			return PTR_ERR(mtd->nvmem);
		}
	}

	return 0;
}

L
Linus Torvalds 已提交
583 584 585 586 587 588
/**
 *	add_mtd_device - register an MTD device
 *	@mtd: pointer to new MTD device info structure
 *
 *	Add a device to the list of MTD devices present in the system, and
 *	notify each currently active MTD 'user' of its arrival. Returns
589
 *	zero on success or non-zero on failure.
L
Linus Torvalds 已提交
590 591 592 593
 */

int add_mtd_device(struct mtd_info *mtd)
{
594
	struct mtd_info *master = mtd_get_master(mtd);
595 596
	struct mtd_notifier *not;
	int i, error;
L
Linus Torvalds 已提交
597

598 599 600 601 602
	/*
	 * May occur, for instance, on buggy drivers which call
	 * mtd_device_parse_register() multiple times on the same master MTD,
	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
	 */
603
	if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
604 605
		return -EEXIST;

606
	BUG_ON(mtd->writesize == 0);
607

608 609 610 611 612 613 614 615
	/*
	 * MTD drivers should implement ->_{write,read}() or
	 * ->_{write,read}_oob(), but not both.
	 */
	if (WARN_ON((mtd->_write && mtd->_write_oob) ||
		    (mtd->_read && mtd->_read_oob)))
		return -EINVAL;

616
	if (WARN_ON((!mtd->erasesize || !master->_erase) &&
617 618 619
		    !(mtd->flags & MTD_NO_ERASE)))
		return -EINVAL;

I
Ingo Molnar 已提交
620
	mutex_lock(&mtd_table_mutex);
L
Linus Torvalds 已提交
621

T
Tejun Heo 已提交
622
	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
623 624
	if (i < 0) {
		error = i;
625
		goto fail_locked;
626
	}
D
David Brownell 已提交
627

628 629 630
	mtd->index = i;
	mtd->usecount = 0;

631 632 633 634
	/* default value if not set by driver */
	if (mtd->bitflip_threshold == 0)
		mtd->bitflip_threshold = mtd->ecc_strength;

635 636 637 638 639 640 641 642 643 644 645 646 647 648
	if (is_power_of_2(mtd->erasesize))
		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
	else
		mtd->erasesize_shift = 0;

	if (is_power_of_2(mtd->writesize))
		mtd->writesize_shift = ffs(mtd->writesize) - 1;
	else
		mtd->writesize_shift = 0;

	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;

	/* Some chips always power up locked. Unlock them now */
649 650 651
	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
		error = mtd_unlock(mtd, 0, mtd->size);
		if (error && error != -EOPNOTSUPP)
652 653 654
			printk(KERN_WARNING
			       "%s: unlock failed, writes may not work\n",
			       mtd->name);
655 656
		/* Ignore unlock failures? */
		error = 0;
657 658 659
	}

	/* Caller should have set dev.parent to match the
660
	 * physical device, if appropriate.
661 662 663 664 665 666
	 */
	mtd->dev.type = &mtd_devtype;
	mtd->dev.class = &mtd_class;
	mtd->dev.devt = MTD_DEVT(i);
	dev_set_name(&mtd->dev, "mtd%d", i);
	dev_set_drvdata(&mtd->dev, mtd);
667
	of_node_get(mtd_get_of_node(mtd));
668 669
	error = device_register(&mtd->dev);
	if (error)
670 671
		goto fail_added;

672 673 674 675 676
	/* Add the nvmem provider */
	error = mtd_nvmem_add(mtd);
	if (error)
		goto fail_nvmem_add;

677
	mtd_debugfs_populate(mtd);
678

B
Brian Norris 已提交
679 680
	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
		      "mtd%dro", i);
681

682
	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
683 684 685 686 687 688 689 690 691 692 693 694
	/* No need to get a refcount on the module containing
	   the notifier, since we hold the mtd_table_mutex */
	list_for_each_entry(not, &mtd_notifiers, list)
		not->add(mtd);

	mutex_unlock(&mtd_table_mutex);
	/* We _know_ we aren't being removed, because
	   our caller is still holding us here. So none
	   of this try_ nonsense, and no bitching about it
	   either. :) */
	__module_get(THIS_MODULE);
	return 0;
695

696 697
fail_nvmem_add:
	device_unregister(&mtd->dev);
698
fail_added:
699
	of_node_put(mtd_get_of_node(mtd));
700 701
	idr_remove(&mtd_idr, i);
fail_locked:
I
Ingo Molnar 已提交
702
	mutex_unlock(&mtd_table_mutex);
703
	return error;
L
Linus Torvalds 已提交
704 705 706 707 708 709 710 711 712 713 714 715
}

/**
 *	del_mtd_device - unregister an MTD device
 *	@mtd: pointer to MTD device info structure
 *
 *	Remove a device from the list of MTD devices present in the system,
 *	and notify each currently active MTD 'user' of its departure.
 *	Returns zero on success or 1 on failure, which currently will happen
 *	if the requested device does not appear to be present in the list.
 */

716
int del_mtd_device(struct mtd_info *mtd)
L
Linus Torvalds 已提交
717 718
{
	int ret;
719
	struct mtd_notifier *not;
720

I
Ingo Molnar 已提交
721
	mutex_lock(&mtd_table_mutex);
L
Linus Torvalds 已提交
722

723 724
	debugfs_remove_recursive(mtd->dbg.dfs_dir);

725
	if (idr_find(&mtd_idr, mtd->index) != mtd) {
L
Linus Torvalds 已提交
726
		ret = -ENODEV;
727 728 729 730 731 732 733 734 735
		goto out_error;
	}

	/* No need to get a refcount on the module containing
		the notifier, since we hold the mtd_table_mutex */
	list_for_each_entry(not, &mtd_notifiers, list)
		not->remove(mtd);

	if (mtd->usecount) {
736
		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
L
Linus Torvalds 已提交
737 738 739
		       mtd->index, mtd->name, mtd->usecount);
		ret = -EBUSY;
	} else {
740 741 742 743
		/* Try to remove the NVMEM provider */
		if (mtd->nvmem)
			nvmem_unregister(mtd->nvmem);

744 745
		device_unregister(&mtd->dev);

746
		idr_remove(&mtd_idr, mtd->index);
747
		of_node_put(mtd_get_of_node(mtd));
L
Linus Torvalds 已提交
748 749 750 751 752

		module_put(THIS_MODULE);
		ret = 0;
	}

753
out_error:
I
Ingo Molnar 已提交
754
	mutex_unlock(&mtd_table_mutex);
L
Linus Torvalds 已提交
755 756 757
	return ret;
}

758 759 760 761 762 763 764 765 766 767 768 769 770 771
/*
 * Set a few defaults based on the parent devices, if not provided by the
 * driver
 */
static void mtd_set_dev_defaults(struct mtd_info *mtd)
{
	if (mtd->dev.parent) {
		if (!mtd->owner && mtd->dev.parent->driver)
			mtd->owner = mtd->dev.parent->driver->owner;
		if (!mtd->name)
			mtd->name = dev_name(mtd->dev.parent);
	} else {
		pr_debug("mtd device won't show a device symlink in sysfs\n");
	}
772

773 774
	INIT_LIST_HEAD(&mtd->partitions);
	mutex_init(&mtd->master.partitions_lock);
775
}
776

777 778 779 780 781 782
/**
 * mtd_device_parse_register - parse partitions and register an MTD device.
 *
 * @mtd: the MTD device to register
 * @types: the list of MTD partition probes to try, see
 *         'parse_mtd_partitions()' for more information
783
 * @parser_data: MTD partition parser-specific data
784 785 786 787 788 789 790 791 792
 * @parts: fallback partition information to register, if parsing fails;
 *         only valid if %nr_parts > %0
 * @nr_parts: the number of partitions in parts, if zero then the full
 *            MTD device is registered if no partition info is found
 *
 * This function aggregates MTD partitions parsing (done by
 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
 * basically follows the most common pattern found in many MTD drivers:
 *
793 794 795
 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
 *   registered first.
 * * Then It tries to probe partitions on MTD device @mtd using parsers
796 797 798 799 800 801 802 803 804
 *   specified in @types (if @types is %NULL, then the default list of parsers
 *   is used, see 'parse_mtd_partitions()' for more information). If none are
 *   found this functions tries to fallback to information specified in
 *   @parts/@nr_parts.
 * * If no partitions were found this function just registers the MTD device
 *   @mtd and exits.
 *
 * Returns zero in case of success and a negative error code in case of failure.
 */
805
int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
806
			      struct mtd_part_parser_data *parser_data,
807 808 809
			      const struct mtd_partition *parts,
			      int nr_parts)
{
810
	int ret;
811

812 813
	mtd_set_dev_defaults(mtd);

814 815 816 817 818 819
	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
		ret = add_mtd_device(mtd);
		if (ret)
			return ret;
	}

820
	/* Prefer parsed partitions over driver-provided fallback */
821 822 823 824
	ret = parse_mtd_partitions(mtd, types, parser_data);
	if (ret > 0)
		ret = 0;
	else if (nr_parts)
825 826 827 828 829 830
		ret = add_mtd_partitions(mtd, parts, nr_parts);
	else if (!device_is_registered(&mtd->dev))
		ret = add_mtd_device(mtd);
	else
		ret = 0;

831 832
	if (ret)
		goto out;
833

834 835 836 837 838 839 840 841
	/*
	 * FIXME: some drivers unfortunately call this function more than once.
	 * So we have to check if we've already assigned the reboot notifier.
	 *
	 * Generally, we can make multiple calls work for most cases, but it
	 * does cause problems with parse_mtd_partitions() above (e.g.,
	 * cmdlineparts will register partitions more than once).
	 */
842 843
	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
		  "MTD already registered\n");
844
	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
845 846 847 848
		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
		register_reboot_notifier(&mtd->reboot_notifier);
	}

849
out:
850 851 852
	if (ret && device_is_registered(&mtd->dev))
		del_mtd_device(mtd);

853
	return ret;
854 855 856
}
EXPORT_SYMBOL_GPL(mtd_device_parse_register);

857 858 859 860 861 862 863 864 865 866
/**
 * mtd_device_unregister - unregister an existing MTD device.
 *
 * @master: the MTD device to unregister.  This will unregister both the master
 *          and any partitions if registered.
 */
int mtd_device_unregister(struct mtd_info *master)
{
	int err;

867 868 869
	if (master->_reboot)
		unregister_reboot_notifier(&master->reboot_notifier);

870 871 872 873 874 875 876 877 878 879 880
	err = del_mtd_partitions(master);
	if (err)
		return err;

	if (!device_is_registered(&master->dev))
		return 0;

	return del_mtd_device(master);
}
EXPORT_SYMBOL_GPL(mtd_device_unregister);

L
Linus Torvalds 已提交
881 882 883 884 885 886 887 888 889 890
/**
 *	register_mtd_user - register a 'user' of MTD devices.
 *	@new: pointer to notifier info structure
 *
 *	Registers a pair of callbacks function to be called upon addition
 *	or removal of MTD devices. Causes the 'add' callback to be immediately
 *	invoked for each MTD device currently present in the system.
 */
void register_mtd_user (struct mtd_notifier *new)
{
891
	struct mtd_info *mtd;
L
Linus Torvalds 已提交
892

I
Ingo Molnar 已提交
893
	mutex_lock(&mtd_table_mutex);
L
Linus Torvalds 已提交
894 895 896

	list_add(&new->list, &mtd_notifiers);

897
	__module_get(THIS_MODULE);
898

899 900
	mtd_for_each_device(mtd)
		new->add(mtd);
L
Linus Torvalds 已提交
901

I
Ingo Molnar 已提交
902
	mutex_unlock(&mtd_table_mutex);
L
Linus Torvalds 已提交
903
}
904
EXPORT_SYMBOL_GPL(register_mtd_user);
L
Linus Torvalds 已提交
905 906

/**
907 908
 *	unregister_mtd_user - unregister a 'user' of MTD devices.
 *	@old: pointer to notifier info structure
L
Linus Torvalds 已提交
909 910 911 912 913 914 915 916
 *
 *	Removes a callback function pair from the list of 'users' to be
 *	notified upon addition or removal of MTD devices. Causes the
 *	'remove' callback to be immediately invoked for each MTD device
 *	currently present in the system.
 */
int unregister_mtd_user (struct mtd_notifier *old)
{
917
	struct mtd_info *mtd;
L
Linus Torvalds 已提交
918

I
Ingo Molnar 已提交
919
	mutex_lock(&mtd_table_mutex);
L
Linus Torvalds 已提交
920 921 922

	module_put(THIS_MODULE);

923 924
	mtd_for_each_device(mtd)
		old->remove(mtd);
925

L
Linus Torvalds 已提交
926
	list_del(&old->list);
I
Ingo Molnar 已提交
927
	mutex_unlock(&mtd_table_mutex);
L
Linus Torvalds 已提交
928 929
	return 0;
}
930
EXPORT_SYMBOL_GPL(unregister_mtd_user);
L
Linus Torvalds 已提交
931 932 933 934 935 936 937 938 939

/**
 *	get_mtd_device - obtain a validated handle for an MTD device
 *	@mtd: last known address of the required MTD device
 *	@num: internal device number of the required MTD device
 *
 *	Given a number and NULL address, return the num'th entry in the device
 *	table, if any.	Given an address and num == -1, search the device table
 *	for a device with that address and return if it's still present. Given
940 941
 *	both, return the num'th driver only if its address matches. Return
 *	error code if not.
L
Linus Torvalds 已提交
942 943 944
 */
struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
{
945 946
	struct mtd_info *ret = NULL, *other;
	int err = -ENODEV;
L
Linus Torvalds 已提交
947

I
Ingo Molnar 已提交
948
	mutex_lock(&mtd_table_mutex);
L
Linus Torvalds 已提交
949 950

	if (num == -1) {
951 952 953 954 955 956
		mtd_for_each_device(other) {
			if (other == mtd) {
				ret = mtd;
				break;
			}
		}
957 958
	} else if (num >= 0) {
		ret = idr_find(&mtd_idr, num);
L
Linus Torvalds 已提交
959 960 961 962
		if (mtd && mtd != ret)
			ret = NULL;
	}

963 964 965
	if (!ret) {
		ret = ERR_PTR(err);
		goto out;
A
Artem Bityutskiy 已提交
966
	}
L
Linus Torvalds 已提交
967

968 969 970 971
	err = __get_mtd_device(ret);
	if (err)
		ret = ERR_PTR(err);
out:
972 973
	mutex_unlock(&mtd_table_mutex);
	return ret;
974
}
975
EXPORT_SYMBOL_GPL(get_mtd_device);
L
Linus Torvalds 已提交
976

977 978 979

int __get_mtd_device(struct mtd_info *mtd)
{
980
	struct mtd_info *master = mtd_get_master(mtd);
981 982
	int err;

983
	if (!try_module_get(master->owner))
984 985
		return -ENODEV;

986 987
	if (master->_get_device) {
		err = master->_get_device(mtd);
988 989

		if (err) {
990
			module_put(master->owner);
991 992 993
			return err;
		}
	}
994 995 996 997 998 999

	while (mtd->parent) {
		mtd->usecount++;
		mtd = mtd->parent;
	}

1000
	return 0;
L
Linus Torvalds 已提交
1001
}
1002
EXPORT_SYMBOL_GPL(__get_mtd_device);
L
Linus Torvalds 已提交
1003

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
/**
 *	get_mtd_device_nm - obtain a validated handle for an MTD device by
 *	device name
 *	@name: MTD device name to open
 *
 * 	This function returns MTD device description structure in case of
 * 	success and an error code in case of failure.
 */
struct mtd_info *get_mtd_device_nm(const char *name)
{
1014 1015
	int err = -ENODEV;
	struct mtd_info *mtd = NULL, *other;
1016 1017 1018

	mutex_lock(&mtd_table_mutex);

1019 1020 1021
	mtd_for_each_device(other) {
		if (!strcmp(name, other->name)) {
			mtd = other;
1022 1023 1024 1025
			break;
		}
	}

A
Artem Bityutskiy 已提交
1026
	if (!mtd)
1027 1028
		goto out_unlock;

1029 1030
	err = __get_mtd_device(mtd);
	if (err)
1031 1032
		goto out_unlock;

A
Artem Bityutskiy 已提交
1033 1034
	mutex_unlock(&mtd_table_mutex);
	return mtd;
1035 1036 1037

out_unlock:
	mutex_unlock(&mtd_table_mutex);
A
Artem Bityutskiy 已提交
1038
	return ERR_PTR(err);
1039
}
1040
EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1041

L
Linus Torvalds 已提交
1042 1043
void put_mtd_device(struct mtd_info *mtd)
{
I
Ingo Molnar 已提交
1044
	mutex_lock(&mtd_table_mutex);
1045 1046 1047 1048
	__put_mtd_device(mtd);
	mutex_unlock(&mtd_table_mutex);

}
1049
EXPORT_SYMBOL_GPL(put_mtd_device);
1050 1051 1052

void __put_mtd_device(struct mtd_info *mtd)
{
1053
	struct mtd_info *master = mtd_get_master(mtd);
1054

1055 1056 1057 1058 1059 1060 1061 1062
	while (mtd->parent) {
		--mtd->usecount;
		BUG_ON(mtd->usecount < 0);
		mtd = mtd->parent;
	}

	if (master->_put_device)
		master->_put_device(master);
L
Linus Torvalds 已提交
1063

1064
	module_put(master->owner);
L
Linus Torvalds 已提交
1065
}
1066
EXPORT_SYMBOL_GPL(__put_mtd_device);
L
Linus Torvalds 已提交
1067

1068
/*
1069 1070 1071
 * Erase is an synchronous operation. Device drivers are epected to return a
 * negative error code if the operation failed and update instr->fail_addr
 * to point the portion that was not properly erased.
1072 1073 1074
 */
int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
{
1075 1076 1077 1078
	struct mtd_info *master = mtd_get_master(mtd);
	u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
	int ret;

1079 1080
	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;

1081
	if (!mtd->erasesize || !master->_erase)
1082 1083
		return -ENOTSUPP;

1084
	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1085
		return -EINVAL;
1086 1087
	if (!(mtd->flags & MTD_WRITEABLE))
		return -EROFS;
1088

1089
	if (!instr->len)
1090
		return 0;
1091

1092
	ledtrig_mtd_activity();
1093 1094 1095 1096 1097 1098 1099 1100

	instr->addr += mst_ofs;
	ret = master->_erase(master, instr);
	if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
		instr->fail_addr -= mst_ofs;

	instr->addr -= mst_ofs;
	return ret;
1101 1102 1103 1104 1105 1106 1107 1108 1109
}
EXPORT_SYMBOL_GPL(mtd_erase);

/*
 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
 */
int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
	      void **virt, resource_size_t *phys)
{
1110 1111
	struct mtd_info *master = mtd_get_master(mtd);

1112
	*retlen = 0;
1113 1114 1115
	*virt = NULL;
	if (phys)
		*phys = 0;
1116
	if (!master->_point)
1117
		return -EOPNOTSUPP;
1118
	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1119
		return -EINVAL;
1120 1121
	if (!len)
		return 0;
1122 1123 1124

	from = mtd_get_master_ofs(mtd, from);
	return master->_point(master, from, len, retlen, virt, phys);
1125 1126 1127 1128 1129 1130
}
EXPORT_SYMBOL_GPL(mtd_point);

/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
{
1131 1132 1133
	struct mtd_info *master = mtd_get_master(mtd);

	if (!master->_unpoint)
1134
		return -EOPNOTSUPP;
1135
	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1136
		return -EINVAL;
1137 1138
	if (!len)
		return 0;
1139
	return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
}
EXPORT_SYMBOL_GPL(mtd_unpoint);

/*
 * Allow NOMMU mmap() to directly map the device (if not NULL)
 * - return the address to which the offset maps
 * - return -ENOSYS to indicate refusal to do the mapping
 */
unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
				    unsigned long offset, unsigned long flags)
{
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
	size_t retlen;
	void *virt;
	int ret;

	ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
	if (ret)
		return ret;
	if (retlen != len) {
		mtd_unpoint(mtd, offset, retlen);
		return -ENOSYS;
	}
	return (unsigned long)virt;
1163 1164 1165
}
EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);

1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
				 const struct mtd_ecc_stats *old_stats)
{
	struct mtd_ecc_stats diff;

	if (master == mtd)
		return;

	diff = master->ecc_stats;
	diff.failed -= old_stats->failed;
	diff.corrected -= old_stats->corrected;

	while (mtd->parent) {
		mtd->ecc_stats.failed += diff.failed;
		mtd->ecc_stats.corrected += diff.corrected;
		mtd = mtd->parent;
	}
}

1185 1186 1187
int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
	     u_char *buf)
{
1188 1189 1190 1191 1192
	struct mtd_oob_ops ops = {
		.len = len,
		.datbuf = buf,
	};
	int ret;
1193

1194 1195
	ret = mtd_read_oob(mtd, from, &ops);
	*retlen = ops.retlen;
1196

1197
	return ret;
1198 1199 1200 1201 1202 1203
}
EXPORT_SYMBOL_GPL(mtd_read);

int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
	      const u_char *buf)
{
1204 1205 1206 1207 1208
	struct mtd_oob_ops ops = {
		.len = len,
		.datbuf = (u8 *)buf,
	};
	int ret;
1209

1210 1211
	ret = mtd_write_oob(mtd, to, &ops);
	*retlen = ops.retlen;
1212

1213
	return ret;
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
}
EXPORT_SYMBOL_GPL(mtd_write);

/*
 * In blackbox flight recorder like scenarios we want to make successful writes
 * in interrupt context. panic_write() is only intended to be called when its
 * known the kernel is about to panic and we need the write to succeed. Since
 * the kernel is not going to be running for much longer, this function can
 * break locks and delay to ensure the write succeeds (but not sleep).
 */
int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
		    const u_char *buf)
{
1227 1228
	struct mtd_info *master = mtd_get_master(mtd);

1229
	*retlen = 0;
1230
	if (!master->_panic_write)
1231
		return -EOPNOTSUPP;
1232
	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1233
		return -EINVAL;
1234 1235
	if (!(mtd->flags & MTD_WRITEABLE))
		return -EROFS;
1236 1237
	if (!len)
		return 0;
1238 1239 1240
	if (!mtd->oops_panic_write)
		mtd->oops_panic_write = true;

1241 1242
	return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
				    retlen, buf);
1243 1244 1245
}
EXPORT_SYMBOL_GPL(mtd_panic_write);

1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
			     struct mtd_oob_ops *ops)
{
	/*
	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
	 *  this case.
	 */
	if (!ops->datbuf)
		ops->len = 0;

	if (!ops->oobbuf)
		ops->ooblen = 0;

M
Miquel Raynal 已提交
1260
	if (offs < 0 || offs + ops->len > mtd->size)
1261 1262 1263
		return -EINVAL;

	if (ops->ooblen) {
1264
		size_t maxooblen;
1265 1266 1267 1268

		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
			return -EINVAL;

1269 1270
		maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
				      mtd_div_by_ws(offs, mtd)) *
1271 1272 1273 1274 1275 1276 1277 1278
			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
		if (ops->ooblen > maxooblen)
			return -EINVAL;
	}

	return 0;
}

1279 1280
int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
{
1281 1282
	struct mtd_info *master = mtd_get_master(mtd);
	struct mtd_ecc_stats old_stats = master->ecc_stats;
1283
	int ret_code;
1284

1285
	ops->retlen = ops->oobretlen = 0;
1286

1287 1288 1289 1290
	ret_code = mtd_check_oob_ops(mtd, from, ops);
	if (ret_code)
		return ret_code;

1291
	ledtrig_mtd_activity();
1292 1293

	/* Check the validity of a potential fallback on mtd->_read */
1294
	if (!master->_read_oob && (!master->_read || ops->oobbuf))
1295 1296
		return -EOPNOTSUPP;

1297 1298 1299
	from = mtd_get_master_ofs(mtd, from);
	if (master->_read_oob)
		ret_code = master->_read_oob(master, from, ops);
1300
	else
1301 1302 1303 1304
		ret_code = master->_read(master, from, ops->len, &ops->retlen,
					 ops->datbuf);

	mtd_update_ecc_stats(mtd, master, &old_stats);
1305

1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
	/*
	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
	 * similar to mtd->_read(), returning a non-negative integer
	 * representing max bitflips. In other cases, mtd->_read_oob() may
	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
	 */
	if (unlikely(ret_code < 0))
		return ret_code;
	if (mtd->ecc_strength == 0)
		return 0;	/* device lacks ecc */
	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1317 1318 1319
}
EXPORT_SYMBOL_GPL(mtd_read_oob);

1320 1321 1322
int mtd_write_oob(struct mtd_info *mtd, loff_t to,
				struct mtd_oob_ops *ops)
{
1323
	struct mtd_info *master = mtd_get_master(mtd);
1324 1325
	int ret;

1326
	ops->retlen = ops->oobretlen = 0;
1327

1328 1329
	if (!(mtd->flags & MTD_WRITEABLE))
		return -EROFS;
1330 1331 1332 1333 1334

	ret = mtd_check_oob_ops(mtd, to, ops);
	if (ret)
		return ret;

1335
	ledtrig_mtd_activity();
1336 1337

	/* Check the validity of a potential fallback on mtd->_write */
1338
	if (!master->_write_oob && (!master->_write || ops->oobbuf))
1339 1340
		return -EOPNOTSUPP;

1341 1342 1343 1344
	to = mtd_get_master_ofs(mtd, to);

	if (master->_write_oob)
		return master->_write_oob(master, to, ops);
1345
	else
1346 1347
		return master->_write(master, to, ops->len, &ops->retlen,
				      ops->datbuf);
1348 1349 1350
}
EXPORT_SYMBOL_GPL(mtd_write_oob);

1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
/**
 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
 * @mtd: MTD device structure
 * @section: ECC section. Depending on the layout you may have all the ECC
 *	     bytes stored in a single contiguous section, or one section
 *	     per ECC chunk (and sometime several sections for a single ECC
 *	     ECC chunk)
 * @oobecc: OOB region struct filled with the appropriate ECC position
 *	    information
 *
1361
 * This function returns ECC section information in the OOB area. If you want
1362 1363 1364 1365 1366 1367 1368 1369
 * to get all the ECC bytes information, then you should call
 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
 *
 * Returns zero on success, a negative error code otherwise.
 */
int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
		      struct mtd_oob_region *oobecc)
{
1370 1371
	struct mtd_info *master = mtd_get_master(mtd);

1372 1373
	memset(oobecc, 0, sizeof(*oobecc));

1374
	if (!master || section < 0)
1375 1376
		return -EINVAL;

1377
	if (!master->ooblayout || !master->ooblayout->ecc)
1378 1379
		return -ENOTSUPP;

1380
	return master->ooblayout->ecc(master, section, oobecc);
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
}
EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);

/**
 * mtd_ooblayout_free - Get the OOB region definition of a specific free
 *			section
 * @mtd: MTD device structure
 * @section: Free section you are interested in. Depending on the layout
 *	     you may have all the free bytes stored in a single contiguous
 *	     section, or one section per ECC chunk plus an extra section
 *	     for the remaining bytes (or other funky layout).
 * @oobfree: OOB region struct filled with the appropriate free position
 *	     information
 *
1395
 * This function returns free bytes position in the OOB area. If you want
1396 1397 1398 1399 1400 1401 1402 1403
 * to get all the free bytes information, then you should call
 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
 *
 * Returns zero on success, a negative error code otherwise.
 */
int mtd_ooblayout_free(struct mtd_info *mtd, int section,
		       struct mtd_oob_region *oobfree)
{
1404 1405
	struct mtd_info *master = mtd_get_master(mtd);

1406 1407
	memset(oobfree, 0, sizeof(*oobfree));

1408
	if (!master || section < 0)
1409 1410
		return -EINVAL;

1411
	if (!master->ooblayout || !master->ooblayout->free)
1412 1413
		return -ENOTSUPP;

1414
	return master->ooblayout->free(master, section, oobfree);
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
}
EXPORT_SYMBOL_GPL(mtd_ooblayout_free);

/**
 * mtd_ooblayout_find_region - Find the region attached to a specific byte
 * @mtd: mtd info structure
 * @byte: the byte we are searching for
 * @sectionp: pointer where the section id will be stored
 * @oobregion: used to retrieve the ECC position
 * @iter: iterator function. Should be either mtd_ooblayout_free or
 *	  mtd_ooblayout_ecc depending on the region type you're searching for
 *
1427
 * This function returns the section id and oobregion information of a
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
 * specific byte. For example, say you want to know where the 4th ECC byte is
 * stored, you'll use:
 *
 * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
 *
 * Returns zero on success, a negative error code otherwise.
 */
static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
				int *sectionp, struct mtd_oob_region *oobregion,
				int (*iter)(struct mtd_info *,
					    int section,
					    struct mtd_oob_region *oobregion))
{
	int pos = 0, ret, section = 0;

	memset(oobregion, 0, sizeof(*oobregion));

	while (1) {
		ret = iter(mtd, section, oobregion);
		if (ret)
			return ret;

		if (pos + oobregion->length > byte)
			break;

		pos += oobregion->length;
		section++;
	}

	/*
	 * Adjust region info to make it start at the beginning at the
	 * 'start' ECC byte.
	 */
	oobregion->offset += byte - pos;
	oobregion->length -= byte - pos;
	*sectionp = section;

	return 0;
}

/**
 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
 *				  ECC byte
 * @mtd: mtd info structure
 * @eccbyte: the byte we are searching for
 * @sectionp: pointer where the section id will be stored
 * @oobregion: OOB region information
 *
 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
 * byte.
 *
 * Returns zero on success, a negative error code otherwise.
 */
int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
				 int *section,
				 struct mtd_oob_region *oobregion)
{
	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
					 mtd_ooblayout_ecc);
}
EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);

/**
 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
 * @mtd: mtd info structure
 * @buf: destination buffer to store OOB bytes
 * @oobbuf: OOB buffer
 * @start: first byte to retrieve
 * @nbytes: number of bytes to retrieve
 * @iter: section iterator
 *
 * Extract bytes attached to a specific category (ECC or free)
 * from the OOB buffer and copy them into buf.
 *
 * Returns zero on success, a negative error code otherwise.
 */
static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
				const u8 *oobbuf, int start, int nbytes,
				int (*iter)(struct mtd_info *,
					    int section,
					    struct mtd_oob_region *oobregion))
{
1510 1511
	struct mtd_oob_region oobregion;
	int section, ret;
1512 1513 1514 1515 1516 1517 1518

	ret = mtd_ooblayout_find_region(mtd, start, &section,
					&oobregion, iter);

	while (!ret) {
		int cnt;

1519
		cnt = min_t(int, nbytes, oobregion.length);
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
		memcpy(buf, oobbuf + oobregion.offset, cnt);
		buf += cnt;
		nbytes -= cnt;

		if (!nbytes)
			break;

		ret = iter(mtd, ++section, &oobregion);
	}

	return ret;
}

/**
 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
 * @mtd: mtd info structure
 * @buf: source buffer to get OOB bytes from
 * @oobbuf: OOB buffer
 * @start: first OOB byte to set
 * @nbytes: number of OOB bytes to set
 * @iter: section iterator
 *
 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
 * is selected by passing the appropriate iterator.
 *
 * Returns zero on success, a negative error code otherwise.
 */
static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
				u8 *oobbuf, int start, int nbytes,
				int (*iter)(struct mtd_info *,
					    int section,
					    struct mtd_oob_region *oobregion))
{
1553 1554
	struct mtd_oob_region oobregion;
	int section, ret;
1555 1556 1557 1558 1559 1560 1561

	ret = mtd_ooblayout_find_region(mtd, start, &section,
					&oobregion, iter);

	while (!ret) {
		int cnt;

1562
		cnt = min_t(int, nbytes, oobregion.length);
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
		memcpy(oobbuf + oobregion.offset, buf, cnt);
		buf += cnt;
		nbytes -= cnt;

		if (!nbytes)
			break;

		ret = iter(mtd, ++section, &oobregion);
	}

	return ret;
}

/**
 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
 * @mtd: mtd info structure
 * @iter: category iterator
 *
 * Count the number of bytes in a given category.
 *
 * Returns a positive value on success, a negative error code otherwise.
 */
static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
				int (*iter)(struct mtd_info *,
					    int section,
					    struct mtd_oob_region *oobregion))
{
1590
	struct mtd_oob_region oobregion;
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
	int section = 0, ret, nbytes = 0;

	while (1) {
		ret = iter(mtd, section++, &oobregion);
		if (ret) {
			if (ret == -ERANGE)
				ret = nbytes;
			break;
		}

		nbytes += oobregion.length;
	}

	return ret;
}

/**
 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
 * @mtd: mtd info structure
 * @eccbuf: destination buffer to store ECC bytes
 * @oobbuf: OOB buffer
 * @start: first ECC byte to retrieve
 * @nbytes: number of ECC bytes to retrieve
 *
 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
 *
 * Returns zero on success, a negative error code otherwise.
 */
int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
			       const u8 *oobbuf, int start, int nbytes)
{
	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
				       mtd_ooblayout_ecc);
}
EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);

/**
 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
 * @mtd: mtd info structure
 * @eccbuf: source buffer to get ECC bytes from
 * @oobbuf: OOB buffer
 * @start: first ECC byte to set
 * @nbytes: number of ECC bytes to set
 *
 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
 *
 * Returns zero on success, a negative error code otherwise.
 */
int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
			       u8 *oobbuf, int start, int nbytes)
{
	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
				       mtd_ooblayout_ecc);
}
EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);

/**
 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
 * @mtd: mtd info structure
 * @databuf: destination buffer to store ECC bytes
 * @oobbuf: OOB buffer
 * @start: first ECC byte to retrieve
 * @nbytes: number of ECC bytes to retrieve
 *
 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
 *
 * Returns zero on success, a negative error code otherwise.
 */
int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
				const u8 *oobbuf, int start, int nbytes)
{
	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
				       mtd_ooblayout_free);
}
EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);

/**
1668
 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
1669
 * @mtd: mtd info structure
1670
 * @databuf: source buffer to get data bytes from
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
 * @oobbuf: OOB buffer
 * @start: first ECC byte to set
 * @nbytes: number of ECC bytes to set
 *
 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
 *
 * Returns zero on success, a negative error code otherwise.
 */
int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
				u8 *oobbuf, int start, int nbytes)
{
	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
				       mtd_ooblayout_free);
}
EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);

/**
 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
 * @mtd: mtd info structure
 *
 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
 *
 * Returns zero on success, a negative error code otherwise.
 */
int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
{
	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
}
EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);

/**
1702
 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
 * @mtd: mtd info structure
 *
 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
 *
 * Returns zero on success, a negative error code otherwise.
 */
int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
{
	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
}
EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);

1715 1716 1717 1718 1719
/*
 * Method to access the protection register area, present in some flash
 * devices. The user data is one time programmable but the factory data is read
 * only.
 */
1720 1721
int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
			   struct otp_info *buf)
1722
{
1723 1724 1725
	struct mtd_info *master = mtd_get_master(mtd);

	if (!master->_get_fact_prot_info)
1726 1727 1728
		return -EOPNOTSUPP;
	if (!len)
		return 0;
1729
	return master->_get_fact_prot_info(master, len, retlen, buf);
1730 1731 1732 1733 1734 1735
}
EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);

int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
			   size_t *retlen, u_char *buf)
{
1736 1737
	struct mtd_info *master = mtd_get_master(mtd);

1738
	*retlen = 0;
1739
	if (!master->_read_fact_prot_reg)
1740 1741 1742
		return -EOPNOTSUPP;
	if (!len)
		return 0;
1743
	return master->_read_fact_prot_reg(master, from, len, retlen, buf);
1744 1745 1746
}
EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);

1747 1748
int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
			   struct otp_info *buf)
1749
{
1750 1751 1752
	struct mtd_info *master = mtd_get_master(mtd);

	if (!master->_get_user_prot_info)
1753 1754 1755
		return -EOPNOTSUPP;
	if (!len)
		return 0;
1756
	return master->_get_user_prot_info(master, len, retlen, buf);
1757 1758 1759 1760 1761 1762
}
EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);

int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
			   size_t *retlen, u_char *buf)
{
1763 1764
	struct mtd_info *master = mtd_get_master(mtd);

1765
	*retlen = 0;
1766
	if (!master->_read_user_prot_reg)
1767 1768 1769
		return -EOPNOTSUPP;
	if (!len)
		return 0;
1770
	return master->_read_user_prot_reg(master, from, len, retlen, buf);
1771 1772 1773 1774 1775 1776
}
EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);

int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
			    size_t *retlen, u_char *buf)
{
1777
	struct mtd_info *master = mtd_get_master(mtd);
1778 1779
	int ret;

1780
	*retlen = 0;
1781
	if (!master->_write_user_prot_reg)
1782 1783 1784
		return -EOPNOTSUPP;
	if (!len)
		return 0;
1785
	ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
1786 1787 1788 1789 1790 1791 1792 1793
	if (ret)
		return ret;

	/*
	 * If no data could be written at all, we are out of memory and
	 * must return -ENOSPC.
	 */
	return (*retlen) ? 0 : -ENOSPC;
1794 1795 1796 1797 1798
}
EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);

int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
{
1799 1800 1801
	struct mtd_info *master = mtd_get_master(mtd);

	if (!master->_lock_user_prot_reg)
1802 1803 1804
		return -EOPNOTSUPP;
	if (!len)
		return 0;
1805
	return master->_lock_user_prot_reg(master, from, len);
1806 1807 1808
}
EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);

1809 1810 1811
/* Chip-supported device locking */
int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
1812 1813 1814
	struct mtd_info *master = mtd_get_master(mtd);

	if (!master->_lock)
1815
		return -EOPNOTSUPP;
1816
	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1817
		return -EINVAL;
1818 1819
	if (!len)
		return 0;
1820
	return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
1821 1822 1823 1824 1825
}
EXPORT_SYMBOL_GPL(mtd_lock);

int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
1826 1827 1828
	struct mtd_info *master = mtd_get_master(mtd);

	if (!master->_unlock)
1829
		return -EOPNOTSUPP;
1830
	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1831
		return -EINVAL;
1832 1833
	if (!len)
		return 0;
1834
	return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
1835 1836 1837 1838 1839
}
EXPORT_SYMBOL_GPL(mtd_unlock);

int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
1840 1841 1842
	struct mtd_info *master = mtd_get_master(mtd);

	if (!master->_is_locked)
1843
		return -EOPNOTSUPP;
1844
	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1845
		return -EINVAL;
1846 1847
	if (!len)
		return 0;
1848
	return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
1849 1850 1851
}
EXPORT_SYMBOL_GPL(mtd_is_locked);

1852
int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1853
{
1854 1855
	struct mtd_info *master = mtd_get_master(mtd);

1856
	if (ofs < 0 || ofs >= mtd->size)
1857
		return -EINVAL;
1858
	if (!master->_block_isreserved)
1859
		return 0;
1860
	return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
1861 1862 1863 1864 1865
}
EXPORT_SYMBOL_GPL(mtd_block_isreserved);

int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
{
1866 1867
	struct mtd_info *master = mtd_get_master(mtd);

1868
	if (ofs < 0 || ofs >= mtd->size)
1869
		return -EINVAL;
1870
	if (!master->_block_isbad)
1871
		return 0;
1872
	return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
1873 1874 1875 1876 1877
}
EXPORT_SYMBOL_GPL(mtd_block_isbad);

int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
1878 1879 1880 1881
	struct mtd_info *master = mtd_get_master(mtd);
	int ret;

	if (!master->_block_markbad)
1882
		return -EOPNOTSUPP;
1883
	if (ofs < 0 || ofs >= mtd->size)
1884
		return -EINVAL;
1885 1886
	if (!(mtd->flags & MTD_WRITEABLE))
		return -EROFS;
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897

	ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
	if (ret)
		return ret;

	while (mtd->parent) {
		mtd->ecc_stats.badblocks++;
		mtd = mtd->parent;
	}

	return 0;
1898 1899 1900
}
EXPORT_SYMBOL_GPL(mtd_block_markbad);

1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
/*
 * default_mtd_writev - the default writev method
 * @mtd: mtd device description object pointer
 * @vecs: the vectors to write
 * @count: count of vectors in @vecs
 * @to: the MTD device offset to write to
 * @retlen: on exit contains the count of bytes written to the MTD device.
 *
 * This function returns zero in case of success and a negative error code in
 * case of failure.
L
Linus Torvalds 已提交
1911
 */
1912 1913
static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
			      unsigned long count, loff_t to, size_t *retlen)
L
Linus Torvalds 已提交
1914 1915 1916 1917 1918
{
	unsigned long i;
	size_t totlen = 0, thislen;
	int ret = 0;

1919 1920 1921 1922 1923 1924 1925 1926 1927
	for (i = 0; i < count; i++) {
		if (!vecs[i].iov_len)
			continue;
		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
				vecs[i].iov_base);
		totlen += thislen;
		if (ret || thislen != vecs[i].iov_len)
			break;
		to += vecs[i].iov_len;
L
Linus Torvalds 已提交
1928
	}
1929
	*retlen = totlen;
L
Linus Torvalds 已提交
1930 1931
	return ret;
}
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946

/*
 * mtd_writev - the vector-based MTD write method
 * @mtd: mtd device description object pointer
 * @vecs: the vectors to write
 * @count: count of vectors in @vecs
 * @to: the MTD device offset to write to
 * @retlen: on exit contains the count of bytes written to the MTD device.
 *
 * This function returns zero in case of success and a negative error code in
 * case of failure.
 */
int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
	       unsigned long count, loff_t to, size_t *retlen)
{
1947 1948
	struct mtd_info *master = mtd_get_master(mtd);

1949
	*retlen = 0;
1950 1951
	if (!(mtd->flags & MTD_WRITEABLE))
		return -EROFS;
1952 1953

	if (!master->_writev)
1954
		return default_mtd_writev(mtd, vecs, count, to, retlen);
1955 1956 1957

	return master->_writev(master, vecs, count,
			       mtd_get_master_ofs(mtd, to), retlen);
1958 1959
}
EXPORT_SYMBOL_GPL(mtd_writev);
L
Linus Torvalds 已提交
1960

1961 1962
/**
 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1963 1964
 * @mtd: mtd device description object pointer
 * @size: a pointer to the ideal or maximum size of the allocation, points
1965 1966 1967 1968 1969 1970 1971
 *        to the actual allocation size on success.
 *
 * This routine attempts to allocate a contiguous kernel buffer up to
 * the specified size, backing off the size of the request exponentially
 * until the request succeeds or until the allocation size falls below
 * the system page size. This attempts to make sure it does not adversely
 * impact system performance, so when allocating more than one page, we
1972 1973
 * ask the memory allocator to avoid re-trying, swapping, writing back
 * or performing I/O.
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
 *
 * Note, this function also makes sure that the allocated buffer is aligned to
 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
 *
 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
 * to handle smaller (i.e. degraded) buffer allocations under low- or
 * fragmented-memory situations where such reduced allocations, from a
 * requested ideal, are allowed.
 *
 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
 */
void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
{
1987
	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
	void *kbuf;

	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);

	while (*size > min_alloc) {
		kbuf = kmalloc(*size, flags);
		if (kbuf)
			return kbuf;

		*size >>= 1;
		*size = ALIGN(*size, mtd->writesize);
	}

	/*
	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
	 */
	return kmalloc(*size, GFP_KERNEL);
}
EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
L
Linus Torvalds 已提交
2009

P
Pavel Machek 已提交
2010 2011
#ifdef CONFIG_PROC_FS

L
Linus Torvalds 已提交
2012 2013 2014
/*====================================================================*/
/* Support for /proc/mtd */

2015
static int mtd_proc_show(struct seq_file *m, void *v)
L
Linus Torvalds 已提交
2016
{
2017
	struct mtd_info *mtd;
L
Linus Torvalds 已提交
2018

2019
	seq_puts(m, "dev:    size   erasesize  name\n");
I
Ingo Molnar 已提交
2020
	mutex_lock(&mtd_table_mutex);
2021
	mtd_for_each_device(mtd) {
2022 2023 2024
		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
			   mtd->index, (unsigned long long)mtd->size,
			   mtd->erasesize, mtd->name);
2025
	}
I
Ingo Molnar 已提交
2026
	mutex_unlock(&mtd_table_mutex);
2027
	return 0;
L
Linus Torvalds 已提交
2028
}
2029 2030
#endif /* CONFIG_PROC_FS */

L
Linus Torvalds 已提交
2031 2032 2033
/*====================================================================*/
/* Init code */

2034
static struct backing_dev_info * __init mtd_bdi_init(char *name)
2035
{
2036
	struct backing_dev_info *bdi;
2037 2038
	int ret;

C
Christoph Hellwig 已提交
2039
	bdi = bdi_alloc(NUMA_NO_NODE);
2040 2041
	if (!bdi)
		return ERR_PTR(-ENOMEM);
2042

2043 2044 2045 2046 2047
	bdi->name = name;
	/*
	 * We put '-0' suffix to the name to get the same name format as we
	 * used to get. Since this is called only once, we get a unique name. 
	 */
2048
	ret = bdi_register(bdi, "%.28s-0", name);
2049
	if (ret)
2050
		bdi_put(bdi);
2051

2052
	return ret ? ERR_PTR(ret) : bdi;
2053 2054
}

2055 2056
static struct proc_dir_entry *proc_mtd;

L
Linus Torvalds 已提交
2057 2058
static int __init init_mtd(void)
{
2059
	int ret;
2060

2061
	ret = class_register(&mtd_class);
2062 2063 2064
	if (ret)
		goto err_reg;

2065 2066 2067
	mtd_bdi = mtd_bdi_init("mtd");
	if (IS_ERR(mtd_bdi)) {
		ret = PTR_ERR(mtd_bdi);
2068
		goto err_bdi;
2069
	}
2070

2071
	proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2072

2073 2074 2075 2076
	ret = init_mtdchar();
	if (ret)
		goto out_procfs;

2077 2078
	dfs_dir_mtd = debugfs_create_dir("mtd", NULL);

L
Linus Torvalds 已提交
2079
	return 0;
2080

2081 2082 2083
out_procfs:
	if (proc_mtd)
		remove_proc_entry("mtd", NULL);
2084
	bdi_put(mtd_bdi);
2085
err_bdi:
2086 2087 2088 2089
	class_unregister(&mtd_class);
err_reg:
	pr_err("Error registering mtd class or bdi: %d\n", ret);
	return ret;
L
Linus Torvalds 已提交
2090 2091 2092 2093
}

static void __exit cleanup_mtd(void)
{
2094
	debugfs_remove_recursive(dfs_dir_mtd);
2095
	cleanup_mtdchar();
2096
	if (proc_mtd)
2097
		remove_proc_entry("mtd", NULL);
2098
	class_unregister(&mtd_class);
2099
	bdi_put(mtd_bdi);
2100
	idr_destroy(&mtd_idr);
L
Linus Torvalds 已提交
2101 2102 2103 2104 2105 2106 2107 2108
}

module_init(init_mtd);
module_exit(cleanup_mtd);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
MODULE_DESCRIPTION("Core MTD registration and access routines");