hmat.c 18.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (c) 2019, Intel Corporation.
 *
 * Heterogeneous Memory Attributes Table (HMAT) representation
 *
 * This program parses and reports the platform's HMAT tables, and registers
 * the applicable attributes with the node's interfaces.
 */

#include <linux/acpi.h>
#include <linux/bitops.h>
#include <linux/device.h>
#include <linux/init.h>
#include <linux/list.h>
16
#include <linux/list_sort.h>
17 18
#include <linux/memory.h>
#include <linux/mutex.h>
19 20 21
#include <linux/node.h>
#include <linux/sysfs.h>

22
static u8 hmat_revision;
23

24 25 26 27 28
static LIST_HEAD(targets);
static LIST_HEAD(initiators);
static LIST_HEAD(localities);

static DEFINE_MUTEX(target_lock);
29 30 31 32 33 34 35 36 37 38 39 40 41 42

/*
 * The defined enum order is used to prioritize attributes to break ties when
 * selecting the best performing node.
 */
enum locality_types {
	WRITE_LATENCY,
	READ_LATENCY,
	WRITE_BANDWIDTH,
	READ_BANDWIDTH,
};

static struct memory_locality *localities_types[4];

43 44 45 46 47
struct target_cache {
	struct list_head node;
	struct node_cache_attrs cache_attrs;
};

48 49 50 51 52
struct memory_target {
	struct list_head node;
	unsigned int memory_pxm;
	unsigned int processor_pxm;
	struct node_hmem_attrs hmem_attrs;
53
	struct list_head caches;
54 55
	struct node_cache_attrs cache_attrs;
	bool registered;
56 57 58 59 60 61 62 63 64 65 66 67
};

struct memory_initiator {
	struct list_head node;
	unsigned int processor_pxm;
};

struct memory_locality {
	struct list_head node;
	struct acpi_hmat_locality *hmat_loc;
};

68
static struct memory_initiator *find_mem_initiator(unsigned int cpu_pxm)
69 70 71 72 73 74 75 76 77
{
	struct memory_initiator *initiator;

	list_for_each_entry(initiator, &initiators, node)
		if (initiator->processor_pxm == cpu_pxm)
			return initiator;
	return NULL;
}

78
static struct memory_target *find_mem_target(unsigned int mem_pxm)
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
{
	struct memory_target *target;

	list_for_each_entry(target, &targets, node)
		if (target->memory_pxm == mem_pxm)
			return target;
	return NULL;
}

static __init void alloc_memory_initiator(unsigned int cpu_pxm)
{
	struct memory_initiator *initiator;

	if (pxm_to_node(cpu_pxm) == NUMA_NO_NODE)
		return;

	initiator = find_mem_initiator(cpu_pxm);
	if (initiator)
		return;

	initiator = kzalloc(sizeof(*initiator), GFP_KERNEL);
	if (!initiator)
		return;

	initiator->processor_pxm = cpu_pxm;
	list_add_tail(&initiator->node, &initiators);
}

static __init void alloc_memory_target(unsigned int mem_pxm)
{
	struct memory_target *target;

	target = find_mem_target(mem_pxm);
	if (target)
		return;

	target = kzalloc(sizeof(*target), GFP_KERNEL);
	if (!target)
		return;

	target->memory_pxm = mem_pxm;
	target->processor_pxm = PXM_INVAL;
	list_add_tail(&target->node, &targets);
122
	INIT_LIST_HEAD(&target->caches);
123 124
}

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
static __init const char *hmat_data_type(u8 type)
{
	switch (type) {
	case ACPI_HMAT_ACCESS_LATENCY:
		return "Access Latency";
	case ACPI_HMAT_READ_LATENCY:
		return "Read Latency";
	case ACPI_HMAT_WRITE_LATENCY:
		return "Write Latency";
	case ACPI_HMAT_ACCESS_BANDWIDTH:
		return "Access Bandwidth";
	case ACPI_HMAT_READ_BANDWIDTH:
		return "Read Bandwidth";
	case ACPI_HMAT_WRITE_BANDWIDTH:
		return "Write Bandwidth";
	default:
		return "Reserved";
	}
}

static __init const char *hmat_data_type_suffix(u8 type)
{
	switch (type) {
	case ACPI_HMAT_ACCESS_LATENCY:
	case ACPI_HMAT_READ_LATENCY:
	case ACPI_HMAT_WRITE_LATENCY:
		return " nsec";
	case ACPI_HMAT_ACCESS_BANDWIDTH:
	case ACPI_HMAT_READ_BANDWIDTH:
	case ACPI_HMAT_WRITE_BANDWIDTH:
		return " MB/s";
	default:
		return "";
	}
}

161
static u32 hmat_normalize(u16 entry, u64 base, u8 type)
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
{
	u32 value;

	/*
	 * Check for invalid and overflow values
	 */
	if (entry == 0xffff || !entry)
		return 0;
	else if (base > (UINT_MAX / (entry)))
		return 0;

	/*
	 * Divide by the base unit for version 1, convert latency from
	 * picosenonds to nanoseconds if revision 2.
	 */
	value = entry * base;
	if (hmat_revision == 1) {
		if (value < 10)
			return 0;
		value = DIV_ROUND_UP(value, 10);
	} else if (hmat_revision == 2) {
		switch (type) {
		case ACPI_HMAT_ACCESS_LATENCY:
		case ACPI_HMAT_READ_LATENCY:
		case ACPI_HMAT_WRITE_LATENCY:
			value = DIV_ROUND_UP(value, 1000);
			break;
		default:
			break;
		}
	}
	return value;
}

196
static void hmat_update_target_access(struct memory_target *target,
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
					     u8 type, u32 value)
{
	switch (type) {
	case ACPI_HMAT_ACCESS_LATENCY:
		target->hmem_attrs.read_latency = value;
		target->hmem_attrs.write_latency = value;
		break;
	case ACPI_HMAT_READ_LATENCY:
		target->hmem_attrs.read_latency = value;
		break;
	case ACPI_HMAT_WRITE_LATENCY:
		target->hmem_attrs.write_latency = value;
		break;
	case ACPI_HMAT_ACCESS_BANDWIDTH:
		target->hmem_attrs.read_bandwidth = value;
		target->hmem_attrs.write_bandwidth = value;
		break;
	case ACPI_HMAT_READ_BANDWIDTH:
		target->hmem_attrs.read_bandwidth = value;
		break;
	case ACPI_HMAT_WRITE_BANDWIDTH:
		target->hmem_attrs.write_bandwidth = value;
		break;
	default:
		break;
	}
}

static __init void hmat_add_locality(struct acpi_hmat_locality *hmat_loc)
{
	struct memory_locality *loc;

	loc = kzalloc(sizeof(*loc), GFP_KERNEL);
	if (!loc) {
		pr_notice_once("Failed to allocate HMAT locality\n");
		return;
	}

	loc->hmat_loc = hmat_loc;
	list_add_tail(&loc->node, &localities);

	switch (hmat_loc->data_type) {
	case ACPI_HMAT_ACCESS_LATENCY:
		localities_types[READ_LATENCY] = loc;
		localities_types[WRITE_LATENCY] = loc;
		break;
	case ACPI_HMAT_READ_LATENCY:
		localities_types[READ_LATENCY] = loc;
		break;
	case ACPI_HMAT_WRITE_LATENCY:
		localities_types[WRITE_LATENCY] = loc;
		break;
	case ACPI_HMAT_ACCESS_BANDWIDTH:
		localities_types[READ_BANDWIDTH] = loc;
		localities_types[WRITE_BANDWIDTH] = loc;
		break;
	case ACPI_HMAT_READ_BANDWIDTH:
		localities_types[READ_BANDWIDTH] = loc;
		break;
	case ACPI_HMAT_WRITE_BANDWIDTH:
		localities_types[WRITE_BANDWIDTH] = loc;
		break;
	default:
		break;
	}
}

264 265 266 267
static __init int hmat_parse_locality(union acpi_subtable_headers *header,
				      const unsigned long end)
{
	struct acpi_hmat_locality *hmat_loc = (void *)header;
268
	struct memory_target *target;
269 270 271
	unsigned int init, targ, total_size, ipds, tpds;
	u32 *inits, *targs, value;
	u16 *entries;
272
	u8 type, mem_hier;
273 274 275 276 277 278 279 280

	if (hmat_loc->header.length < sizeof(*hmat_loc)) {
		pr_notice("HMAT: Unexpected locality header length: %d\n",
			 hmat_loc->header.length);
		return -EINVAL;
	}

	type = hmat_loc->data_type;
281
	mem_hier = hmat_loc->flags & ACPI_HMAT_MEMORY_HIERARCHY;
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
	ipds = hmat_loc->number_of_initiator_Pds;
	tpds = hmat_loc->number_of_target_Pds;
	total_size = sizeof(*hmat_loc) + sizeof(*entries) * ipds * tpds +
		     sizeof(*inits) * ipds + sizeof(*targs) * tpds;
	if (hmat_loc->header.length < total_size) {
		pr_notice("HMAT: Unexpected locality header length:%d, minimum required:%d\n",
			 hmat_loc->header.length, total_size);
		return -EINVAL;
	}

	pr_info("HMAT: Locality: Flags:%02x Type:%s Initiator Domains:%d Target Domains:%d Base:%lld\n",
		hmat_loc->flags, hmat_data_type(type), ipds, tpds,
		hmat_loc->entry_base_unit);

	inits = (u32 *)(hmat_loc + 1);
	targs = inits + ipds;
	entries = (u16 *)(targs + tpds);
	for (init = 0; init < ipds; init++) {
300
		alloc_memory_initiator(inits[init]);
301 302 303 304 305 306 307
		for (targ = 0; targ < tpds; targ++) {
			value = hmat_normalize(entries[init * tpds + targ],
					       hmat_loc->entry_base_unit,
					       type);
			pr_info("  Initiator-Target[%d-%d]:%d%s\n",
				inits[init], targs[targ], value,
				hmat_data_type_suffix(type));
308 309 310 311 312 313

			if (mem_hier == ACPI_HMAT_MEMORY) {
				target = find_mem_target(targs[targ]);
				if (target && target->processor_pxm == inits[init])
					hmat_update_target_access(target, type, value);
			}
314 315 316
		}
	}

317 318 319
	if (mem_hier == ACPI_HMAT_MEMORY)
		hmat_add_locality(hmat_loc);

320 321 322 323 324 325 326
	return 0;
}

static __init int hmat_parse_cache(union acpi_subtable_headers *header,
				   const unsigned long end)
{
	struct acpi_hmat_cache *cache = (void *)header;
327 328
	struct memory_target *target;
	struct target_cache *tcache;
329 330 331 332 333 334 335 336 337 338 339 340 341
	u32 attrs;

	if (cache->header.length < sizeof(*cache)) {
		pr_notice("HMAT: Unexpected cache header length: %d\n",
			 cache->header.length);
		return -EINVAL;
	}

	attrs = cache->cache_attributes;
	pr_info("HMAT: Cache: Domain:%d Size:%llu Attrs:%08x SMBIOS Handles:%d\n",
		cache->memory_PD, cache->cache_size, attrs,
		cache->number_of_SMBIOShandles);

342 343 344 345 346 347 348 349 350 351 352 353 354
	target = find_mem_target(cache->memory_PD);
	if (!target)
		return 0;

	tcache = kzalloc(sizeof(*tcache), GFP_KERNEL);
	if (!tcache) {
		pr_notice_once("Failed to allocate HMAT cache info\n");
		return 0;
	}

	tcache->cache_attrs.size = cache->cache_size;
	tcache->cache_attrs.level = (attrs & ACPI_HMAT_CACHE_LEVEL) >> 4;
	tcache->cache_attrs.line_size = (attrs & ACPI_HMAT_CACHE_LINE_SIZE) >> 16;
355 356 357

	switch ((attrs & ACPI_HMAT_CACHE_ASSOCIATIVITY) >> 8) {
	case ACPI_HMAT_CA_DIRECT_MAPPED:
358
		tcache->cache_attrs.indexing = NODE_CACHE_DIRECT_MAP;
359 360
		break;
	case ACPI_HMAT_CA_COMPLEX_CACHE_INDEXING:
361
		tcache->cache_attrs.indexing = NODE_CACHE_INDEXED;
362 363 364
		break;
	case ACPI_HMAT_CA_NONE:
	default:
365
		tcache->cache_attrs.indexing = NODE_CACHE_OTHER;
366 367 368 369 370
		break;
	}

	switch ((attrs & ACPI_HMAT_WRITE_POLICY) >> 12) {
	case ACPI_HMAT_CP_WB:
371
		tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_BACK;
372 373
		break;
	case ACPI_HMAT_CP_WT:
374
		tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_THROUGH;
375 376 377
		break;
	case ACPI_HMAT_CP_NONE:
	default:
378
		tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_OTHER;
379 380
		break;
	}
381
	list_add_tail(&tcache->node, &target->caches);
382

383 384 385 386 387 388 389
	return 0;
}

static int __init hmat_parse_proximity_domain(union acpi_subtable_headers *header,
					      const unsigned long end)
{
	struct acpi_hmat_proximity_domain *p = (void *)header;
390
	struct memory_target *target = NULL;
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405

	if (p->header.length != sizeof(*p)) {
		pr_notice("HMAT: Unexpected address range header length: %d\n",
			 p->header.length);
		return -EINVAL;
	}

	if (hmat_revision == 1)
		pr_info("HMAT: Memory (%#llx length %#llx) Flags:%04x Processor Domain:%d Memory Domain:%d\n",
			p->reserved3, p->reserved4, p->flags, p->processor_PD,
			p->memory_PD);
	else
		pr_info("HMAT: Memory Flags:%04x Processor Domain:%d Memory Domain:%d\n",
			p->flags, p->processor_PD, p->memory_PD);

406
	if (p->flags & ACPI_HMAT_MEMORY_PD_VALID && hmat_revision == 1) {
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
		target = find_mem_target(p->memory_PD);
		if (!target) {
			pr_debug("HMAT: Memory Domain missing from SRAT\n");
			return -EINVAL;
		}
	}
	if (target && p->flags & ACPI_HMAT_PROCESSOR_PD_VALID) {
		int p_node = pxm_to_node(p->processor_PD);

		if (p_node == NUMA_NO_NODE) {
			pr_debug("HMAT: Invalid Processor Domain\n");
			return -EINVAL;
		}
		target->processor_pxm = p_node;
	}

423 424 425 426 427 428 429 430 431 432 433 434
	return 0;
}

static int __init hmat_parse_subtable(union acpi_subtable_headers *header,
				      const unsigned long end)
{
	struct acpi_hmat_structure *hdr = (void *)header;

	if (!hdr)
		return -EINVAL;

	switch (hdr->type) {
435
	case ACPI_HMAT_TYPE_PROXIMITY:
436 437 438 439 440 441 442 443 444 445
		return hmat_parse_proximity_domain(header, end);
	case ACPI_HMAT_TYPE_LOCALITY:
		return hmat_parse_locality(header, end);
	case ACPI_HMAT_TYPE_CACHE:
		return hmat_parse_cache(header, end);
	default:
		return -EINVAL;
	}
}

446 447 448 449 450 451 452 453 454 455 456 457 458
static __init int srat_parse_mem_affinity(union acpi_subtable_headers *header,
					  const unsigned long end)
{
	struct acpi_srat_mem_affinity *ma = (void *)header;

	if (!ma)
		return -EINVAL;
	if (!(ma->flags & ACPI_SRAT_MEM_ENABLED))
		return 0;
	alloc_memory_target(ma->proximity_domain);
	return 0;
}

459
static u32 hmat_initiator_perf(struct memory_target *target,
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
			       struct memory_initiator *initiator,
			       struct acpi_hmat_locality *hmat_loc)
{
	unsigned int ipds, tpds, i, idx = 0, tdx = 0;
	u32 *inits, *targs;
	u16 *entries;

	ipds = hmat_loc->number_of_initiator_Pds;
	tpds = hmat_loc->number_of_target_Pds;
	inits = (u32 *)(hmat_loc + 1);
	targs = inits + ipds;
	entries = (u16 *)(targs + tpds);

	for (i = 0; i < ipds; i++) {
		if (inits[i] == initiator->processor_pxm) {
			idx = i;
			break;
		}
	}

	if (i == ipds)
		return 0;

	for (i = 0; i < tpds; i++) {
		if (targs[i] == target->memory_pxm) {
			tdx = i;
			break;
		}
	}
	if (i == tpds)
		return 0;

	return hmat_normalize(entries[idx * tpds + tdx],
			      hmat_loc->entry_base_unit,
			      hmat_loc->data_type);
}

497
static bool hmat_update_best(u8 type, u32 value, u32 *best)
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
{
	bool updated = false;

	if (!value)
		return false;

	switch (type) {
	case ACPI_HMAT_ACCESS_LATENCY:
	case ACPI_HMAT_READ_LATENCY:
	case ACPI_HMAT_WRITE_LATENCY:
		if (!*best || *best > value) {
			*best = value;
			updated = true;
		}
		break;
	case ACPI_HMAT_ACCESS_BANDWIDTH:
	case ACPI_HMAT_READ_BANDWIDTH:
	case ACPI_HMAT_WRITE_BANDWIDTH:
		if (!*best || *best < value) {
			*best = value;
			updated = true;
		}
		break;
	}

	return updated;
}

static int initiator_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct memory_initiator *ia;
	struct memory_initiator *ib;
	unsigned long *p_nodes = priv;

	ia = list_entry(a, struct memory_initiator, node);
	ib = list_entry(b, struct memory_initiator, node);

	set_bit(ia->processor_pxm, p_nodes);
	set_bit(ib->processor_pxm, p_nodes);

	return ia->processor_pxm - ib->processor_pxm;
}

541
static void hmat_register_target_initiators(struct memory_target *target)
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
{
	static DECLARE_BITMAP(p_nodes, MAX_NUMNODES);
	struct memory_initiator *initiator;
	unsigned int mem_nid, cpu_nid;
	struct memory_locality *loc = NULL;
	u32 best = 0;
	int i;

	mem_nid = pxm_to_node(target->memory_pxm);
	/*
	 * If the Address Range Structure provides a local processor pxm, link
	 * only that one. Otherwise, find the best performance attributes and
	 * register all initiators that match.
	 */
	if (target->processor_pxm != PXM_INVAL) {
		cpu_nid = pxm_to_node(target->processor_pxm);
		register_memory_node_under_compute_node(mem_nid, cpu_nid, 0);
		return;
	}

	if (list_empty(&localities))
		return;

	/*
	 * We need the initiator list sorted so we can use bitmap_clear for
	 * previously set initiators when we find a better memory accessor.
	 * We'll also use the sorting to prime the candidate nodes with known
	 * initiators.
	 */
	bitmap_zero(p_nodes, MAX_NUMNODES);
	list_sort(p_nodes, &initiators, initiator_cmp);
	for (i = WRITE_LATENCY; i <= READ_BANDWIDTH; i++) {
		loc = localities_types[i];
		if (!loc)
			continue;

		best = 0;
		list_for_each_entry(initiator, &initiators, node) {
			u32 value;

			if (!test_bit(initiator->processor_pxm, p_nodes))
				continue;

			value = hmat_initiator_perf(target, initiator, loc->hmat_loc);
			if (hmat_update_best(loc->hmat_loc->data_type, value, &best))
				bitmap_clear(p_nodes, 0, initiator->processor_pxm);
			if (value != best)
				clear_bit(initiator->processor_pxm, p_nodes);
		}
		if (best)
			hmat_update_target_access(target, loc->hmat_loc->data_type, best);
	}

	for_each_set_bit(i, p_nodes, MAX_NUMNODES) {
		cpu_nid = pxm_to_node(i);
		register_memory_node_under_compute_node(mem_nid, cpu_nid, 0);
	}
}

601
static void hmat_register_target_cache(struct memory_target *target)
602 603 604 605 606 607 608 609
{
	unsigned mem_nid = pxm_to_node(target->memory_pxm);
	struct target_cache *tcache;

	list_for_each_entry(tcache, &target->caches, node)
		node_add_cache(mem_nid, &tcache->cache_attrs);
}

610
static void hmat_register_target_perf(struct memory_target *target)
611 612 613 614 615
{
	unsigned mem_nid = pxm_to_node(target->memory_pxm);
	node_set_perf_attrs(mem_nid, &target->hmem_attrs, 0);
}

616
static void hmat_register_target(struct memory_target *target)
617
{
618 619 620 621 622 623 624 625 626 627
	int nid = pxm_to_node(target->memory_pxm);

	/*
	 * Skip offline nodes. This can happen when memory
	 * marked EFI_MEMORY_SP, "specific purpose", is applied
	 * to all the memory in a promixity domain leading to
	 * the node being marked offline / unplugged, or if
	 * memory-only "hotplug" node is offline.
	 */
	if (nid == NUMA_NO_NODE || !node_online(nid))
628 629
		return;

630 631 632 633 634 635 636 637
	mutex_lock(&target_lock);
	if (!target->registered) {
		hmat_register_target_initiators(target);
		hmat_register_target_cache(target);
		hmat_register_target_perf(target);
		target->registered = true;
	}
	mutex_unlock(&target_lock);
638 639
}

640
static void hmat_register_targets(void)
641 642 643
{
	struct memory_target *target;

644 645
	list_for_each_entry(target, &targets, node)
		hmat_register_target(target);
646 647
}

648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
static int hmat_callback(struct notifier_block *self,
			 unsigned long action, void *arg)
{
	struct memory_target *target;
	struct memory_notify *mnb = arg;
	int pxm, nid = mnb->status_change_nid;

	if (nid == NUMA_NO_NODE || action != MEM_ONLINE)
		return NOTIFY_OK;

	pxm = node_to_pxm(nid);
	target = find_mem_target(pxm);
	if (!target)
		return NOTIFY_OK;

	hmat_register_target(target);
	return NOTIFY_OK;
}

static struct notifier_block hmat_callback_nb = {
	.notifier_call = hmat_callback,
	.priority = 2,
};

672 673 674 675 676
static __init void hmat_free_structures(void)
{
	struct memory_target *target, *tnext;
	struct memory_locality *loc, *lnext;
	struct memory_initiator *initiator, *inext;
677
	struct target_cache *tcache, *cnext;
678 679

	list_for_each_entry_safe(target, tnext, &targets, node) {
680 681 682 683
		list_for_each_entry_safe(tcache, cnext, &target->caches, node) {
			list_del(&tcache->node);
			kfree(tcache);
		}
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
		list_del(&target->node);
		kfree(target);
	}

	list_for_each_entry_safe(initiator, inext, &initiators, node) {
		list_del(&initiator->node);
		kfree(initiator);
	}

	list_for_each_entry_safe(loc, lnext, &localities, node) {
		list_del(&loc->node);
		kfree(loc);
	}
}

699 700 701 702 703 704 705 706 707
static __init int hmat_init(void)
{
	struct acpi_table_header *tbl;
	enum acpi_hmat_type i;
	acpi_status status;

	if (srat_disabled())
		return 0;

708 709 710 711 712 713 714 715 716 717 718
	status = acpi_get_table(ACPI_SIG_SRAT, 0, &tbl);
	if (ACPI_FAILURE(status))
		return 0;

	if (acpi_table_parse_entries(ACPI_SIG_SRAT,
				sizeof(struct acpi_table_srat),
				ACPI_SRAT_TYPE_MEMORY_AFFINITY,
				srat_parse_mem_affinity, 0) < 0)
		goto out_put;
	acpi_put_table(tbl);

719 720
	status = acpi_get_table(ACPI_SIG_HMAT, 0, &tbl);
	if (ACPI_FAILURE(status))
721
		goto out_put;
722 723 724 725 726 727 728 729 730 731 732

	hmat_revision = tbl->revision;
	switch (hmat_revision) {
	case 1:
	case 2:
		break;
	default:
		pr_notice("Ignoring HMAT: Unknown revision:%d\n", hmat_revision);
		goto out_put;
	}

733
	for (i = ACPI_HMAT_TYPE_PROXIMITY; i < ACPI_HMAT_TYPE_RESERVED; i++) {
734 735 736 737 738 739 740
		if (acpi_table_parse_entries(ACPI_SIG_HMAT,
					     sizeof(struct acpi_table_hmat), i,
					     hmat_parse_subtable, 0) < 0) {
			pr_notice("Ignoring HMAT: Invalid table");
			goto out_put;
		}
	}
741
	hmat_register_targets();
742 743 744 745

	/* Keep the table and structures if the notifier may use them */
	if (!register_hotmemory_notifier(&hmat_callback_nb))
		return 0;
746
out_put:
747
	hmat_free_structures();
748 749 750 751
	acpi_put_table(tbl);
	return 0;
}
subsys_initcall(hmat_init);