core.c 58.0 KB
Newer Older
1
/*
2
 * Performance events x86 architecture code
3
 *
4 5 6 7
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2009 Jaswinder Singh Rajput
 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9
 *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10
 *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11 12 13 14
 *
 *  For licencing details see kernel-base/COPYING
 */

15
#include <linux/perf_event.h>
16 17 18 19
#include <linux/capability.h>
#include <linux/notifier.h>
#include <linux/hardirq.h>
#include <linux/kprobes.h>
20 21
#include <linux/export.h>
#include <linux/init.h>
22 23
#include <linux/kdebug.h>
#include <linux/sched.h>
24
#include <linux/uaccess.h>
25
#include <linux/slab.h>
26
#include <linux/cpu.h>
27
#include <linux/bitops.h>
28
#include <linux/device.h>
29 30

#include <asm/apic.h>
31
#include <asm/stacktrace.h>
32
#include <asm/nmi.h>
33
#include <asm/smp.h>
34
#include <asm/alternative.h>
35
#include <asm/mmu_context.h>
36
#include <asm/tlbflush.h>
37
#include <asm/timer.h>
38 39
#include <asm/desc.h>
#include <asm/ldt.h>
40
#include <asm/unwind.h>
41

42
#include "perf_event.h"
43 44

struct x86_pmu x86_pmu __read_mostly;
45

46
DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
47 48
	.enabled = 1,
};
49

50 51
struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;

52
u64 __read_mostly hw_cache_event_ids
53 54 55
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX];
56
u64 __read_mostly hw_cache_extra_regs
57 58 59
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX];
60

61
/*
62 63
 * Propagate event elapsed time into the generic event.
 * Can only be executed on the CPU where the event is active.
64 65
 * Returns the delta events processed.
 */
66
u64 x86_perf_event_update(struct perf_event *event)
67
{
68
	struct hw_perf_event *hwc = &event->hw;
69
	int shift = 64 - x86_pmu.cntval_bits;
70
	u64 prev_raw_count, new_raw_count;
71
	int idx = hwc->idx;
72
	s64 delta;
73

74
	if (idx == INTEL_PMC_IDX_FIXED_BTS)
75 76
		return 0;

77
	/*
78
	 * Careful: an NMI might modify the previous event value.
79 80 81
	 *
	 * Our tactic to handle this is to first atomically read and
	 * exchange a new raw count - then add that new-prev delta
82
	 * count to the generic event atomically:
83 84
	 */
again:
85
	prev_raw_count = local64_read(&hwc->prev_count);
86
	rdpmcl(hwc->event_base_rdpmc, new_raw_count);
87

88
	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
89 90 91 92 93 94
					new_raw_count) != prev_raw_count)
		goto again;

	/*
	 * Now we have the new raw value and have updated the prev
	 * timestamp already. We can now calculate the elapsed delta
95
	 * (event-)time and add that to the generic event.
96 97
	 *
	 * Careful, not all hw sign-extends above the physical width
98
	 * of the count.
99
	 */
100 101
	delta = (new_raw_count << shift) - (prev_raw_count << shift);
	delta >>= shift;
102

103 104
	local64_add(delta, &event->count);
	local64_sub(delta, &hwc->period_left);
105 106

	return new_raw_count;
107 108
}

109 110 111 112 113
/*
 * Find and validate any extra registers to set up.
 */
static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
{
114
	struct hw_perf_event_extra *reg;
115 116
	struct extra_reg *er;

117
	reg = &event->hw.extra_reg;
118 119 120 121 122 123 124 125 126

	if (!x86_pmu.extra_regs)
		return 0;

	for (er = x86_pmu.extra_regs; er->msr; er++) {
		if (er->event != (config & er->config_mask))
			continue;
		if (event->attr.config1 & ~er->valid_mask)
			return -EINVAL;
127 128 129
		/* Check if the extra msrs can be safely accessed*/
		if (!er->extra_msr_access)
			return -ENXIO;
130 131 132 133

		reg->idx = er->idx;
		reg->config = event->attr.config1;
		reg->reg = er->msr;
134 135 136 137 138
		break;
	}
	return 0;
}

139
static atomic_t active_events;
140
static atomic_t pmc_refcount;
141 142
static DEFINE_MUTEX(pmc_reserve_mutex);

143 144
#ifdef CONFIG_X86_LOCAL_APIC

145 146 147 148
static bool reserve_pmc_hardware(void)
{
	int i;

149
	for (i = 0; i < x86_pmu.num_counters; i++) {
150
		if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
151 152 153
			goto perfctr_fail;
	}

154
	for (i = 0; i < x86_pmu.num_counters; i++) {
155
		if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
156 157 158 159 160 161 162
			goto eventsel_fail;
	}

	return true;

eventsel_fail:
	for (i--; i >= 0; i--)
163
		release_evntsel_nmi(x86_pmu_config_addr(i));
164

165
	i = x86_pmu.num_counters;
166 167 168

perfctr_fail:
	for (i--; i >= 0; i--)
169
		release_perfctr_nmi(x86_pmu_event_addr(i));
170 171 172 173 174 175 176 177

	return false;
}

static void release_pmc_hardware(void)
{
	int i;

178
	for (i = 0; i < x86_pmu.num_counters; i++) {
179 180
		release_perfctr_nmi(x86_pmu_event_addr(i));
		release_evntsel_nmi(x86_pmu_config_addr(i));
181 182 183
	}
}

184 185 186 187 188 189 190
#else

static bool reserve_pmc_hardware(void) { return true; }
static void release_pmc_hardware(void) {}

#endif

191 192
static bool check_hw_exists(void)
{
193 194 195
	u64 val, val_fail, val_new= ~0;
	int i, reg, reg_fail, ret = 0;
	int bios_fail = 0;
196
	int reg_safe = -1;
197

198 199 200 201 202
	/*
	 * Check to see if the BIOS enabled any of the counters, if so
	 * complain and bail.
	 */
	for (i = 0; i < x86_pmu.num_counters; i++) {
203
		reg = x86_pmu_config_addr(i);
204 205 206
		ret = rdmsrl_safe(reg, &val);
		if (ret)
			goto msr_fail;
207 208 209 210
		if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
			bios_fail = 1;
			val_fail = val;
			reg_fail = reg;
211 212
		} else {
			reg_safe = i;
213
		}
214 215 216 217 218 219 220 221
	}

	if (x86_pmu.num_counters_fixed) {
		reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
		ret = rdmsrl_safe(reg, &val);
		if (ret)
			goto msr_fail;
		for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
222 223 224 225 226
			if (val & (0x03 << i*4)) {
				bios_fail = 1;
				val_fail = val;
				reg_fail = reg;
			}
227 228 229
		}
	}

230 231 232 233 234 235 236 237 238 239 240
	/*
	 * If all the counters are enabled, the below test will always
	 * fail.  The tools will also become useless in this scenario.
	 * Just fail and disable the hardware counters.
	 */

	if (reg_safe == -1) {
		reg = reg_safe;
		goto msr_fail;
	}

241
	/*
242 243 244
	 * Read the current value, change it and read it back to see if it
	 * matches, this is needed to detect certain hardware emulators
	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
245
	 */
246
	reg = x86_pmu_event_addr(reg_safe);
247 248 249
	if (rdmsrl_safe(reg, &val))
		goto msr_fail;
	val ^= 0xffffUL;
250 251
	ret = wrmsrl_safe(reg, val);
	ret |= rdmsrl_safe(reg, &val_new);
252
	if (ret || val != val_new)
253
		goto msr_fail;
254

255 256 257
	/*
	 * We still allow the PMU driver to operate:
	 */
258
	if (bios_fail) {
259 260 261
		pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
		pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
			      reg_fail, val_fail);
262
	}
263 264

	return true;
265 266

msr_fail:
267 268 269 270 271 272 273
	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
		pr_cont("PMU not available due to virtualization, using software events only.\n");
	} else {
		pr_cont("Broken PMU hardware detected, using software events only.\n");
		pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
		       reg, val_new);
	}
274

275
	return false;
276 277
}

278
static void hw_perf_event_destroy(struct perf_event *event)
279
{
280
	x86_release_hardware();
281
	atomic_dec(&active_events);
282 283
}

284 285 286 287 288 289 290 291
void hw_perf_lbr_event_destroy(struct perf_event *event)
{
	hw_perf_event_destroy(event);

	/* undo the lbr/bts event accounting */
	x86_del_exclusive(x86_lbr_exclusive_lbr);
}

292 293 294 295 296
static inline int x86_pmu_initialized(void)
{
	return x86_pmu.handle_irq != NULL;
}

297
static inline int
298
set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
299
{
300
	struct perf_event_attr *attr = &event->attr;
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
	unsigned int cache_type, cache_op, cache_result;
	u64 config, val;

	config = attr->config;

	cache_type = (config >>  0) & 0xff;
	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
		return -EINVAL;

	cache_op = (config >>  8) & 0xff;
	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
		return -EINVAL;

	cache_result = (config >> 16) & 0xff;
	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
		return -EINVAL;

	val = hw_cache_event_ids[cache_type][cache_op][cache_result];

	if (val == 0)
		return -ENOENT;

	if (val == -1)
		return -EINVAL;

	hwc->config |= val;
327 328
	attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
	return x86_pmu_extra_regs(val, event);
329 330
}

331 332 333 334
int x86_reserve_hardware(void)
{
	int err = 0;

335
	if (!atomic_inc_not_zero(&pmc_refcount)) {
336
		mutex_lock(&pmc_reserve_mutex);
337
		if (atomic_read(&pmc_refcount) == 0) {
338 339 340 341 342 343
			if (!reserve_pmc_hardware())
				err = -EBUSY;
			else
				reserve_ds_buffers();
		}
		if (!err)
344
			atomic_inc(&pmc_refcount);
345 346 347 348 349 350 351 352
		mutex_unlock(&pmc_reserve_mutex);
	}

	return err;
}

void x86_release_hardware(void)
{
353
	if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
354 355 356 357 358 359
		release_pmc_hardware();
		release_ds_buffers();
		mutex_unlock(&pmc_reserve_mutex);
	}
}

360 361 362 363 364 365
/*
 * Check if we can create event of a certain type (that no conflicting events
 * are present).
 */
int x86_add_exclusive(unsigned int what)
{
366
	int i;
367

368 369 370
	if (x86_pmu.lbr_pt_coexist)
		return 0;

371 372 373 374 375 376 377 378
	if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
		mutex_lock(&pmc_reserve_mutex);
		for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
			if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
				goto fail_unlock;
		}
		atomic_inc(&x86_pmu.lbr_exclusive[what]);
		mutex_unlock(&pmc_reserve_mutex);
379
	}
380

381 382
	atomic_inc(&active_events);
	return 0;
383

384
fail_unlock:
385
	mutex_unlock(&pmc_reserve_mutex);
386
	return -EBUSY;
387 388 389 390
}

void x86_del_exclusive(unsigned int what)
{
391 392 393
	if (x86_pmu.lbr_pt_coexist)
		return;

394
	atomic_dec(&x86_pmu.lbr_exclusive[what]);
395
	atomic_dec(&active_events);
396 397
}

398
int x86_setup_perfctr(struct perf_event *event)
399 400 401 402 403
{
	struct perf_event_attr *attr = &event->attr;
	struct hw_perf_event *hwc = &event->hw;
	u64 config;

404
	if (!is_sampling_event(event)) {
405 406
		hwc->sample_period = x86_pmu.max_period;
		hwc->last_period = hwc->sample_period;
407
		local64_set(&hwc->period_left, hwc->sample_period);
408 409 410
	}

	if (attr->type == PERF_TYPE_RAW)
411
		return x86_pmu_extra_regs(event->attr.config, event);
412 413

	if (attr->type == PERF_TYPE_HW_CACHE)
414
		return set_ext_hw_attr(hwc, event);
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432

	if (attr->config >= x86_pmu.max_events)
		return -EINVAL;

	/*
	 * The generic map:
	 */
	config = x86_pmu.event_map(attr->config);

	if (config == 0)
		return -ENOENT;

	if (config == -1LL)
		return -EINVAL;

	/*
	 * Branch tracing:
	 */
433 434
	if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
	    !attr->freq && hwc->sample_period == 1) {
435
		/* BTS is not supported by this architecture. */
436
		if (!x86_pmu.bts_active)
437 438 439 440 441
			return -EOPNOTSUPP;

		/* BTS is currently only allowed for user-mode. */
		if (!attr->exclude_kernel)
			return -EOPNOTSUPP;
442 443 444 445 446 447

		/* disallow bts if conflicting events are present */
		if (x86_add_exclusive(x86_lbr_exclusive_lbr))
			return -EBUSY;

		event->destroy = hw_perf_lbr_event_destroy;
448 449 450 451 452 453
	}

	hwc->config |= config;

	return 0;
}
454

455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
/*
 * check that branch_sample_type is compatible with
 * settings needed for precise_ip > 1 which implies
 * using the LBR to capture ALL taken branches at the
 * priv levels of the measurement
 */
static inline int precise_br_compat(struct perf_event *event)
{
	u64 m = event->attr.branch_sample_type;
	u64 b = 0;

	/* must capture all branches */
	if (!(m & PERF_SAMPLE_BRANCH_ANY))
		return 0;

	m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;

	if (!event->attr.exclude_user)
		b |= PERF_SAMPLE_BRANCH_USER;

	if (!event->attr.exclude_kernel)
		b |= PERF_SAMPLE_BRANCH_KERNEL;

	/*
	 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
	 */

	return m == b;
}

485
int x86_pmu_hw_config(struct perf_event *event)
486
{
487 488 489 490
	if (event->attr.precise_ip) {
		int precise = 0;

		/* Support for constant skid */
491
		if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
492 493
			precise++;

494
			/* Support for IP fixup */
495
			if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
496
				precise++;
497 498 499

			if (x86_pmu.pebs_prec_dist)
				precise++;
500
		}
501 502 503

		if (event->attr.precise_ip > precise)
			return -EOPNOTSUPP;
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
	}
	/*
	 * check that PEBS LBR correction does not conflict with
	 * whatever the user is asking with attr->branch_sample_type
	 */
	if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
		u64 *br_type = &event->attr.branch_sample_type;

		if (has_branch_stack(event)) {
			if (!precise_br_compat(event))
				return -EOPNOTSUPP;

			/* branch_sample_type is compatible */

		} else {
			/*
			 * user did not specify  branch_sample_type
			 *
			 * For PEBS fixups, we capture all
			 * the branches at the priv level of the
			 * event.
			 */
			*br_type = PERF_SAMPLE_BRANCH_ANY;

			if (!event->attr.exclude_user)
				*br_type |= PERF_SAMPLE_BRANCH_USER;

			if (!event->attr.exclude_kernel)
				*br_type |= PERF_SAMPLE_BRANCH_KERNEL;
533
		}
534 535
	}

536 537 538
	if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
		event->attach_state |= PERF_ATTACH_TASK_DATA;

539 540 541 542
	/*
	 * Generate PMC IRQs:
	 * (keep 'enabled' bit clear for now)
	 */
543
	event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
544 545 546 547

	/*
	 * Count user and OS events unless requested not to
	 */
548 549 550 551
	if (!event->attr.exclude_user)
		event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
	if (!event->attr.exclude_kernel)
		event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
552

553 554
	if (event->attr.type == PERF_TYPE_RAW)
		event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
555

556 557 558 559 560 561
	if (event->attr.sample_period && x86_pmu.limit_period) {
		if (x86_pmu.limit_period(event, event->attr.sample_period) >
				event->attr.sample_period)
			return -EINVAL;
	}

562
	return x86_setup_perfctr(event);
563 564
}

565
/*
566
 * Setup the hardware configuration for a given attr_type
567
 */
568
static int __x86_pmu_event_init(struct perf_event *event)
569
{
570
	int err;
571

572 573
	if (!x86_pmu_initialized())
		return -ENODEV;
574

575
	err = x86_reserve_hardware();
576 577 578
	if (err)
		return err;

579
	atomic_inc(&active_events);
580
	event->destroy = hw_perf_event_destroy;
581

582 583 584
	event->hw.idx = -1;
	event->hw.last_cpu = -1;
	event->hw.last_tag = ~0ULL;
585

586 587
	/* mark unused */
	event->hw.extra_reg.idx = EXTRA_REG_NONE;
588 589
	event->hw.branch_reg.idx = EXTRA_REG_NONE;

590
	return x86_pmu.hw_config(event);
591 592
}

593
void x86_pmu_disable_all(void)
594
{
595
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
596 597
	int idx;

598
	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
599 600
		u64 val;

601
		if (!test_bit(idx, cpuc->active_mask))
602
			continue;
603
		rdmsrl(x86_pmu_config_addr(idx), val);
604
		if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
605
			continue;
606
		val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
607
		wrmsrl(x86_pmu_config_addr(idx), val);
608 609 610
	}
}

611 612 613 614 615 616 617 618 619 620 621 622 623
/*
 * There may be PMI landing after enabled=0. The PMI hitting could be before or
 * after disable_all.
 *
 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
 * It will not be re-enabled in the NMI handler again, because enabled=0. After
 * handling the NMI, disable_all will be called, which will not change the
 * state either. If PMI hits after disable_all, the PMU is already disabled
 * before entering NMI handler. The NMI handler will not change the state
 * either.
 *
 * So either situation is harmless.
 */
624
static void x86_pmu_disable(struct pmu *pmu)
625
{
626
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
627

628
	if (!x86_pmu_initialized())
629
		return;
630

631 632 633 634 635 636
	if (!cpuc->enabled)
		return;

	cpuc->n_added = 0;
	cpuc->enabled = 0;
	barrier();
637 638

	x86_pmu.disable_all();
639
}
640

641
void x86_pmu_enable_all(int added)
642
{
643
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
644 645
	int idx;

646
	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
647
		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
648

649
		if (!test_bit(idx, cpuc->active_mask))
650
			continue;
651

652
		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
653 654 655
	}
}

656
static struct pmu pmu;
657 658 659 660 661 662

static inline int is_x86_event(struct perf_event *event)
{
	return event->pmu == &pmu;
}

663 664 665 666 667 668 669 670 671 672 673 674
/*
 * Event scheduler state:
 *
 * Assign events iterating over all events and counters, beginning
 * with events with least weights first. Keep the current iterator
 * state in struct sched_state.
 */
struct sched_state {
	int	weight;
	int	event;		/* event index */
	int	counter;	/* counter index */
	int	unassigned;	/* number of events to be assigned left */
675
	int	nr_gp;		/* number of GP counters used */
676 677 678
	unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
};

679 680 681
/* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
#define	SCHED_STATES_MAX	2

682 683 684
struct perf_sched {
	int			max_weight;
	int			max_events;
685 686
	int			max_gp;
	int			saved_states;
687
	struct event_constraint	**constraints;
688
	struct sched_state	state;
689
	struct sched_state	saved[SCHED_STATES_MAX];
690 691 692 693 694
};

/*
 * Initialize interator that runs through all events and counters.
 */
695
static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
696
			    int num, int wmin, int wmax, int gpmax)
697 698 699 700 701 702
{
	int idx;

	memset(sched, 0, sizeof(*sched));
	sched->max_events	= num;
	sched->max_weight	= wmax;
703
	sched->max_gp		= gpmax;
704
	sched->constraints	= constraints;
705 706

	for (idx = 0; idx < num; idx++) {
707
		if (constraints[idx]->weight == wmin)
708 709 710 711 712 713 714 715
			break;
	}

	sched->state.event	= idx;		/* start with min weight */
	sched->state.weight	= wmin;
	sched->state.unassigned	= num;
}

716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
static void perf_sched_save_state(struct perf_sched *sched)
{
	if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
		return;

	sched->saved[sched->saved_states] = sched->state;
	sched->saved_states++;
}

static bool perf_sched_restore_state(struct perf_sched *sched)
{
	if (!sched->saved_states)
		return false;

	sched->saved_states--;
	sched->state = sched->saved[sched->saved_states];

	/* continue with next counter: */
	clear_bit(sched->state.counter++, sched->state.used);

	return true;
}

739 740 741 742
/*
 * Select a counter for the current event to schedule. Return true on
 * success.
 */
743
static bool __perf_sched_find_counter(struct perf_sched *sched)
744 745 746 747 748 749 750 751 752 753
{
	struct event_constraint *c;
	int idx;

	if (!sched->state.unassigned)
		return false;

	if (sched->state.event >= sched->max_events)
		return false;

754
	c = sched->constraints[sched->state.event];
755
	/* Prefer fixed purpose counters */
756 757
	if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
		idx = INTEL_PMC_IDX_FIXED;
758
		for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
759 760 761 762
			if (!__test_and_set_bit(idx, sched->state.used))
				goto done;
		}
	}
763

764 765
	/* Grab the first unused counter starting with idx */
	idx = sched->state.counter;
766
	for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
767 768 769 770
		if (!__test_and_set_bit(idx, sched->state.used)) {
			if (sched->state.nr_gp++ >= sched->max_gp)
				return false;

771
			goto done;
772
		}
773 774
	}

775 776 777 778
	return false;

done:
	sched->state.counter = idx;
779

780 781 782 783 784 785 786 787 788 789 790 791 792
	if (c->overlap)
		perf_sched_save_state(sched);

	return true;
}

static bool perf_sched_find_counter(struct perf_sched *sched)
{
	while (!__perf_sched_find_counter(sched)) {
		if (!perf_sched_restore_state(sched))
			return false;
	}

793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
	return true;
}

/*
 * Go through all unassigned events and find the next one to schedule.
 * Take events with the least weight first. Return true on success.
 */
static bool perf_sched_next_event(struct perf_sched *sched)
{
	struct event_constraint *c;

	if (!sched->state.unassigned || !--sched->state.unassigned)
		return false;

	do {
		/* next event */
		sched->state.event++;
		if (sched->state.event >= sched->max_events) {
			/* next weight */
			sched->state.event = 0;
			sched->state.weight++;
			if (sched->state.weight > sched->max_weight)
				return false;
		}
817
		c = sched->constraints[sched->state.event];
818 819 820 821 822 823 824 825 826 827
	} while (c->weight != sched->state.weight);

	sched->state.counter = 0;	/* start with first counter */

	return true;
}

/*
 * Assign a counter for each event.
 */
828
int perf_assign_events(struct event_constraint **constraints, int n,
829
			int wmin, int wmax, int gpmax, int *assign)
830 831 832
{
	struct perf_sched sched;

833
	perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
834 835 836 837 838 839 840 841 842 843

	do {
		if (!perf_sched_find_counter(&sched))
			break;	/* failed */
		if (assign)
			assign[sched.state.event] = sched.state.counter;
	} while (perf_sched_next_event(&sched));

	return sched.state.unassigned;
}
844
EXPORT_SYMBOL_GPL(perf_assign_events);
845

846
int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
847
{
848
	struct event_constraint *c;
849
	unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
850
	struct perf_event *e;
851
	int i, wmin, wmax, unsched = 0;
852 853 854 855
	struct hw_perf_event *hwc;

	bitmap_zero(used_mask, X86_PMC_IDX_MAX);

856 857 858
	if (x86_pmu.start_scheduling)
		x86_pmu.start_scheduling(cpuc);

859
	for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
860
		cpuc->event_constraint[i] = NULL;
861
		c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
862
		cpuc->event_constraint[i] = c;
863

864 865
		wmin = min(wmin, c->weight);
		wmax = max(wmax, c->weight);
866 867
	}

868 869 870
	/*
	 * fastpath, try to reuse previous register
	 */
871
	for (i = 0; i < n; i++) {
872
		hwc = &cpuc->event_list[i]->hw;
873
		c = cpuc->event_constraint[i];
874 875 876 877 878 879

		/* never assigned */
		if (hwc->idx == -1)
			break;

		/* constraint still honored */
880
		if (!test_bit(hwc->idx, c->idxmsk))
881 882 883 884 885 886
			break;

		/* not already used */
		if (test_bit(hwc->idx, used_mask))
			break;

887
		__set_bit(hwc->idx, used_mask);
888 889 890 891
		if (assign)
			assign[i] = hwc->idx;
	}

892
	/* slow path */
893
	if (i != n) {
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
		int gpmax = x86_pmu.num_counters;

		/*
		 * Do not allow scheduling of more than half the available
		 * generic counters.
		 *
		 * This helps avoid counter starvation of sibling thread by
		 * ensuring at most half the counters cannot be in exclusive
		 * mode. There is no designated counters for the limits. Any
		 * N/2 counters can be used. This helps with events with
		 * specific counter constraints.
		 */
		if (is_ht_workaround_enabled() && !cpuc->is_fake &&
		    READ_ONCE(cpuc->excl_cntrs->exclusive_present))
			gpmax /= 2;

910
		unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
911
					     wmax, gpmax, assign);
912
	}
913

914
	/*
915 916 917 918 919 920 921 922
	 * In case of success (unsched = 0), mark events as committed,
	 * so we do not put_constraint() in case new events are added
	 * and fail to be scheduled
	 *
	 * We invoke the lower level commit callback to lock the resource
	 *
	 * We do not need to do all of this in case we are called to
	 * validate an event group (assign == NULL)
923
	 */
924
	if (!unsched && assign) {
925 926 927
		for (i = 0; i < n; i++) {
			e = cpuc->event_list[i];
			e->hw.flags |= PERF_X86_EVENT_COMMITTED;
928
			if (x86_pmu.commit_scheduling)
929
				x86_pmu.commit_scheduling(cpuc, i, assign[i]);
930
		}
931
	} else {
932
		for (i = 0; i < n; i++) {
933 934 935 936 937 938 939 940
			e = cpuc->event_list[i];
			/*
			 * do not put_constraint() on comitted events,
			 * because they are good to go
			 */
			if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
				continue;

941 942 943
			/*
			 * release events that failed scheduling
			 */
944
			if (x86_pmu.put_event_constraints)
945
				x86_pmu.put_event_constraints(cpuc, e);
946 947
		}
	}
948 949 950 951

	if (x86_pmu.stop_scheduling)
		x86_pmu.stop_scheduling(cpuc);

952
	return unsched ? -EINVAL : 0;
953 954 955 956 957 958 959 960 961 962 963
}

/*
 * dogrp: true if must collect siblings events (group)
 * returns total number of events and error code
 */
static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
{
	struct perf_event *event;
	int n, max_count;

964
	max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
965 966 967 968 969 970

	/* current number of events already accepted */
	n = cpuc->n_events;

	if (is_x86_event(leader)) {
		if (n >= max_count)
971
			return -EINVAL;
972 973 974 975 976 977 978 979
		cpuc->event_list[n] = leader;
		n++;
	}
	if (!dogrp)
		return n;

	list_for_each_entry(event, &leader->sibling_list, group_entry) {
		if (!is_x86_event(event) ||
980
		    event->state <= PERF_EVENT_STATE_OFF)
981 982 983
			continue;

		if (n >= max_count)
984
			return -EINVAL;
985 986 987 988 989 990 991 992

		cpuc->event_list[n] = event;
		n++;
	}
	return n;
}

static inline void x86_assign_hw_event(struct perf_event *event,
993
				struct cpu_hw_events *cpuc, int i)
994
{
995 996 997 998 999
	struct hw_perf_event *hwc = &event->hw;

	hwc->idx = cpuc->assign[i];
	hwc->last_cpu = smp_processor_id();
	hwc->last_tag = ++cpuc->tags[i];
1000

1001
	if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1002 1003
		hwc->config_base = 0;
		hwc->event_base	= 0;
1004
	} else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1005
		hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1006 1007
		hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
		hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1008
	} else {
1009 1010
		hwc->config_base = x86_pmu_config_addr(hwc->idx);
		hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1011
		hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1012 1013 1014
	}
}

1015 1016 1017 1018 1019 1020 1021 1022 1023
static inline int match_prev_assignment(struct hw_perf_event *hwc,
					struct cpu_hw_events *cpuc,
					int i)
{
	return hwc->idx == cpuc->assign[i] &&
		hwc->last_cpu == smp_processor_id() &&
		hwc->last_tag == cpuc->tags[i];
}

1024
static void x86_pmu_start(struct perf_event *event, int flags);
1025

1026
static void x86_pmu_enable(struct pmu *pmu)
1027
{
1028
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1029 1030
	struct perf_event *event;
	struct hw_perf_event *hwc;
1031
	int i, added = cpuc->n_added;
1032

1033
	if (!x86_pmu_initialized())
1034
		return;
1035 1036 1037 1038

	if (cpuc->enabled)
		return;

1039
	if (cpuc->n_added) {
1040
		int n_running = cpuc->n_events - cpuc->n_added;
1041 1042 1043 1044 1045 1046
		/*
		 * apply assignment obtained either from
		 * hw_perf_group_sched_in() or x86_pmu_enable()
		 *
		 * step1: save events moving to new counters
		 */
1047
		for (i = 0; i < n_running; i++) {
1048 1049 1050
			event = cpuc->event_list[i];
			hwc = &event->hw;

1051 1052 1053 1054 1055 1056 1057 1058
			/*
			 * we can avoid reprogramming counter if:
			 * - assigned same counter as last time
			 * - running on same CPU as last time
			 * - no other event has used the counter since
			 */
			if (hwc->idx == -1 ||
			    match_prev_assignment(hwc, cpuc, i))
1059 1060
				continue;

1061 1062 1063 1064 1065 1066 1067 1068
			/*
			 * Ensure we don't accidentally enable a stopped
			 * counter simply because we rescheduled.
			 */
			if (hwc->state & PERF_HES_STOPPED)
				hwc->state |= PERF_HES_ARCH;

			x86_pmu_stop(event, PERF_EF_UPDATE);
1069 1070
		}

1071 1072 1073
		/*
		 * step2: reprogram moved events into new counters
		 */
1074 1075 1076 1077
		for (i = 0; i < cpuc->n_events; i++) {
			event = cpuc->event_list[i];
			hwc = &event->hw;

1078
			if (!match_prev_assignment(hwc, cpuc, i))
1079
				x86_assign_hw_event(event, cpuc, i);
1080 1081
			else if (i < n_running)
				continue;
1082

1083 1084 1085 1086
			if (hwc->state & PERF_HES_ARCH)
				continue;

			x86_pmu_start(event, PERF_EF_RELOAD);
1087 1088 1089 1090
		}
		cpuc->n_added = 0;
		perf_events_lapic_init();
	}
1091 1092 1093 1094

	cpuc->enabled = 1;
	barrier();

1095
	x86_pmu.enable_all(added);
1096 1097
}

1098
static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1099

1100 1101
/*
 * Set the next IRQ period, based on the hwc->period_left value.
1102
 * To be called with the event disabled in hw:
1103
 */
1104
int x86_perf_event_set_period(struct perf_event *event)
1105
{
1106
	struct hw_perf_event *hwc = &event->hw;
1107
	s64 left = local64_read(&hwc->period_left);
1108
	s64 period = hwc->sample_period;
1109
	int ret = 0, idx = hwc->idx;
1110

1111
	if (idx == INTEL_PMC_IDX_FIXED_BTS)
1112 1113
		return 0;

1114
	/*
1115
	 * If we are way outside a reasonable range then just skip forward:
1116 1117 1118
	 */
	if (unlikely(left <= -period)) {
		left = period;
1119
		local64_set(&hwc->period_left, left);
1120
		hwc->last_period = period;
1121
		ret = 1;
1122 1123 1124 1125
	}

	if (unlikely(left <= 0)) {
		left += period;
1126
		local64_set(&hwc->period_left, left);
1127
		hwc->last_period = period;
1128
		ret = 1;
1129
	}
1130
	/*
1131
	 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1132 1133 1134
	 */
	if (unlikely(left < 2))
		left = 2;
1135

1136 1137 1138
	if (left > x86_pmu.max_period)
		left = x86_pmu.max_period;

1139 1140 1141
	if (x86_pmu.limit_period)
		left = x86_pmu.limit_period(event, left);

1142
	per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1143

1144 1145 1146 1147 1148 1149 1150
	if (!(hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) ||
	    local64_read(&hwc->prev_count) != (u64)-left) {
		/*
		 * The hw event starts counting from this event offset,
		 * mark it to be able to extra future deltas:
		 */
		local64_set(&hwc->prev_count, (u64)-left);
1151

1152 1153
		wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
	}
1154 1155 1156 1157 1158 1159 1160

	/*
	 * Due to erratum on certan cpu we need
	 * a second write to be sure the register
	 * is updated properly
	 */
	if (x86_pmu.perfctr_second_write) {
1161
		wrmsrl(hwc->event_base,
1162
			(u64)(-left) & x86_pmu.cntval_mask);
1163
	}
1164

1165
	perf_event_update_userpage(event);
1166

1167
	return ret;
1168 1169
}

1170
void x86_pmu_enable_event(struct perf_event *event)
1171
{
1172
	if (__this_cpu_read(cpu_hw_events.enabled))
1173 1174
		__x86_pmu_enable_event(&event->hw,
				       ARCH_PERFMON_EVENTSEL_ENABLE);
1175 1176
}

1177
/*
1178
 * Add a single event to the PMU.
1179 1180 1181
 *
 * The event is added to the group of enabled events
 * but only if it can be scehduled with existing events.
1182
 */
1183
static int x86_pmu_add(struct perf_event *event, int flags)
1184
{
1185
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1186 1187 1188
	struct hw_perf_event *hwc;
	int assign[X86_PMC_IDX_MAX];
	int n, n0, ret;
1189

1190
	hwc = &event->hw;
1191

1192
	n0 = cpuc->n_events;
1193 1194 1195
	ret = n = collect_events(cpuc, event, false);
	if (ret < 0)
		goto out;
1196

1197 1198 1199 1200
	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
	if (!(flags & PERF_EF_START))
		hwc->state |= PERF_HES_ARCH;

1201 1202
	/*
	 * If group events scheduling transaction was started,
1203
	 * skip the schedulability test here, it will be performed
1204
	 * at commit time (->commit_txn) as a whole.
1205 1206 1207
	 *
	 * If commit fails, we'll call ->del() on all events
	 * for which ->add() was called.
1208
	 */
1209
	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1210
		goto done_collect;
1211

1212
	ret = x86_pmu.schedule_events(cpuc, n, assign);
1213
	if (ret)
1214
		goto out;
1215 1216 1217 1218 1219
	/*
	 * copy new assignment, now we know it is possible
	 * will be used by hw_perf_enable()
	 */
	memcpy(cpuc->assign, assign, n*sizeof(int));
1220

1221
done_collect:
1222 1223 1224 1225
	/*
	 * Commit the collect_events() state. See x86_pmu_del() and
	 * x86_pmu_*_txn().
	 */
1226
	cpuc->n_events = n;
1227
	cpuc->n_added += n - n0;
1228
	cpuc->n_txn += n - n0;
1229

1230 1231 1232 1233 1234 1235 1236 1237
	if (x86_pmu.add) {
		/*
		 * This is before x86_pmu_enable() will call x86_pmu_start(),
		 * so we enable LBRs before an event needs them etc..
		 */
		x86_pmu.add(event);
	}

1238 1239 1240
	ret = 0;
out:
	return ret;
1241 1242
}

1243
static void x86_pmu_start(struct perf_event *event, int flags)
1244
{
1245
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1246 1247
	int idx = event->hw.idx;

1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
		return;

	if (WARN_ON_ONCE(idx == -1))
		return;

	if (flags & PERF_EF_RELOAD) {
		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
		x86_perf_event_set_period(event);
	}

	event->hw.state = 0;
1260

1261 1262
	cpuc->events[idx] = event;
	__set_bit(idx, cpuc->active_mask);
1263
	__set_bit(idx, cpuc->running);
1264
	x86_pmu.enable(event);
1265
	perf_event_update_userpage(event);
1266 1267
}

1268
void perf_event_print_debug(void)
1269
{
1270
	u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1271
	u64 pebs, debugctl;
1272
	struct cpu_hw_events *cpuc;
1273
	unsigned long flags;
1274 1275
	int cpu, idx;

1276
	if (!x86_pmu.num_counters)
1277
		return;
1278

1279
	local_irq_save(flags);
1280 1281

	cpu = smp_processor_id();
1282
	cpuc = &per_cpu(cpu_hw_events, cpu);
1283

1284
	if (x86_pmu.version >= 2) {
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
		rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
		rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
		rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);

		pr_info("\n");
		pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
		pr_info("CPU#%d: status:     %016llx\n", cpu, status);
		pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
		pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1295 1296 1297 1298
		if (x86_pmu.pebs_constraints) {
			rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
			pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
		}
1299 1300 1301 1302
		if (x86_pmu.lbr_nr) {
			rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
			pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
		}
1303
	}
1304
	pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1305

1306
	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1307 1308
		rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
		rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1309

1310
		prev_left = per_cpu(pmc_prev_left[idx], cpu);
1311

1312
		pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1313
			cpu, idx, pmc_ctrl);
1314
		pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1315
			cpu, idx, pmc_count);
1316
		pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1317
			cpu, idx, prev_left);
1318
	}
1319
	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1320 1321
		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);

1322
		pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1323 1324
			cpu, idx, pmc_count);
	}
1325
	local_irq_restore(flags);
1326 1327
}

1328
void x86_pmu_stop(struct perf_event *event, int flags)
1329
{
1330
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1331
	struct hw_perf_event *hwc = &event->hw;
1332

1333 1334 1335 1336 1337 1338
	if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
		x86_pmu.disable(event);
		cpuc->events[hwc->idx] = NULL;
		WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
		hwc->state |= PERF_HES_STOPPED;
	}
1339

1340 1341 1342 1343 1344 1345 1346 1347
	if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
		/*
		 * Drain the remaining delta count out of a event
		 * that we are disabling:
		 */
		x86_perf_event_update(event);
		hwc->state |= PERF_HES_UPTODATE;
	}
1348 1349
}

1350
static void x86_pmu_del(struct perf_event *event, int flags)
1351
{
1352
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1353 1354
	int i;

1355 1356 1357 1358 1359
	/*
	 * event is descheduled
	 */
	event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;

1360
	/*
1361
	 * If we're called during a txn, we only need to undo x86_pmu.add.
1362 1363
	 * The events never got scheduled and ->cancel_txn will truncate
	 * the event_list.
1364 1365 1366
	 *
	 * XXX assumes any ->del() called during a TXN will only be on
	 * an event added during that same TXN.
1367
	 */
1368
	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1369
		goto do_del;
1370

1371 1372 1373
	/*
	 * Not a TXN, therefore cleanup properly.
	 */
1374
	x86_pmu_stop(event, PERF_EF_UPDATE);
1375

1376
	for (i = 0; i < cpuc->n_events; i++) {
1377 1378 1379
		if (event == cpuc->event_list[i])
			break;
	}
1380

1381 1382
	if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
		return;
1383

1384 1385 1386
	/* If we have a newly added event; make sure to decrease n_added. */
	if (i >= cpuc->n_events - cpuc->n_added)
		--cpuc->n_added;
1387

1388 1389 1390 1391
	if (x86_pmu.put_event_constraints)
		x86_pmu.put_event_constraints(cpuc, event);

	/* Delete the array entry. */
1392
	while (++i < cpuc->n_events) {
1393
		cpuc->event_list[i-1] = cpuc->event_list[i];
1394 1395
		cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
	}
1396
	--cpuc->n_events;
1397

1398
	perf_event_update_userpage(event);
1399 1400 1401 1402 1403 1404 1405 1406 1407

do_del:
	if (x86_pmu.del) {
		/*
		 * This is after x86_pmu_stop(); so we disable LBRs after any
		 * event can need them etc..
		 */
		x86_pmu.del(event);
	}
1408 1409
}

1410
int x86_pmu_handle_irq(struct pt_regs *regs)
1411
{
1412
	struct perf_sample_data data;
1413 1414
	struct cpu_hw_events *cpuc;
	struct perf_event *event;
1415
	int idx, handled = 0;
1416 1417
	u64 val;

1418
	cpuc = this_cpu_ptr(&cpu_hw_events);
1419

1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
	/*
	 * Some chipsets need to unmask the LVTPC in a particular spot
	 * inside the nmi handler.  As a result, the unmasking was pushed
	 * into all the nmi handlers.
	 *
	 * This generic handler doesn't seem to have any issues where the
	 * unmasking occurs so it was left at the top.
	 */
	apic_write(APIC_LVTPC, APIC_DM_NMI);

1430
	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1431 1432 1433 1434 1435 1436 1437 1438
		if (!test_bit(idx, cpuc->active_mask)) {
			/*
			 * Though we deactivated the counter some cpus
			 * might still deliver spurious interrupts still
			 * in flight. Catch them:
			 */
			if (__test_and_clear_bit(idx, cpuc->running))
				handled++;
1439
			continue;
1440
		}
1441

1442
		event = cpuc->events[idx];
1443

1444
		val = x86_perf_event_update(event);
1445
		if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1446
			continue;
1447

1448
		/*
1449
		 * event overflow
1450
		 */
1451
		handled++;
1452
		perf_sample_data_init(&data, 0, event->hw.last_period);
1453

1454
		if (!x86_perf_event_set_period(event))
1455 1456
			continue;

1457
		if (perf_event_overflow(event, &data, regs))
1458
			x86_pmu_stop(event, 0);
1459
	}
1460

1461 1462 1463
	if (handled)
		inc_irq_stat(apic_perf_irqs);

1464 1465
	return handled;
}
1466

1467
void perf_events_lapic_init(void)
1468
{
1469
	if (!x86_pmu.apic || !x86_pmu_initialized())
1470
		return;
1471

1472
	/*
1473
	 * Always use NMI for PMU
1474
	 */
1475
	apic_write(APIC_LVTPC, APIC_DM_NMI);
1476 1477
}

1478
static int
1479
perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1480
{
1481 1482
	u64 start_clock;
	u64 finish_clock;
1483
	int ret;
1484

1485 1486 1487 1488
	/*
	 * All PMUs/events that share this PMI handler should make sure to
	 * increment active_events for their events.
	 */
1489
	if (!atomic_read(&active_events))
1490
		return NMI_DONE;
1491

1492
	start_clock = sched_clock();
1493
	ret = x86_pmu.handle_irq(regs);
1494
	finish_clock = sched_clock();
1495 1496 1497 1498

	perf_sample_event_took(finish_clock - start_clock);

	return ret;
1499
}
1500
NOKPROBE_SYMBOL(perf_event_nmi_handler);
1501

1502 1503
struct event_constraint emptyconstraint;
struct event_constraint unconstrained;
1504

1505
static int x86_pmu_prepare_cpu(unsigned int cpu)
1506
{
1507
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1508
	int i;
1509

1510 1511 1512 1513 1514 1515
	for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
		cpuc->kfree_on_online[i] = NULL;
	if (x86_pmu.cpu_prepare)
		return x86_pmu.cpu_prepare(cpu);
	return 0;
}
1516

1517 1518 1519 1520 1521 1522
static int x86_pmu_dead_cpu(unsigned int cpu)
{
	if (x86_pmu.cpu_dead)
		x86_pmu.cpu_dead(cpu);
	return 0;
}
1523

1524 1525 1526 1527
static int x86_pmu_online_cpu(unsigned int cpu)
{
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
	int i;
1528

1529 1530 1531
	for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
		kfree(cpuc->kfree_on_online[i]);
		cpuc->kfree_on_online[i] = NULL;
1532
	}
1533 1534
	return 0;
}
1535

1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
static int x86_pmu_starting_cpu(unsigned int cpu)
{
	if (x86_pmu.cpu_starting)
		x86_pmu.cpu_starting(cpu);
	return 0;
}

static int x86_pmu_dying_cpu(unsigned int cpu)
{
	if (x86_pmu.cpu_dying)
		x86_pmu.cpu_dying(cpu);
	return 0;
1548 1549
}

1550 1551
static void __init pmu_check_apic(void)
{
1552
	if (boot_cpu_has(X86_FEATURE_APIC))
1553 1554 1555 1556 1557
		return;

	x86_pmu.apic = 0;
	pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
	pr_info("no hardware sampling interrupt available.\n");
1558 1559 1560 1561 1562 1563 1564 1565 1566

	/*
	 * If we have a PMU initialized but no APIC
	 * interrupts, we cannot sample hardware
	 * events (user-space has to fall back and
	 * sample via a hrtimer based software event):
	 */
	pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;

1567 1568
}

1569 1570 1571 1572 1573
static struct attribute_group x86_pmu_format_group = {
	.name = "format",
	.attrs = NULL,
};

1574 1575 1576 1577 1578 1579
/*
 * Remove all undefined events (x86_pmu.event_map(id) == 0)
 * out of events_attr attributes.
 */
static void __init filter_events(struct attribute **attrs)
{
1580 1581
	struct device_attribute *d;
	struct perf_pmu_events_attr *pmu_attr;
1582
	int offset = 0;
1583 1584 1585
	int i, j;

	for (i = 0; attrs[i]; i++) {
1586 1587 1588 1589 1590
		d = (struct device_attribute *)attrs[i];
		pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
		/* str trumps id */
		if (pmu_attr->event_str)
			continue;
1591
		if (x86_pmu.event_map(i + offset))
1592 1593 1594 1595 1596 1597 1598
			continue;

		for (j = i; attrs[j]; j++)
			attrs[j] = attrs[j + 1];

		/* Check the shifted attr. */
		i--;
1599 1600 1601 1602 1603 1604 1605 1606

		/*
		 * event_map() is index based, the attrs array is organized
		 * by increasing event index. If we shift the events, then
		 * we need to compensate for the event_map(), otherwise
		 * we are looking up the wrong event in the map
		 */
		offset++;
1607 1608 1609
	}
}

1610
/* Merge two pointer arrays */
1611
__init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
{
	struct attribute **new;
	int j, i;

	for (j = 0; a[j]; j++)
		;
	for (i = 0; b[i]; i++)
		j++;
	j++;

	new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
	if (!new)
		return NULL;

	j = 0;
	for (i = 0; a[i]; i++)
		new[j++] = a[i];
	for (i = 0; b[i]; i++)
		new[j++] = b[i];
	new[j] = NULL;

	return new;
}

1636
ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1637 1638 1639 1640 1641
{
	struct perf_pmu_events_attr *pmu_attr = \
		container_of(attr, struct perf_pmu_events_attr, attr);
	u64 config = x86_pmu.event_map(pmu_attr->id);

1642 1643 1644
	/* string trumps id */
	if (pmu_attr->event_str)
		return sprintf(page, "%s", pmu_attr->event_str);
1645

1646 1647
	return x86_pmu.events_sysfs_show(page, config);
}
1648
EXPORT_SYMBOL_GPL(events_sysfs_show);
1649

1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
			  char *page)
{
	struct perf_pmu_events_ht_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_ht_attr, attr);

	/*
	 * Report conditional events depending on Hyper-Threading.
	 *
	 * This is overly conservative as usually the HT special
	 * handling is not needed if the other CPU thread is idle.
	 *
	 * Note this does not (and cannot) handle the case when thread
	 * siblings are invisible, for example with virtualization
	 * if they are owned by some other guest.  The user tool
	 * has to re-read when a thread sibling gets onlined later.
	 */
	return sprintf(page, "%s",
			topology_max_smt_threads() > 1 ?
			pmu_attr->event_str_ht :
			pmu_attr->event_str_noht);
}

1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
EVENT_ATTR(cpu-cycles,			CPU_CYCLES		);
EVENT_ATTR(instructions,		INSTRUCTIONS		);
EVENT_ATTR(cache-references,		CACHE_REFERENCES	);
EVENT_ATTR(cache-misses, 		CACHE_MISSES		);
EVENT_ATTR(branch-instructions,		BRANCH_INSTRUCTIONS	);
EVENT_ATTR(branch-misses,		BRANCH_MISSES		);
EVENT_ATTR(bus-cycles,			BUS_CYCLES		);
EVENT_ATTR(stalled-cycles-frontend,	STALLED_CYCLES_FRONTEND	);
EVENT_ATTR(stalled-cycles-backend,	STALLED_CYCLES_BACKEND	);
EVENT_ATTR(ref-cycles,			REF_CPU_CYCLES		);

static struct attribute *empty_attrs;

1686
static struct attribute *events_attr[] = {
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
	EVENT_PTR(CPU_CYCLES),
	EVENT_PTR(INSTRUCTIONS),
	EVENT_PTR(CACHE_REFERENCES),
	EVENT_PTR(CACHE_MISSES),
	EVENT_PTR(BRANCH_INSTRUCTIONS),
	EVENT_PTR(BRANCH_MISSES),
	EVENT_PTR(BUS_CYCLES),
	EVENT_PTR(STALLED_CYCLES_FRONTEND),
	EVENT_PTR(STALLED_CYCLES_BACKEND),
	EVENT_PTR(REF_CPU_CYCLES),
	NULL,
};

static struct attribute_group x86_pmu_events_group = {
	.name = "events",
	.attrs = events_attr,
};

1705
ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
{
	u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
	u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
	bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
	bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
	bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
	bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
	ssize_t ret;

	/*
	* We have whole page size to spend and just little data
	* to write, so we can safely use sprintf.
	*/
	ret = sprintf(page, "event=0x%02llx", event);

	if (umask)
		ret += sprintf(page + ret, ",umask=0x%02llx", umask);

	if (edge)
		ret += sprintf(page + ret, ",edge");

	if (pc)
		ret += sprintf(page + ret, ",pc");

	if (any)
		ret += sprintf(page + ret, ",any");

	if (inv)
		ret += sprintf(page + ret, ",inv");

	if (cmask)
		ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);

	ret += sprintf(page + ret, "\n");

	return ret;
}

1744
static int __init init_hw_perf_events(void)
1745
{
1746
	struct x86_pmu_quirk *quirk;
1747 1748
	int err;

1749
	pr_info("Performance Events: ");
1750

1751 1752
	switch (boot_cpu_data.x86_vendor) {
	case X86_VENDOR_INTEL:
1753
		err = intel_pmu_init();
1754
		break;
1755
	case X86_VENDOR_AMD:
1756
		err = amd_pmu_init();
1757
		break;
1758
	default:
1759
		err = -ENOTSUPP;
1760
	}
1761
	if (err != 0) {
1762
		pr_cont("no PMU driver, software events only.\n");
1763
		return 0;
1764
	}
1765

1766 1767
	pmu_check_apic();

1768
	/* sanity check that the hardware exists or is emulated */
1769
	if (!check_hw_exists())
1770
		return 0;
1771

1772
	pr_cont("%s PMU driver.\n", x86_pmu.name);
1773

1774 1775
	x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */

1776 1777
	for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
		quirk->func();
1778

1779 1780
	if (!x86_pmu.intel_ctrl)
		x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1781

1782
	perf_events_lapic_init();
1783
	register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1784

1785
	unconstrained = (struct event_constraint)
1786
		__EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1787
				   0, x86_pmu.num_counters, 0, 0);
1788

1789
	x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1790

1791 1792 1793
	if (x86_pmu.event_attrs)
		x86_pmu_events_group.attrs = x86_pmu.event_attrs;

1794 1795
	if (!x86_pmu.events_sysfs_show)
		x86_pmu_events_group.attrs = &empty_attrs;
1796 1797
	else
		filter_events(x86_pmu_events_group.attrs);
1798

1799 1800 1801 1802 1803 1804 1805 1806
	if (x86_pmu.cpu_events) {
		struct attribute **tmp;

		tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
		if (!WARN_ON(!tmp))
			x86_pmu_events_group.attrs = tmp;
	}

1807
	pr_info("... version:                %d\n",     x86_pmu.version);
1808 1809 1810
	pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
	pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
	pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1811
	pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1812
	pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1813
	pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1814

1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
	/*
	 * Install callbacks. Core will call them for each online
	 * cpu.
	 */
	err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "PERF_X86_PREPARE",
				x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
	if (err)
		return err;

	err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
				"AP_PERF_X86_STARTING", x86_pmu_starting_cpu,
				x86_pmu_dying_cpu);
	if (err)
		goto out;

	err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "AP_PERF_X86_ONLINE",
				x86_pmu_online_cpu, NULL);
	if (err)
		goto out1;

	err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
	if (err)
		goto out2;
1838 1839

	return 0;
1840 1841 1842 1843 1844 1845 1846 1847

out2:
	cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
out1:
	cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
out:
	cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
	return err;
1848
}
1849
early_initcall(init_hw_perf_events);
1850

1851
static inline void x86_pmu_read(struct perf_event *event)
1852
{
1853
	x86_perf_event_update(event);
1854 1855
}

1856 1857 1858 1859
/*
 * Start group events scheduling transaction
 * Set the flag to make pmu::enable() not perform the
 * schedulability test, it will be performed at commit time
1860 1861 1862 1863
 *
 * We only support PERF_PMU_TXN_ADD transactions. Save the
 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
 * transactions.
1864
 */
1865
static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1866
{
1867 1868 1869 1870 1871 1872 1873 1874
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);

	WARN_ON_ONCE(cpuc->txn_flags);		/* txn already in flight */

	cpuc->txn_flags = txn_flags;
	if (txn_flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
1875
	perf_pmu_disable(pmu);
1876
	__this_cpu_write(cpu_hw_events.n_txn, 0);
1877 1878 1879 1880 1881 1882 1883
}

/*
 * Stop group events scheduling transaction
 * Clear the flag and pmu::enable() will perform the
 * schedulability test.
 */
1884
static void x86_pmu_cancel_txn(struct pmu *pmu)
1885
{
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
	unsigned int txn_flags;
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);

	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */

	txn_flags = cpuc->txn_flags;
	cpuc->txn_flags = 0;
	if (txn_flags & ~PERF_PMU_TXN_ADD)
		return;

1896
	/*
1897 1898
	 * Truncate collected array by the number of events added in this
	 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1899
	 */
1900 1901
	__this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
	__this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
P
Peter Zijlstra 已提交
1902
	perf_pmu_enable(pmu);
1903 1904 1905 1906 1907 1908
}

/*
 * Commit group events scheduling transaction
 * Perform the group schedulability test as a whole
 * Return 0 if success
1909 1910
 *
 * Does not cancel the transaction on failure; expects the caller to do this.
1911
 */
1912
static int x86_pmu_commit_txn(struct pmu *pmu)
1913
{
1914
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1915 1916 1917
	int assign[X86_PMC_IDX_MAX];
	int n, ret;

1918 1919 1920 1921 1922 1923 1924
	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */

	if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
		cpuc->txn_flags = 0;
		return 0;
	}

1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
	n = cpuc->n_events;

	if (!x86_pmu_initialized())
		return -EAGAIN;

	ret = x86_pmu.schedule_events(cpuc, n, assign);
	if (ret)
		return ret;

	/*
	 * copy new assignment, now we know it is possible
	 * will be used by hw_perf_enable()
	 */
	memcpy(cpuc->assign, assign, n*sizeof(int));

1940
	cpuc->txn_flags = 0;
P
Peter Zijlstra 已提交
1941
	perf_pmu_enable(pmu);
1942 1943
	return 0;
}
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
/*
 * a fake_cpuc is used to validate event groups. Due to
 * the extra reg logic, we need to also allocate a fake
 * per_core and per_cpu structure. Otherwise, group events
 * using extra reg may conflict without the kernel being
 * able to catch this when the last event gets added to
 * the group.
 */
static void free_fake_cpuc(struct cpu_hw_events *cpuc)
{
	kfree(cpuc->shared_regs);
	kfree(cpuc);
}

static struct cpu_hw_events *allocate_fake_cpuc(void)
{
	struct cpu_hw_events *cpuc;
	int cpu = raw_smp_processor_id();

	cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
	if (!cpuc)
		return ERR_PTR(-ENOMEM);

	/* only needed, if we have extra_regs */
	if (x86_pmu.extra_regs) {
		cpuc->shared_regs = allocate_shared_regs(cpu);
		if (!cpuc->shared_regs)
			goto error;
	}
1973
	cpuc->is_fake = 1;
1974 1975 1976 1977 1978
	return cpuc;
error:
	free_fake_cpuc(cpuc);
	return ERR_PTR(-ENOMEM);
}
1979

1980 1981 1982 1983 1984 1985 1986 1987 1988
/*
 * validate that we can schedule this event
 */
static int validate_event(struct perf_event *event)
{
	struct cpu_hw_events *fake_cpuc;
	struct event_constraint *c;
	int ret = 0;

1989 1990 1991
	fake_cpuc = allocate_fake_cpuc();
	if (IS_ERR(fake_cpuc))
		return PTR_ERR(fake_cpuc);
1992

1993
	c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
1994 1995

	if (!c || !c->weight)
1996
		ret = -EINVAL;
1997 1998 1999 2000

	if (x86_pmu.put_event_constraints)
		x86_pmu.put_event_constraints(fake_cpuc, event);

2001
	free_fake_cpuc(fake_cpuc);
2002 2003 2004 2005

	return ret;
}

2006 2007 2008 2009
/*
 * validate a single event group
 *
 * validation include:
2010 2011 2012
 *	- check events are compatible which each other
 *	- events do not compete for the same counter
 *	- number of events <= number of counters
2013 2014 2015 2016
 *
 * validation ensures the group can be loaded onto the
 * PMU if it was the only group available.
 */
2017 2018
static int validate_group(struct perf_event *event)
{
2019
	struct perf_event *leader = event->group_leader;
2020
	struct cpu_hw_events *fake_cpuc;
2021
	int ret = -EINVAL, n;
2022

2023 2024 2025
	fake_cpuc = allocate_fake_cpuc();
	if (IS_ERR(fake_cpuc))
		return PTR_ERR(fake_cpuc);
2026 2027 2028 2029 2030 2031
	/*
	 * the event is not yet connected with its
	 * siblings therefore we must first collect
	 * existing siblings, then add the new event
	 * before we can simulate the scheduling
	 */
2032
	n = collect_events(fake_cpuc, leader, true);
2033
	if (n < 0)
2034
		goto out;
2035

2036 2037
	fake_cpuc->n_events = n;
	n = collect_events(fake_cpuc, event, false);
2038
	if (n < 0)
2039
		goto out;
2040

2041
	fake_cpuc->n_events = n;
2042

2043
	ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2044 2045

out:
2046
	free_fake_cpuc(fake_cpuc);
2047
	return ret;
2048 2049
}

2050
static int x86_pmu_event_init(struct perf_event *event)
2051
{
2052
	struct pmu *tmp;
2053 2054
	int err;

2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
	switch (event->attr.type) {
	case PERF_TYPE_RAW:
	case PERF_TYPE_HARDWARE:
	case PERF_TYPE_HW_CACHE:
		break;

	default:
		return -ENOENT;
	}

	err = __x86_pmu_event_init(event);
2066
	if (!err) {
2067 2068 2069 2070 2071 2072 2073 2074
		/*
		 * we temporarily connect event to its pmu
		 * such that validate_group() can classify
		 * it as an x86 event using is_x86_event()
		 */
		tmp = event->pmu;
		event->pmu = &pmu;

2075 2076
		if (event->group_leader != event)
			err = validate_group(event);
2077 2078
		else
			err = validate_event(event);
2079 2080

		event->pmu = tmp;
2081
	}
2082
	if (err) {
2083 2084
		if (event->destroy)
			event->destroy(event);
2085
	}
2086

2087 2088 2089
	if (ACCESS_ONCE(x86_pmu.attr_rdpmc))
		event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;

2090
	return err;
2091
}
2092

2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
static void refresh_pce(void *ignored)
{
	if (current->mm)
		load_mm_cr4(current->mm);
}

static void x86_pmu_event_mapped(struct perf_event *event)
{
	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
		return;

	if (atomic_inc_return(&current->mm->context.perf_rdpmc_allowed) == 1)
		on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
}

static void x86_pmu_event_unmapped(struct perf_event *event)
{
	if (!current->mm)
		return;

	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
		return;

	if (atomic_dec_and_test(&current->mm->context.perf_rdpmc_allowed))
		on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
}

2120 2121 2122 2123
static int x86_pmu_event_idx(struct perf_event *event)
{
	int idx = event->hw.idx;

2124
	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2125 2126
		return 0;

2127 2128
	if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
		idx -= INTEL_PMC_IDX_FIXED;
2129 2130 2131 2132 2133 2134
		idx |= 1 << 30;
	}

	return idx + 1;
}

2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
static ssize_t get_attr_rdpmc(struct device *cdev,
			      struct device_attribute *attr,
			      char *buf)
{
	return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
}

static ssize_t set_attr_rdpmc(struct device *cdev,
			      struct device_attribute *attr,
			      const char *buf, size_t count)
{
2146 2147 2148 2149 2150 2151
	unsigned long val;
	ssize_t ret;

	ret = kstrtoul(buf, 0, &val);
	if (ret)
		return ret;
2152

2153 2154 2155
	if (val > 2)
		return -EINVAL;

2156 2157
	if (x86_pmu.attr_rdpmc_broken)
		return -ENOTSUPP;
2158

2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
	if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
		/*
		 * Changing into or out of always available, aka
		 * perf-event-bypassing mode.  This path is extremely slow,
		 * but only root can trigger it, so it's okay.
		 */
		if (val == 2)
			static_key_slow_inc(&rdpmc_always_available);
		else
			static_key_slow_dec(&rdpmc_always_available);
		on_each_cpu(refresh_pce, NULL, 1);
	}

	x86_pmu.attr_rdpmc = val;

2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
	return count;
}

static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);

static struct attribute *x86_pmu_attrs[] = {
	&dev_attr_rdpmc.attr,
	NULL,
};

static struct attribute_group x86_pmu_attr_group = {
	.attrs = x86_pmu_attrs,
};

static const struct attribute_group *x86_pmu_attr_groups[] = {
	&x86_pmu_attr_group,
2190
	&x86_pmu_format_group,
2191
	&x86_pmu_events_group,
2192 2193 2194
	NULL,
};

2195
static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2196
{
2197 2198
	if (x86_pmu.sched_task)
		x86_pmu.sched_task(ctx, sched_in);
2199 2200
}

2201 2202 2203 2204 2205 2206 2207
void perf_check_microcode(void)
{
	if (x86_pmu.check_microcode)
		x86_pmu.check_microcode();
}
EXPORT_SYMBOL_GPL(perf_check_microcode);

2208
static struct pmu pmu = {
2209 2210
	.pmu_enable		= x86_pmu_enable,
	.pmu_disable		= x86_pmu_disable,
2211

2212
	.attr_groups		= x86_pmu_attr_groups,
2213

2214
	.event_init		= x86_pmu_event_init,
2215

2216 2217 2218
	.event_mapped		= x86_pmu_event_mapped,
	.event_unmapped		= x86_pmu_event_unmapped,

2219 2220 2221 2222 2223
	.add			= x86_pmu_add,
	.del			= x86_pmu_del,
	.start			= x86_pmu_start,
	.stop			= x86_pmu_stop,
	.read			= x86_pmu_read,
2224

2225 2226 2227
	.start_txn		= x86_pmu_start_txn,
	.cancel_txn		= x86_pmu_cancel_txn,
	.commit_txn		= x86_pmu_commit_txn,
2228

2229
	.event_idx		= x86_pmu_event_idx,
2230
	.sched_task		= x86_pmu_sched_task,
2231
	.task_ctx_size          = sizeof(struct x86_perf_task_context),
2232 2233
};

2234 2235
void arch_perf_update_userpage(struct perf_event *event,
			       struct perf_event_mmap_page *userpg, u64 now)
2236
{
2237 2238
	struct cyc2ns_data *data;

2239 2240
	userpg->cap_user_time = 0;
	userpg->cap_user_time_zero = 0;
2241 2242
	userpg->cap_user_rdpmc =
		!!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2243 2244
	userpg->pmc_width = x86_pmu.cntval_bits;

2245
	if (!sched_clock_stable())
2246 2247
		return;

2248 2249
	data = cyc2ns_read_begin();

2250 2251 2252 2253
	/*
	 * Internal timekeeping for enabled/running/stopped times
	 * is always in the local_clock domain.
	 */
2254
	userpg->cap_user_time = 1;
2255 2256 2257
	userpg->time_mult = data->cyc2ns_mul;
	userpg->time_shift = data->cyc2ns_shift;
	userpg->time_offset = data->cyc2ns_offset - now;
2258

2259 2260 2261 2262
	/*
	 * cap_user_time_zero doesn't make sense when we're using a different
	 * time base for the records.
	 */
2263
	if (!event->attr.use_clockid) {
2264 2265 2266
		userpg->cap_user_time_zero = 1;
		userpg->time_zero = data->cyc2ns_offset;
	}
2267 2268

	cyc2ns_read_end(data);
2269 2270
}

2271
void
2272
perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2273
{
2274 2275 2276
	struct unwind_state state;
	unsigned long addr;

2277 2278
	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
		/* TODO: We don't support guest os callchain now */
2279
		return;
2280 2281
	}

2282 2283
	if (perf_callchain_store(entry, regs->ip))
		return;
2284

2285 2286 2287 2288 2289 2290
	for (unwind_start(&state, current, regs, NULL); !unwind_done(&state);
	     unwind_next_frame(&state)) {
		addr = unwind_get_return_address(&state);
		if (!addr || perf_callchain_store(entry, addr))
			return;
	}
2291 2292
}

2293 2294 2295 2296 2297 2298
static inline int
valid_user_frame(const void __user *fp, unsigned long size)
{
	return (__range_not_ok(fp, size, TASK_SIZE) == 0);
}

2299 2300 2301 2302 2303 2304
static unsigned long get_segment_base(unsigned int segment)
{
	struct desc_struct *desc;
	int idx = segment >> 3;

	if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2305
#ifdef CONFIG_MODIFY_LDT_SYSCALL
2306 2307
		struct ldt_struct *ldt;

2308 2309 2310
		if (idx > LDT_ENTRIES)
			return 0;

2311 2312 2313
		/* IRQs are off, so this synchronizes with smp_store_release */
		ldt = lockless_dereference(current->active_mm->context.ldt);
		if (!ldt || idx > ldt->size)
2314 2315
			return 0;

2316
		desc = &ldt->entries[idx];
2317 2318 2319
#else
		return 0;
#endif
2320 2321 2322 2323
	} else {
		if (idx > GDT_ENTRIES)
			return 0;

2324
		desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2325 2326
	}

2327
	return get_desc_base(desc);
2328 2329
}

2330
#ifdef CONFIG_IA32_EMULATION
2331 2332 2333

#include <asm/compat.h>

2334
static inline int
2335
perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2336
{
2337
	/* 32-bit process in 64-bit kernel. */
2338
	unsigned long ss_base, cs_base;
2339 2340
	struct stack_frame_ia32 frame;
	const void __user *fp;
2341

2342 2343 2344
	if (!test_thread_flag(TIF_IA32))
		return 0;

2345 2346 2347 2348
	cs_base = get_segment_base(regs->cs);
	ss_base = get_segment_base(regs->ss);

	fp = compat_ptr(ss_base + regs->bp);
2349
	pagefault_disable();
2350
	while (entry->nr < entry->max_stack) {
2351 2352 2353 2354
		unsigned long bytes;
		frame.next_frame     = 0;
		frame.return_address = 0;

2355
		if (!valid_user_frame(fp, sizeof(frame)))
2356 2357 2358 2359 2360 2361
			break;

		bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4);
		if (bytes != 0)
			break;
		bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4);
2362
		if (bytes != 0)
2363
			break;
2364

2365 2366
		perf_callchain_store(entry, cs_base + frame.return_address);
		fp = compat_ptr(ss_base + frame.next_frame);
2367
	}
2368
	pagefault_enable();
2369
	return 1;
2370
}
2371 2372
#else
static inline int
2373
perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2374 2375 2376 2377
{
    return 0;
}
#endif
2378

2379
void
2380
perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2381 2382
{
	struct stack_frame frame;
2383
	const unsigned long __user *fp;
2384

2385 2386
	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
		/* TODO: We don't support guest os callchain now */
2387
		return;
2388
	}
2389

2390 2391 2392 2393 2394 2395
	/*
	 * We don't know what to do with VM86 stacks.. ignore them for now.
	 */
	if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
		return;

2396
	fp = (unsigned long __user *)regs->bp;
2397

2398
	perf_callchain_store(entry, regs->ip);
2399

2400 2401 2402
	if (!current->mm)
		return;

2403 2404 2405
	if (perf_callchain_user32(regs, entry))
		return;

2406
	pagefault_disable();
2407
	while (entry->nr < entry->max_stack) {
2408
		unsigned long bytes;
2409

2410
		frame.next_frame	     = NULL;
2411 2412
		frame.return_address = 0;

2413
		if (!valid_user_frame(fp, sizeof(frame)))
2414 2415
			break;

2416
		bytes = __copy_from_user_nmi(&frame.next_frame, fp, sizeof(*fp));
2417 2418
		if (bytes != 0)
			break;
2419
		bytes = __copy_from_user_nmi(&frame.return_address, fp + 1, sizeof(*fp));
2420
		if (bytes != 0)
2421 2422
			break;

2423
		perf_callchain_store(entry, frame.return_address);
2424
		fp = (void __user *)frame.next_frame;
2425
	}
2426
	pagefault_enable();
2427 2428
}

2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
/*
 * Deal with code segment offsets for the various execution modes:
 *
 *   VM86 - the good olde 16 bit days, where the linear address is
 *          20 bits and we use regs->ip + 0x10 * regs->cs.
 *
 *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
 *          to figure out what the 32bit base address is.
 *
 *    X32 - has TIF_X32 set, but is running in x86_64
 *
 * X86_64 - CS,DS,SS,ES are all zero based.
 */
static unsigned long code_segment_base(struct pt_regs *regs)
2443
{
2444 2445 2446 2447 2448 2449
	/*
	 * For IA32 we look at the GDT/LDT segment base to convert the
	 * effective IP to a linear address.
	 */

#ifdef CONFIG_X86_32
2450 2451 2452 2453 2454 2455 2456
	/*
	 * If we are in VM86 mode, add the segment offset to convert to a
	 * linear address.
	 */
	if (regs->flags & X86_VM_MASK)
		return 0x10 * regs->cs;

2457
	if (user_mode(regs) && regs->cs != __USER_CS)
2458 2459
		return get_segment_base(regs->cs);
#else
2460 2461 2462
	if (user_mode(regs) && !user_64bit_mode(regs) &&
	    regs->cs != __USER32_CS)
		return get_segment_base(regs->cs);
2463 2464 2465
#endif
	return 0;
}
2466

2467 2468
unsigned long perf_instruction_pointer(struct pt_regs *regs)
{
2469
	if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2470
		return perf_guest_cbs->get_guest_ip();
2471

2472
	return regs->ip + code_segment_base(regs);
2473 2474 2475 2476 2477
}

unsigned long perf_misc_flags(struct pt_regs *regs)
{
	int misc = 0;
2478

2479
	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2480 2481 2482 2483 2484
		if (perf_guest_cbs->is_user_mode())
			misc |= PERF_RECORD_MISC_GUEST_USER;
		else
			misc |= PERF_RECORD_MISC_GUEST_KERNEL;
	} else {
2485
		if (user_mode(regs))
2486 2487 2488 2489 2490
			misc |= PERF_RECORD_MISC_USER;
		else
			misc |= PERF_RECORD_MISC_KERNEL;
	}

2491
	if (regs->flags & PERF_EFLAGS_EXACT)
2492
		misc |= PERF_RECORD_MISC_EXACT_IP;
2493 2494 2495

	return misc;
}
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507

void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
{
	cap->version		= x86_pmu.version;
	cap->num_counters_gp	= x86_pmu.num_counters;
	cap->num_counters_fixed	= x86_pmu.num_counters_fixed;
	cap->bit_width_gp	= x86_pmu.cntval_bits;
	cap->bit_width_fixed	= x86_pmu.cntval_bits;
	cap->events_mask	= (unsigned int)x86_pmu.events_maskl;
	cap->events_mask_len	= x86_pmu.events_mask_len;
}
EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
新手
引导
客服 返回
顶部