frontswap.c 13.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Frontswap frontend
 *
 * This code provides the generic "frontend" layer to call a matching
 * "backend" driver implementation of frontswap.  See
 * Documentation/vm/frontswap.txt for more information.
 *
 * Copyright (C) 2009-2012 Oracle Corp.  All rights reserved.
 * Author: Dan Magenheimer
 *
 * This work is licensed under the terms of the GNU GPL, version 2.
 */

#include <linux/mman.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/security.h>
#include <linux/module.h>
#include <linux/debugfs.h>
#include <linux/frontswap.h>
#include <linux/swapfile.h>

/*
 * frontswap_ops is set by frontswap_register_ops to contain the pointers
 * to the frontswap "backend" implementation functions.
 */
27
static struct frontswap_ops *frontswap_ops __read_mostly;
28 29

/*
30
 * If enabled, frontswap_store will return failure even on success.  As
31 32 33 34 35 36 37 38
 * a result, the swap subsystem will always write the page to swap, in
 * effect converting frontswap into a writethrough cache.  In this mode,
 * there is no direct reduction in swap writes, but a frontswap backend
 * can unilaterally "reclaim" any pages in use with no data loss, thus
 * providing increases control over maximum memory usage due to frontswap.
 */
static bool frontswap_writethrough_enabled __read_mostly;

39 40 41 42 43 44 45
/*
 * If enabled, the underlying tmem implementation is capable of doing
 * exclusive gets, so frontswap_load, on a successful tmem_get must
 * mark the page as no longer in frontswap AND mark it dirty.
 */
static bool frontswap_tmem_exclusive_gets_enabled __read_mostly;

46 47 48 49 50 51
#ifdef CONFIG_DEBUG_FS
/*
 * Counters available via /sys/kernel/debug/frontswap (if debugfs is
 * properly configured).  These are for information only so are not protected
 * against increment races.
 */
52 53 54
static u64 frontswap_loads;
static u64 frontswap_succ_stores;
static u64 frontswap_failed_stores;
55 56
static u64 frontswap_invalidates;

57 58
static inline void inc_frontswap_loads(void) {
	frontswap_loads++;
59
}
60 61
static inline void inc_frontswap_succ_stores(void) {
	frontswap_succ_stores++;
62
}
63 64
static inline void inc_frontswap_failed_stores(void) {
	frontswap_failed_stores++;
65 66 67 68 69
}
static inline void inc_frontswap_invalidates(void) {
	frontswap_invalidates++;
}
#else
70 71 72
static inline void inc_frontswap_loads(void) { }
static inline void inc_frontswap_succ_stores(void) { }
static inline void inc_frontswap_failed_stores(void) { }
73 74
static inline void inc_frontswap_invalidates(void) { }
#endif
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102

/*
 * Due to the asynchronous nature of the backends loading potentially
 * _after_ the swap system has been activated, we have chokepoints
 * on all frontswap functions to not call the backend until the backend
 * has registered.
 *
 * Specifically when no backend is registered (nobody called
 * frontswap_register_ops) all calls to frontswap_init (which is done via
 * swapon -> enable_swap_info -> frontswap_init) are registered and remembered
 * (via the setting of need_init bitmap) but fail to create tmem_pools. When a
 * backend registers with frontswap at some later point the previous
 * calls to frontswap_init are executed (by iterating over the need_init
 * bitmap) to create tmem_pools and set the respective poolids. All of that is
 * guarded by us using atomic bit operations on the 'need_init' bitmap.
 *
 * This would not guards us against the user deciding to call swapoff right as
 * we are calling the backend to initialize (so swapon is in action).
 * Fortunatly for us, the swapon_mutex has been taked by the callee so we are
 * OK. The other scenario where calls to frontswap_store (called via
 * swap_writepage) is racing with frontswap_invalidate_area (called via
 * swapoff) is again guarded by the swap subsystem.
 *
 * While no backend is registered all calls to frontswap_[store|load|
 * invalidate_area|invalidate_page] are ignored or fail.
 *
 * The time between the backend being registered and the swap file system
 * calling the backend (via the frontswap_* functions) is indeterminate as
103
 * frontswap_ops is not atomic_t (or a value guarded by a spinlock).
104 105 106 107 108
 * That is OK as we are comfortable missing some of these calls to the newly
 * registered backend.
 *
 * Obviously the opposite (unloading the backend) must be done after all
 * the frontswap_[store|load|invalidate_area|invalidate_page] start
109
 * ignorning or failing the requests - at which point frontswap_ops
110 111 112 113
 * would have to be made in some fashion atomic.
 */
static DECLARE_BITMAP(need_init, MAX_SWAPFILES);

114 115 116 117
/*
 * Register operations for frontswap, returning previous thus allowing
 * detection of multiple backends and possible nesting.
 */
118
struct frontswap_ops *frontswap_register_ops(struct frontswap_ops *ops)
119
{
120
	struct frontswap_ops *old = frontswap_ops;
121
	int i;
122

123
	for (i = 0; i < MAX_SWAPFILES; i++) {
124 125 126 127 128
		if (test_and_clear_bit(i, need_init)) {
			struct swap_info_struct *sis = swap_info[i];
			/* __frontswap_init _should_ have set it! */
			if (!sis->frontswap_map)
				return ERR_PTR(-EINVAL);
129
			ops->init(i);
130
		}
131 132
	}
	/*
133
	 * We MUST have frontswap_ops set _after_ the frontswap_init's
134 135 136 137
	 * have been called. Otherwise __frontswap_store might fail. Hence
	 * the barrier to make sure compiler does not re-order us.
	 */
	barrier();
138
	frontswap_ops = ops;
139 140 141 142 143 144 145 146 147 148 149 150 151
	return old;
}
EXPORT_SYMBOL(frontswap_register_ops);

/*
 * Enable/disable frontswap writethrough (see above).
 */
void frontswap_writethrough(bool enable)
{
	frontswap_writethrough_enabled = enable;
}
EXPORT_SYMBOL(frontswap_writethrough);

152 153 154 155 156 157 158 159 160
/*
 * Enable/disable frontswap exclusive gets (see above).
 */
void frontswap_tmem_exclusive_gets(bool enable)
{
	frontswap_tmem_exclusive_gets_enabled = enable;
}
EXPORT_SYMBOL(frontswap_tmem_exclusive_gets);

161 162 163
/*
 * Called when a swap device is swapon'd.
 */
164
void __frontswap_init(unsigned type, unsigned long *map)
165 166 167
{
	struct swap_info_struct *sis = swap_info[type];

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
	BUG_ON(sis == NULL);

	/*
	 * p->frontswap is a bitmap that we MUST have to figure out which page
	 * has gone in frontswap. Without it there is no point of continuing.
	 */
	if (WARN_ON(!map))
		return;
	/*
	 * Irregardless of whether the frontswap backend has been loaded
	 * before this function or it will be later, we _MUST_ have the
	 * p->frontswap set to something valid to work properly.
	 */
	frontswap_map_set(sis, map);
	if (frontswap_ops)
183
		frontswap_ops->init(type);
184
	else {
185 186 187
		BUG_ON(type > MAX_SWAPFILES);
		set_bit(type, need_init);
	}
188 189 190
}
EXPORT_SYMBOL(__frontswap_init);

B
Bob Liu 已提交
191 192 193 194 195 196 197 198 199 200 201 202 203
bool __frontswap_test(struct swap_info_struct *sis,
				pgoff_t offset)
{
	bool ret = false;

	if (frontswap_ops && sis->frontswap_map)
		ret = test_bit(offset, sis->frontswap_map);
	return ret;
}
EXPORT_SYMBOL(__frontswap_test);

static inline void __frontswap_clear(struct swap_info_struct *sis,
				pgoff_t offset)
204
{
B
Bob Liu 已提交
205
	clear_bit(offset, sis->frontswap_map);
206 207 208
	atomic_dec(&sis->frontswap_pages);
}

209
/*
210
 * "Store" data from a page to frontswap and associate it with the page's
211 212
 * swaptype and offset.  Page must be locked and in the swap cache.
 * If frontswap already contains a page with matching swaptype and
213
 * offset, the frontswap implementation may either overwrite the data and
214 215
 * return success or invalidate the page from frontswap and return failure.
 */
216
int __frontswap_store(struct page *page)
217 218 219 220 221 222 223
{
	int ret = -1, dup = 0;
	swp_entry_t entry = { .val = page_private(page), };
	int type = swp_type(entry);
	struct swap_info_struct *sis = swap_info[type];
	pgoff_t offset = swp_offset(entry);

B
Bob Liu 已提交
224 225 226 227 228
	/*
	 * Return if no backend registed.
	 * Don't need to inc frontswap_failed_stores here.
	 */
	if (!frontswap_ops)
229 230
		return ret;

231 232
	BUG_ON(!PageLocked(page));
	BUG_ON(sis == NULL);
B
Bob Liu 已提交
233
	if (__frontswap_test(sis, offset))
234
		dup = 1;
235
	ret = frontswap_ops->store(type, offset, page);
236
	if (ret == 0) {
B
Bob Liu 已提交
237
		set_bit(offset, sis->frontswap_map);
238
		inc_frontswap_succ_stores();
239 240
		if (!dup)
			atomic_inc(&sis->frontswap_pages);
241
	} else {
242 243 244 245
		/*
		  failed dup always results in automatic invalidate of
		  the (older) page from frontswap
		 */
246
		inc_frontswap_failed_stores();
247 248
		if (dup)
			__frontswap_clear(sis, offset);
249
	}
250 251 252 253 254
	if (frontswap_writethrough_enabled)
		/* report failure so swap also writes to swap device */
		ret = -1;
	return ret;
}
255
EXPORT_SYMBOL(__frontswap_store);
256 257 258 259 260 261

/*
 * "Get" data from frontswap associated with swaptype and offset that were
 * specified when the data was put to frontswap and use it to fill the
 * specified page with data. Page must be locked and in the swap cache.
 */
262
int __frontswap_load(struct page *page)
263 264 265 266 267 268 269 270 271
{
	int ret = -1;
	swp_entry_t entry = { .val = page_private(page), };
	int type = swp_type(entry);
	struct swap_info_struct *sis = swap_info[type];
	pgoff_t offset = swp_offset(entry);

	BUG_ON(!PageLocked(page));
	BUG_ON(sis == NULL);
B
Bob Liu 已提交
272 273 274 275
	/*
	 * __frontswap_test() will check whether there is backend registered
	 */
	if (__frontswap_test(sis, offset))
276
		ret = frontswap_ops->load(type, offset, page);
277
	if (ret == 0) {
278
		inc_frontswap_loads();
279 280
		if (frontswap_tmem_exclusive_gets_enabled) {
			SetPageDirty(page);
B
Bob Liu 已提交
281
			__frontswap_clear(sis, offset);
282 283
		}
	}
284 285
	return ret;
}
286
EXPORT_SYMBOL(__frontswap_load);
287 288 289 290 291 292 293 294 295 296

/*
 * Invalidate any data from frontswap associated with the specified swaptype
 * and offset so that a subsequent "get" will fail.
 */
void __frontswap_invalidate_page(unsigned type, pgoff_t offset)
{
	struct swap_info_struct *sis = swap_info[type];

	BUG_ON(sis == NULL);
B
Bob Liu 已提交
297 298 299 300
	/*
	 * __frontswap_test() will check whether there is backend registered
	 */
	if (__frontswap_test(sis, offset)) {
301
		frontswap_ops->invalidate_page(type, offset);
302
		__frontswap_clear(sis, offset);
303 304 305 306 307 308 309 310 311 312 313 314 315
		inc_frontswap_invalidates();
	}
}
EXPORT_SYMBOL(__frontswap_invalidate_page);

/*
 * Invalidate all data from frontswap associated with all offsets for the
 * specified swaptype.
 */
void __frontswap_invalidate_area(unsigned type)
{
	struct swap_info_struct *sis = swap_info[type];

316
	if (frontswap_ops) {
317 318 319
		BUG_ON(sis == NULL);
		if (sis->frontswap_map == NULL)
			return;
320
		frontswap_ops->invalidate_area(type);
321
		atomic_set(&sis->frontswap_pages, 0);
322
		bitmap_zero(sis->frontswap_map, sis->max);
323 324
	}
	clear_bit(type, need_init);
325 326 327
}
EXPORT_SYMBOL(__frontswap_invalidate_area);

328 329 330 331 332 333
static unsigned long __frontswap_curr_pages(void)
{
	unsigned long totalpages = 0;
	struct swap_info_struct *si = NULL;

	assert_spin_locked(&swap_lock);
334
	list_for_each_entry(si, &swap_list_head, list)
335 336 337 338
		totalpages += atomic_read(&si->frontswap_pages);
	return totalpages;
}

339 340 341 342 343 344 345 346 347 348
static int __frontswap_unuse_pages(unsigned long total, unsigned long *unused,
					int *swapid)
{
	int ret = -EINVAL;
	struct swap_info_struct *si = NULL;
	int si_frontswap_pages;
	unsigned long total_pages_to_unuse = total;
	unsigned long pages = 0, pages_to_unuse = 0;

	assert_spin_locked(&swap_lock);
349
	list_for_each_entry(si, &swap_list_head, list) {
350 351 352 353 354 355 356 357 358 359 360 361 362 363
		si_frontswap_pages = atomic_read(&si->frontswap_pages);
		if (total_pages_to_unuse < si_frontswap_pages) {
			pages = pages_to_unuse = total_pages_to_unuse;
		} else {
			pages = si_frontswap_pages;
			pages_to_unuse = 0; /* unuse all */
		}
		/* ensure there is enough RAM to fetch pages from frontswap */
		if (security_vm_enough_memory_mm(current->mm, pages)) {
			ret = -ENOMEM;
			continue;
		}
		vm_unacct_memory(pages);
		*unused = pages_to_unuse;
364
		*swapid = si->type;
365 366 367 368 369 370 371
		ret = 0;
		break;
	}

	return ret;
}

372 373 374 375 376
/*
 * Used to check if it's necessory and feasible to unuse pages.
 * Return 1 when nothing to do, 0 when need to shink pages,
 * error code when there is an error.
 */
377 378 379 380 381 382 383 384 385 386 387 388
static int __frontswap_shrink(unsigned long target_pages,
				unsigned long *pages_to_unuse,
				int *type)
{
	unsigned long total_pages = 0, total_pages_to_unuse;

	assert_spin_locked(&swap_lock);

	total_pages = __frontswap_curr_pages();
	if (total_pages <= target_pages) {
		/* Nothing to do */
		*pages_to_unuse = 0;
389
		return 1;
390 391 392 393 394
	}
	total_pages_to_unuse = total_pages - target_pages;
	return __frontswap_unuse_pages(total_pages_to_unuse, pages_to_unuse, type);
}

395 396 397 398 399 400 401 402 403 404
/*
 * Frontswap, like a true swap device, may unnecessarily retain pages
 * under certain circumstances; "shrink" frontswap is essentially a
 * "partial swapoff" and works by calling try_to_unuse to attempt to
 * unuse enough frontswap pages to attempt to -- subject to memory
 * constraints -- reduce the number of pages in frontswap to the
 * number given in the parameter target_pages.
 */
void frontswap_shrink(unsigned long target_pages)
{
405
	unsigned long pages_to_unuse = 0;
406
	int uninitialized_var(type), ret;
407 408 409 410

	/*
	 * we don't want to hold swap_lock while doing a very
	 * lengthy try_to_unuse, but swap_list may change
411
	 * so restart scan from swap_list_head each time
412 413
	 */
	spin_lock(&swap_lock);
414
	ret = __frontswap_shrink(target_pages, &pages_to_unuse, &type);
415
	spin_unlock(&swap_lock);
416
	if (ret == 0)
417
		try_to_unuse(type, true, pages_to_unuse);
418 419 420 421 422 423 424 425 426 427 428 429 430 431
	return;
}
EXPORT_SYMBOL(frontswap_shrink);

/*
 * Count and return the number of frontswap pages across all
 * swap devices.  This is exported so that backend drivers can
 * determine current usage without reading debugfs.
 */
unsigned long frontswap_curr_pages(void)
{
	unsigned long totalpages = 0;

	spin_lock(&swap_lock);
432
	totalpages = __frontswap_curr_pages();
433
	spin_unlock(&swap_lock);
434

435 436 437 438 439 440 441 442 443 444
	return totalpages;
}
EXPORT_SYMBOL(frontswap_curr_pages);

static int __init init_frontswap(void)
{
#ifdef CONFIG_DEBUG_FS
	struct dentry *root = debugfs_create_dir("frontswap", NULL);
	if (root == NULL)
		return -ENXIO;
445 446 447 448
	debugfs_create_u64("loads", S_IRUGO, root, &frontswap_loads);
	debugfs_create_u64("succ_stores", S_IRUGO, root, &frontswap_succ_stores);
	debugfs_create_u64("failed_stores", S_IRUGO, root,
				&frontswap_failed_stores);
449 450 451 452 453 454 455
	debugfs_create_u64("invalidates", S_IRUGO,
				root, &frontswap_invalidates);
#endif
	return 0;
}

module_init(init_frontswap);