cppc_acpi.c 41.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/*
 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
 *
 * (C) Copyright 2014, 2015 Linaro Ltd.
 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
 *
 * CPPC describes a few methods for controlling CPU performance using
 * information from a per CPU table called CPC. This table is described in
 * the ACPI v5.0+ specification. The table consists of a list of
 * registers which may be memory mapped or hardware registers and also may
 * include some static integer values.
 *
 * CPU performance is on an abstract continuous scale as against a discretized
 * P-state scale which is tied to CPU frequency only. In brief, the basic
 * operation involves:
 *
 * - OS makes a CPU performance request. (Can provide min and max bounds)
 *
 * - Platform (such as BMC) is free to optimize request within requested bounds
 *   depending on power/thermal budgets etc.
 *
 * - Platform conveys its decision back to OS
 *
 * The communication between OS and platform occurs through another medium
 * called (PCC) Platform Communication Channel. This is a generic mailbox like
 * mechanism which includes doorbell semantics to indicate register updates.
 * See drivers/mailbox/pcc.c for details on PCC.
 *
 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
 * above specifications.
 */

#define pr_fmt(fmt)	"ACPI CPPC: " fmt

#include <linux/cpufreq.h>
#include <linux/delay.h>
38
#include <linux/iopoll.h>
39
#include <linux/ktime.h>
40 41
#include <linux/rwsem.h>
#include <linux/wait.h>
42 43

#include <acpi/cppc_acpi.h>
44

45 46 47 48
struct cppc_pcc_data {
	struct mbox_chan *pcc_channel;
	void __iomem *pcc_comm_addr;
	bool pcc_channel_acquired;
49
	unsigned int deadline_us;
50
	unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
51

52
	bool pending_pcc_write_cmd;	/* Any pending/batched PCC write cmds? */
53
	bool platform_owns_pcc;		/* Ownership of PCC subspace */
54
	unsigned int pcc_write_cnt;	/* Running count of PCC write commands */
55

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
	/*
	 * Lock to provide controlled access to the PCC channel.
	 *
	 * For performance critical usecases(currently cppc_set_perf)
	 *	We need to take read_lock and check if channel belongs to OSPM
	 * before reading or writing to PCC subspace
	 *	We need to take write_lock before transferring the channel
	 * ownership to the platform via a Doorbell
	 *	This allows us to batch a number of CPPC requests if they happen
	 * to originate in about the same time
	 *
	 * For non-performance critical usecases(init)
	 *	Take write_lock for all purposes which gives exclusive access
	 */
	struct rw_semaphore pcc_lock;

	/* Wait queue for CPUs whose requests were batched */
	wait_queue_head_t pcc_write_wait_q;
74 75 76 77
	ktime_t last_cmd_cmpl_time;
	ktime_t last_mpar_reset;
	int mpar_count;
	int refcount;
78
};
79

B
Bjorn Helgaas 已提交
80
/* Array to represent the PCC channel per subspace ID */
81
static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
B
Bjorn Helgaas 已提交
82
/* The cpu_pcc_subspace_idx contains per CPU subspace ID */
83
static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
84 85 86 87 88 89 90 91 92 93

/*
 * The cpc_desc structure contains the ACPI register details
 * as described in the per CPU _CPC tables. The details
 * include the type of register (e.g. PCC, System IO, FFH etc.)
 * and destination addresses which lets us READ/WRITE CPU performance
 * information using the appropriate I/O methods.
 */
static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);

94
/* pcc mapped address + header size + offset within PCC subspace */
95 96
#define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
						0x8 + (offs))
97

98
/* Check if a CPC register is in PCC */
99 100 101 102
#define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&		\
				(cpc)->cpc_entry.reg.space_id ==	\
				ACPI_ADR_SPACE_PLATFORM_COMM)

103 104 105 106 107 108 109 110 111 112 113
/* Evalutes to True if reg is a NULL register descriptor */
#define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \
				(reg)->address == 0 &&			\
				(reg)->bit_width == 0 &&		\
				(reg)->bit_offset == 0 &&		\
				(reg)->access_width == 0)

/* Evalutes to True if an optional cpc field is supported */
#define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?		\
				!!(cpc)->cpc_entry.int_value :		\
				!IS_NULL_REG(&(cpc)->cpc_entry.reg))
114 115
/*
 * Arbitrary Retries in case the remote processor is slow to respond
116 117
 * to PCC commands. Keeping it high enough to cover emulators where
 * the processors run painfully slow.
118
 */
119
#define NUM_RETRIES 500ULL
120

121 122 123 124 125 126 127 128 129 130 131 132 133 134
struct cppc_attr {
	struct attribute attr;
	ssize_t (*show)(struct kobject *kobj,
			struct attribute *attr, char *buf);
	ssize_t (*store)(struct kobject *kobj,
			struct attribute *attr, const char *c, ssize_t count);
};

#define define_one_cppc_ro(_name)		\
static struct cppc_attr _name =			\
__ATTR(_name, 0444, show_##_name, NULL)

#define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
#define show_cppc_data(access_fn, struct_name, member_name)		\
	static ssize_t show_##member_name(struct kobject *kobj,		\
					struct attribute *attr,	char *buf) \
	{								\
		struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);		\
		struct struct_name st_name = {0};			\
		int ret;						\
									\
		ret = access_fn(cpc_ptr->cpu_id, &st_name);		\
		if (ret)						\
			return ret;					\
									\
		return scnprintf(buf, PAGE_SIZE, "%llu\n",		\
				(u64)st_name.member_name);		\
	}								\
	define_one_cppc_ro(member_name)

show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
156 157 158
show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);

159 160 161
show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);

162 163 164 165 166
static ssize_t show_feedback_ctrs(struct kobject *kobj,
		struct attribute *attr, char *buf)
{
	struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
	struct cppc_perf_fb_ctrs fb_ctrs = {0};
167
	int ret;
168

169 170 171
	ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
	if (ret)
		return ret;
172 173 174 175 176 177 178 179 180 181

	return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
			fb_ctrs.reference, fb_ctrs.delivered);
}
define_one_cppc_ro(feedback_ctrs);

static struct attribute *cppc_attrs[] = {
	&feedback_ctrs.attr,
	&reference_perf.attr,
	&wraparound_time.attr,
182 183 184 185
	&highest_perf.attr,
	&lowest_perf.attr,
	&lowest_nonlinear_perf.attr,
	&nominal_perf.attr,
186 187
	&nominal_freq.attr,
	&lowest_freq.attr,
188 189 190 191 192 193 194 195
	NULL
};

static struct kobj_type cppc_ktype = {
	.sysfs_ops = &kobj_sysfs_ops,
	.default_attrs = cppc_attrs,
};

196
static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
197
{
198
	int ret, status;
199 200 201
	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
	struct acpi_pcct_shared_memory __iomem *generic_comm_base =
		pcc_ss_data->pcc_comm_addr;
202

203
	if (!pcc_ss_data->platform_owns_pcc)
204 205
		return 0;

206 207 208 209 210 211 212
	/*
	 * Poll PCC status register every 3us(delay_us) for maximum of
	 * deadline_us(timeout_us) until PCC command complete bit is set(cond)
	 */
	ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
					status & PCC_CMD_COMPLETE_MASK, 3,
					pcc_ss_data->deadline_us);
213

214
	if (likely(!ret)) {
215
		pcc_ss_data->platform_owns_pcc = false;
216 217 218 219 220 221 222
		if (chk_err_bit && (status & PCC_ERROR_MASK))
			ret = -EIO;
	}

	if (unlikely(ret))
		pr_err("PCC check channel failed for ss: %d. ret=%d\n",
		       pcc_ss_id, ret);
223

224 225 226
	return ret;
}

227 228 229 230
/*
 * This function transfers the ownership of the PCC to the platform
 * So it must be called while holding write_lock(pcc_lock)
 */
231
static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
232
{
233
	int ret = -EIO, i;
234
	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
235
	struct acpi_pcct_shared_memory *generic_comm_base =
236
		(struct acpi_pcct_shared_memory *)pcc_ss_data->pcc_comm_addr;
237
	unsigned int time_delta;
238

239 240 241 242 243
	/*
	 * For CMD_WRITE we know for a fact the caller should have checked
	 * the channel before writing to PCC space
	 */
	if (cmd == CMD_READ) {
244 245 246 247 248
		/*
		 * If there are pending cpc_writes, then we stole the channel
		 * before write completion, so first send a WRITE command to
		 * platform
		 */
249 250
		if (pcc_ss_data->pending_pcc_write_cmd)
			send_pcc_cmd(pcc_ss_id, CMD_WRITE);
251

252
		ret = check_pcc_chan(pcc_ss_id, false);
253
		if (ret)
254 255
			goto end;
	} else /* CMD_WRITE */
256
		pcc_ss_data->pending_pcc_write_cmd = FALSE;
257

258 259 260 261 262
	/*
	 * Handle the Minimum Request Turnaround Time(MRTT)
	 * "The minimum amount of time that OSPM must wait after the completion
	 * of a command before issuing the next command, in microseconds"
	 */
263 264 265 266 267
	if (pcc_ss_data->pcc_mrtt) {
		time_delta = ktime_us_delta(ktime_get(),
					    pcc_ss_data->last_cmd_cmpl_time);
		if (pcc_ss_data->pcc_mrtt > time_delta)
			udelay(pcc_ss_data->pcc_mrtt - time_delta);
268 269 270 271 272 273 274 275 276 277 278 279 280
	}

	/*
	 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
	 * "The maximum number of periodic requests that the subspace channel can
	 * support, reported in commands per minute. 0 indicates no limitation."
	 *
	 * This parameter should be ideally zero or large enough so that it can
	 * handle maximum number of requests that all the cores in the system can
	 * collectively generate. If it is not, we will follow the spec and just
	 * not send the request to the platform after hitting the MPAR limit in
	 * any 60s window
	 */
281 282 283 284 285
	if (pcc_ss_data->pcc_mpar) {
		if (pcc_ss_data->mpar_count == 0) {
			time_delta = ktime_ms_delta(ktime_get(),
						    pcc_ss_data->last_mpar_reset);
			if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
286 287
				pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
					 pcc_ss_id);
288 289
				ret = -EIO;
				goto end;
290
			}
291 292
			pcc_ss_data->last_mpar_reset = ktime_get();
			pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
293
		}
294
		pcc_ss_data->mpar_count--;
295 296
	}

297
	/* Write to the shared comm region. */
298
	writew_relaxed(cmd, &generic_comm_base->command);
299 300

	/* Flip CMD COMPLETE bit */
301
	writew_relaxed(0, &generic_comm_base->status);
302

303
	pcc_ss_data->platform_owns_pcc = true;
304

305
	/* Ring doorbell */
306
	ret = mbox_send_message(pcc_ss_data->pcc_channel, &cmd);
307
	if (ret < 0) {
308 309
		pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
		       pcc_ss_id, cmd, ret);
310
		goto end;
311 312
	}

313
	/* wait for completion and check for PCC errro bit */
314
	ret = check_pcc_chan(pcc_ss_id, true);
315

316 317
	if (pcc_ss_data->pcc_mrtt)
		pcc_ss_data->last_cmd_cmpl_time = ktime_get();
318

319 320
	if (pcc_ss_data->pcc_channel->mbox->txdone_irq)
		mbox_chan_txdone(pcc_ss_data->pcc_channel, ret);
321
	else
322
		mbox_client_txdone(pcc_ss_data->pcc_channel, ret);
323 324 325 326 327 328 329 330 331

end:
	if (cmd == CMD_WRITE) {
		if (unlikely(ret)) {
			for_each_possible_cpu(i) {
				struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
				if (!desc)
					continue;

332
				if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
333 334 335
					desc->write_cmd_status = ret;
			}
		}
336 337
		pcc_ss_data->pcc_write_cnt++;
		wake_up_all(&pcc_ss_data->pcc_write_wait_q);
338 339
	}

340
	return ret;
341 342 343 344
}

static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
{
345
	if (ret < 0)
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
		pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
				*(u16 *)msg, ret);
	else
		pr_debug("TX completed. CMD sent:%x, ret:%d\n",
				*(u16 *)msg, ret);
}

struct mbox_client cppc_mbox_cl = {
	.tx_done = cppc_chan_tx_done,
	.knows_txdone = true,
};

static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
{
	int result = -EFAULT;
	acpi_status status = AE_OK;
	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
	struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
	struct acpi_buffer state = {0, NULL};
	union acpi_object  *psd = NULL;
	struct acpi_psd_package *pdomain;

368 369 370 371
	status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
					    &buffer, ACPI_TYPE_PACKAGE);
	if (status == AE_NOT_FOUND)	/* _PSD is optional */
		return 0;
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
	if (ACPI_FAILURE(status))
		return -ENODEV;

	psd = buffer.pointer;
	if (!psd || psd->package.count != 1) {
		pr_debug("Invalid _PSD data\n");
		goto end;
	}

	pdomain = &(cpc_ptr->domain_info);

	state.length = sizeof(struct acpi_psd_package);
	state.pointer = pdomain;

	status = acpi_extract_package(&(psd->package.elements[0]),
		&format, &state);
	if (ACPI_FAILURE(status)) {
		pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
		goto end;
	}

	if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
		pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
		goto end;
	}

	if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
		pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
		goto end;
	}

	if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
	    pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
	    pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
		pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
		goto end;
	}

	result = 0;
end:
	kfree(buffer.pointer);
	return result;
}

/**
 * acpi_get_psd_map - Map the CPUs in a common freq domain.
 * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
 *
 *	Return: 0 for success or negative value for err.
 */
422
int acpi_get_psd_map(struct cppc_cpudata **all_cpu_data)
423 424 425 426 427
{
	int count_target;
	int retval = 0;
	unsigned int i, j;
	cpumask_var_t covered_cpus;
428
	struct cppc_cpudata *pr, *match_pr;
429 430 431 432 433 434 435 436
	struct acpi_psd_package *pdomain;
	struct acpi_psd_package *match_pdomain;
	struct cpc_desc *cpc_ptr, *match_cpc_ptr;

	if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL))
		return -ENOMEM;

	/*
B
Bjorn Helgaas 已提交
437
	 * Now that we have _PSD data from all CPUs, let's setup P-state
438 439 440 441 442 443 444 445 446 447 448
	 * domain info.
	 */
	for_each_possible_cpu(i) {
		pr = all_cpu_data[i];
		if (!pr)
			continue;

		if (cpumask_test_cpu(i, covered_cpus))
			continue;

		cpc_ptr = per_cpu(cpc_desc_ptr, i);
449 450 451 452
		if (!cpc_ptr) {
			retval = -EFAULT;
			goto err_ret;
		}
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473

		pdomain = &(cpc_ptr->domain_info);
		cpumask_set_cpu(i, pr->shared_cpu_map);
		cpumask_set_cpu(i, covered_cpus);
		if (pdomain->num_processors <= 1)
			continue;

		/* Validate the Domain info */
		count_target = pdomain->num_processors;
		if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
			pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
		else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
			pr->shared_type = CPUFREQ_SHARED_TYPE_HW;
		else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
			pr->shared_type = CPUFREQ_SHARED_TYPE_ANY;

		for_each_possible_cpu(j) {
			if (i == j)
				continue;

			match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
474 475 476 477
			if (!match_cpc_ptr) {
				retval = -EFAULT;
				goto err_ret;
			}
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506

			match_pdomain = &(match_cpc_ptr->domain_info);
			if (match_pdomain->domain != pdomain->domain)
				continue;

			/* Here i and j are in the same domain */
			if (match_pdomain->num_processors != count_target) {
				retval = -EFAULT;
				goto err_ret;
			}

			if (pdomain->coord_type != match_pdomain->coord_type) {
				retval = -EFAULT;
				goto err_ret;
			}

			cpumask_set_cpu(j, covered_cpus);
			cpumask_set_cpu(j, pr->shared_cpu_map);
		}

		for_each_possible_cpu(j) {
			if (i == j)
				continue;

			match_pr = all_cpu_data[j];
			if (!match_pr)
				continue;

			match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
507 508 509 510
			if (!match_cpc_ptr) {
				retval = -EFAULT;
				goto err_ret;
			}
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540

			match_pdomain = &(match_cpc_ptr->domain_info);
			if (match_pdomain->domain != pdomain->domain)
				continue;

			match_pr->shared_type = pr->shared_type;
			cpumask_copy(match_pr->shared_cpu_map,
				     pr->shared_cpu_map);
		}
	}

err_ret:
	for_each_possible_cpu(i) {
		pr = all_cpu_data[i];
		if (!pr)
			continue;

		/* Assume no coordination on any error parsing domain info */
		if (retval) {
			cpumask_clear(pr->shared_cpu_map);
			cpumask_set_cpu(i, pr->shared_cpu_map);
			pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
		}
	}

	free_cpumask_var(covered_cpus);
	return retval;
}
EXPORT_SYMBOL_GPL(acpi_get_psd_map);

541
static int register_pcc_channel(int pcc_ss_idx)
542
{
543
	struct acpi_pcct_hw_reduced *cppc_ss;
544
	u64 usecs_lat;
545

546 547 548
	if (pcc_ss_idx >= 0) {
		pcc_data[pcc_ss_idx]->pcc_channel =
			pcc_mbox_request_channel(&cppc_mbox_cl,	pcc_ss_idx);
549

550
		if (IS_ERR(pcc_data[pcc_ss_idx]->pcc_channel)) {
551 552
			pr_err("Failed to find PCC channel for subspace %d\n",
			       pcc_ss_idx);
553 554 555 556 557 558 559 560 561
			return -ENODEV;
		}

		/*
		 * The PCC mailbox controller driver should
		 * have parsed the PCCT (global table of all
		 * PCC channels) and stored pointers to the
		 * subspace communication region in con_priv.
		 */
562
		cppc_ss = (pcc_data[pcc_ss_idx]->pcc_channel)->con_priv;
563 564

		if (!cppc_ss) {
565 566
			pr_err("No PCC subspace found for %d CPPC\n",
			       pcc_ss_idx);
567 568 569
			return -ENODEV;
		}

570 571 572 573 574 575
		/*
		 * cppc_ss->latency is just a Nominal value. In reality
		 * the remote processor could be much slower to reply.
		 * So add an arbitrary amount of wait on top of Nominal.
		 */
		usecs_lat = NUM_RETRIES * cppc_ss->latency;
576
		pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
577 578 579 580 581 582 583
		pcc_data[pcc_ss_idx]->pcc_mrtt = cppc_ss->min_turnaround_time;
		pcc_data[pcc_ss_idx]->pcc_mpar = cppc_ss->max_access_rate;
		pcc_data[pcc_ss_idx]->pcc_nominal = cppc_ss->latency;

		pcc_data[pcc_ss_idx]->pcc_comm_addr =
			acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
		if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
584 585
			pr_err("Failed to ioremap PCC comm region mem for %d\n",
			       pcc_ss_idx);
586 587 588
			return -ENOMEM;
		}

B
Bjorn Helgaas 已提交
589
		/* Set flag so that we don't come here for each CPU. */
590
		pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
591 592 593 594 595
	}

	return 0;
}

596 597 598 599 600 601 602 603 604 605 606 607 608
/**
 * cpc_ffh_supported() - check if FFH reading supported
 *
 * Check if the architecture has support for functional fixed hardware
 * read/write capability.
 *
 * Return: true for supported, false for not supported
 */
bool __weak cpc_ffh_supported(void)
{
	return false;
}

609 610 611 612 613
/**
 * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
 *
 * Check and allocate the cppc_pcc_data memory.
 * In some processor configurations it is possible that same subspace
B
Bjorn Helgaas 已提交
614
 * is shared between multiple CPUs. This is seen especially in CPUs
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
 * with hardware multi-threading support.
 *
 * Return: 0 for success, errno for failure
 */
int pcc_data_alloc(int pcc_ss_id)
{
	if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
		return -EINVAL;

	if (pcc_data[pcc_ss_id]) {
		pcc_data[pcc_ss_id]->refcount++;
	} else {
		pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
					      GFP_KERNEL);
		if (!pcc_data[pcc_ss_id])
			return -ENOMEM;
		pcc_data[pcc_ss_id]->refcount++;
	}

	return 0;
}
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663

/* Check if CPPC revision + num_ent combination is supported */
static bool is_cppc_supported(int revision, int num_ent)
{
	int expected_num_ent;

	switch (revision) {
	case CPPC_V2_REV:
		expected_num_ent = CPPC_V2_NUM_ENT;
		break;
	case CPPC_V3_REV:
		expected_num_ent = CPPC_V3_NUM_ENT;
		break;
	default:
		pr_debug("Firmware exports unsupported CPPC revision: %d\n",
			revision);
		return false;
	}

	if (expected_num_ent != num_ent) {
		pr_debug("Firmware exports %d entries. Expected: %d for CPPC rev:%d\n",
			num_ent, expected_num_ent, revision);
		return false;
	}

	return true;
}

664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
/*
 * An example CPC table looks like the following.
 *
 *	Name(_CPC, Package()
 *			{
 *			17,
 *			NumEntries
 *			1,
 *			// Revision
 *			ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
 *			// Highest Performance
 *			ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
 *			// Nominal Performance
 *			ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
 *			// Lowest Nonlinear Performance
 *			ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
 *			// Lowest Performance
 *			ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
 *			// Guaranteed Performance Register
 *			ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
 *			// Desired Performance Register
 *			ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
 *			..
 *			..
 *			..
 *
 *		}
 * Each Register() encodes how to access that specific register.
 * e.g. a sample PCC entry has the following encoding:
 *
 *	Register (
 *		PCC,
 *		AddressSpaceKeyword
 *		8,
 *		//RegisterBitWidth
 *		8,
 *		//RegisterBitOffset
 *		0x30,
 *		//RegisterAddress
 *		9
 *		//AccessSize (subspace ID)
 *		0
 *		)
 *	}
 */

/**
 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
B
Bjorn Helgaas 已提交
712
 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
713 714 715 716 717 718 719 720 721
 *
 *	Return: 0 for success or negative value for err.
 */
int acpi_cppc_processor_probe(struct acpi_processor *pr)
{
	struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
	union acpi_object *out_obj, *cpc_obj;
	struct cpc_desc *cpc_ptr;
	struct cpc_reg *gas_t;
722
	struct device *cpu_dev;
723 724
	acpi_handle handle = pr->handle;
	unsigned int num_ent, i, cpc_rev;
725
	int pcc_subspace_id = -1;
726 727 728
	acpi_status status;
	int ret = -EFAULT;

B
Bjorn Helgaas 已提交
729
	/* Parse the ACPI _CPC table for this CPU. */
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
	status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
			ACPI_TYPE_PACKAGE);
	if (ACPI_FAILURE(status)) {
		ret = -ENODEV;
		goto out_buf_free;
	}

	out_obj = (union acpi_object *) output.pointer;

	cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
	if (!cpc_ptr) {
		ret = -ENOMEM;
		goto out_buf_free;
	}

	/* First entry is NumEntries. */
	cpc_obj = &out_obj->package.elements[0];
	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
		num_ent = cpc_obj->integer.value;
	} else {
		pr_debug("Unexpected entry type(%d) for NumEntries\n",
				cpc_obj->type);
		goto out_free;
	}
754 755
	cpc_ptr->num_entries = num_ent;

756 757 758 759 760 761 762 763 764
	/* Second entry should be revision. */
	cpc_obj = &out_obj->package.elements[1];
	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
		cpc_rev = cpc_obj->integer.value;
	} else {
		pr_debug("Unexpected entry type(%d) for Revision\n",
				cpc_obj->type);
		goto out_free;
	}
765
	cpc_ptr->version = cpc_rev;
766

767
	if (!is_cppc_supported(cpc_rev, num_ent))
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
		goto out_free;

	/* Iterate through remaining entries in _CPC */
	for (i = 2; i < num_ent; i++) {
		cpc_obj = &out_obj->package.elements[i];

		if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
			cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
		} else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
			gas_t = (struct cpc_reg *)
				cpc_obj->buffer.pointer;

			/*
			 * The PCC Subspace index is encoded inside
			 * the CPC table entries. The same PCC index
			 * will be used for all the PCC entries,
			 * so extract it only once.
			 */
			if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
788 789 790 791 792
				if (pcc_subspace_id < 0) {
					pcc_subspace_id = gas_t->access_width;
					if (pcc_data_alloc(pcc_subspace_id))
						goto out_free;
				} else if (pcc_subspace_id != gas_t->access_width) {
793 794 795
					pr_debug("Mismatched PCC ids.\n");
					goto out_free;
				}
796 797 798 799 800 801 802 803 804 805
			} else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
				if (gas_t->address) {
					void __iomem *addr;

					addr = ioremap(gas_t->address, gas_t->bit_width/8);
					if (!addr)
						goto out_free;
					cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
				}
			} else {
806 807 808 809 810
				if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
					/* Support only PCC ,SYS MEM and FFH type regs */
					pr_debug("Unsupported register type: %d\n", gas_t->space_id);
					goto out_free;
				}
811 812 813 814 815 816 817 818 819
			}

			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
			memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
		} else {
			pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id);
			goto out_free;
		}
	}
820
	per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
821 822 823 824 825 826 827 828 829 830 831 832

	/*
	 * Initialize the remaining cpc_regs as unsupported.
	 * Example: In case FW exposes CPPC v2, the below loop will initialize
	 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
	 */
	for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
		cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
		cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
	}


833 834 835 836 837 838 839 840
	/* Store CPU Logical ID */
	cpc_ptr->cpu_id = pr->id;

	/* Parse PSD data for this CPU */
	ret = acpi_get_psd(cpc_ptr, handle);
	if (ret)
		goto out_free;

B
Bjorn Helgaas 已提交
841
	/* Register PCC channel once for all PCC subspace ID. */
842 843
	if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
		ret = register_pcc_channel(pcc_subspace_id);
844 845
		if (ret)
			goto out_free;
846

847 848
		init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
		init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
849 850 851 852 853
	}

	/* Everything looks okay */
	pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);

854 855
	/* Add per logical CPU nodes for reading its feedback counters. */
	cpu_dev = get_cpu_device(pr->id);
856 857
	if (!cpu_dev) {
		ret = -EINVAL;
858
		goto out_free;
859
	}
860

B
Bjorn Helgaas 已提交
861
	/* Plug PSD data into this CPU's CPC descriptor. */
862 863
	per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;

864 865
	ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
			"acpi_cppc");
866 867
	if (ret) {
		per_cpu(cpc_desc_ptr, pr->id) = NULL;
868
		goto out_free;
869
	}
870

871 872 873 874
	kfree(output.pointer);
	return 0;

out_free:
875 876 877 878 879 880 881
	/* Free all the mapped sys mem areas for this CPU */
	for (i = 2; i < cpc_ptr->num_entries; i++) {
		void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;

		if (addr)
			iounmap(addr);
	}
882 883 884 885 886 887 888 889 890 891
	kfree(cpc_ptr);

out_buf_free:
	kfree(output.pointer);
	return ret;
}
EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);

/**
 * acpi_cppc_processor_exit - Cleanup CPC structs.
B
Bjorn Helgaas 已提交
892
 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
893 894 895 896 897 898
 *
 * Return: Void
 */
void acpi_cppc_processor_exit(struct acpi_processor *pr)
{
	struct cpc_desc *cpc_ptr;
899 900
	unsigned int i;
	void __iomem *addr;
901 902 903 904 905 906 907 908
	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);

	if (pcc_ss_id >=0 && pcc_data[pcc_ss_id]) {
		if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
			pcc_data[pcc_ss_id]->refcount--;
			if (!pcc_data[pcc_ss_id]->refcount) {
				pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
				kfree(pcc_data[pcc_ss_id]);
909
				pcc_data[pcc_ss_id] = NULL;
910 911 912
			}
		}
	}
913

914
	cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
915 916
	if (!cpc_ptr)
		return;
917 918 919 920 921 922 923 924

	/* Free all the mapped sys mem areas for this CPU */
	for (i = 2; i < cpc_ptr->num_entries; i++) {
		addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
		if (addr)
			iounmap(addr);
	}

925
	kobject_put(&cpc_ptr->kobj);
926 927 928 929
	kfree(cpc_ptr);
}
EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);

930 931
/**
 * cpc_read_ffh() - Read FFH register
B
Bjorn Helgaas 已提交
932
 * @cpunum:	CPU number to read
933 934 935 936 937 938 939 940 941 942 943 944 945 946
 * @reg:	cppc register information
 * @val:	place holder for return value
 *
 * Read bit_width bits from a specified address and bit_offset
 *
 * Return: 0 for success and error code
 */
int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
{
	return -ENOTSUPP;
}

/**
 * cpc_write_ffh() - Write FFH register
B
Bjorn Helgaas 已提交
947
 * @cpunum:	CPU number to write
948 949 950 951 952 953 954 955 956 957 958 959
 * @reg:	cppc register information
 * @val:	value to write
 *
 * Write value of bit_width bits to a specified address and bit_offset
 *
 * Return: 0 for success and error code
 */
int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
{
	return -ENOTSUPP;
}

960 961 962 963 964
/*
 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
 * as fast as possible. We have already mapped the PCC subspace during init, so
 * we can directly write to it.
 */
965

966
static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
967
{
968
	int ret_val = 0;
969
	void __iomem *vaddr = 0;
970
	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
971 972 973 974 975 976
	struct cpc_reg *reg = &reg_res->cpc_entry.reg;

	if (reg_res->type == ACPI_TYPE_INTEGER) {
		*val = reg_res->cpc_entry.int_value;
		return ret_val;
	}
977 978

	*val = 0;
979
	if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
980
		vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
981 982
	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
		vaddr = reg_res->sys_mem_vaddr;
983 984
	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
		return cpc_read_ffh(cpu, reg, val);
985 986 987
	else
		return acpi_os_read_memory((acpi_physical_address)reg->address,
				val, reg->bit_width);
988

989
	switch (reg->bit_width) {
990
		case 8:
991
			*val = readb_relaxed(vaddr);
992 993
			break;
		case 16:
994
			*val = readw_relaxed(vaddr);
995 996
			break;
		case 32:
997
			*val = readl_relaxed(vaddr);
998 999
			break;
		case 64:
1000
			*val = readq_relaxed(vaddr);
1001 1002
			break;
		default:
1003 1004
			pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
				 reg->bit_width, pcc_ss_id);
1005
			ret_val = -EFAULT;
1006 1007
	}

1008
	return ret_val;
1009 1010
}

1011
static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
1012
{
1013
	int ret_val = 0;
1014
	void __iomem *vaddr = 0;
1015
	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1016
	struct cpc_reg *reg = &reg_res->cpc_entry.reg;
1017

1018
	if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
1019
		vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1020 1021
	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
		vaddr = reg_res->sys_mem_vaddr;
1022 1023
	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
		return cpc_write_ffh(cpu, reg, val);
1024 1025 1026
	else
		return acpi_os_write_memory((acpi_physical_address)reg->address,
				val, reg->bit_width);
1027

1028
	switch (reg->bit_width) {
1029
		case 8:
1030
			writeb_relaxed(val, vaddr);
1031 1032
			break;
		case 16:
1033
			writew_relaxed(val, vaddr);
1034 1035
			break;
		case 32:
1036
			writel_relaxed(val, vaddr);
1037 1038
			break;
		case 64:
1039
			writeq_relaxed(val, vaddr);
1040 1041
			break;
		default:
1042 1043
			pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
				 reg->bit_width, pcc_ss_id);
1044 1045
			ret_val = -EFAULT;
			break;
1046 1047
	}

1048
	return ret_val;
1049 1050
}

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
/**
 * cppc_get_desired_perf - Get the value of desired performance register.
 * @cpunum: CPU from which to get desired performance.
 * @desired_perf: address of a variable to store the returned desired performance
 *
 * Return: 0 for success, -EIO otherwise.
 */
int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
{
	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
	struct cpc_register_resource *desired_reg;
	struct cppc_pcc_data *pcc_ss_data = NULL;

	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];

	if (CPC_IN_PCC(desired_reg)) {
		int ret = 0;

		if (pcc_ss_id < 0)
			return -EIO;

		pcc_ss_data = pcc_data[pcc_ss_id];

		down_write(&pcc_ss_data->pcc_lock);

		if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
			cpc_read(cpunum, desired_reg, desired_perf);
		else
			ret = -EIO;

		up_write(&pcc_ss_data->pcc_lock);

		return ret;
	}

	cpc_read(cpunum, desired_reg, desired_perf);

	return 0;
}
EXPORT_SYMBOL_GPL(cppc_get_desired_perf);

1093
/**
B
Bjorn Helgaas 已提交
1094
 * cppc_get_perf_caps - Get a CPU's performance capabilities.
1095 1096 1097 1098 1099 1100 1101 1102
 * @cpunum: CPU from which to get capabilities info.
 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
 *
 * Return: 0 for success with perf_caps populated else -ERRNO.
 */
int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
{
	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1103
	struct cpc_register_resource *highest_reg, *lowest_reg,
1104
		*lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
1105
		*low_freq_reg = NULL, *nom_freq_reg = NULL;
1106
	u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
1107
	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1108
	struct cppc_pcc_data *pcc_ss_data = NULL;
1109
	int ret = 0, regs_in_pcc = 0;
1110

1111
	if (!cpc_desc) {
1112 1113 1114 1115 1116 1117
		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
		return -ENODEV;
	}

	highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
	lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1118 1119
	lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
	nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1120 1121
	low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
	nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1122
	guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
1123 1124

	/* Are any of the regs PCC ?*/
1125
	if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1126 1127
		CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
		CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1128 1129 1130 1131 1132
		if (pcc_ss_id < 0) {
			pr_debug("Invalid pcc_ss_id\n");
			return -ENODEV;
		}
		pcc_ss_data = pcc_data[pcc_ss_id];
1133
		regs_in_pcc = 1;
1134
		down_write(&pcc_ss_data->pcc_lock);
1135
		/* Ring doorbell once to update PCC subspace */
1136
		if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1137 1138 1139 1140 1141
			ret = -EIO;
			goto out_err;
		}
	}

1142
	cpc_read(cpunum, highest_reg, &high);
1143 1144
	perf_caps->highest_perf = high;

1145
	cpc_read(cpunum, lowest_reg, &low);
1146 1147
	perf_caps->lowest_perf = low;

1148
	cpc_read(cpunum, nominal_reg, &nom);
1149 1150
	perf_caps->nominal_perf = nom;

1151 1152 1153 1154 1155 1156 1157
	if (guaranteed_reg->type != ACPI_TYPE_BUFFER  ||
	    IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
		perf_caps->guaranteed_perf = 0;
	} else {
		cpc_read(cpunum, guaranteed_reg, &guaranteed);
		perf_caps->guaranteed_perf = guaranteed;
	}
1158

1159 1160 1161 1162
	cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
	perf_caps->lowest_nonlinear_perf = min_nonlinear;

	if (!high || !low || !nom || !min_nonlinear)
1163 1164
		ret = -EFAULT;

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
	/* Read optional lowest and nominal frequencies if present */
	if (CPC_SUPPORTED(low_freq_reg))
		cpc_read(cpunum, low_freq_reg, &low_f);

	if (CPC_SUPPORTED(nom_freq_reg))
		cpc_read(cpunum, nom_freq_reg, &nom_f);

	perf_caps->lowest_freq = low_f;
	perf_caps->nominal_freq = nom_f;


1176
out_err:
1177
	if (regs_in_pcc)
1178
		up_write(&pcc_ss_data->pcc_lock);
1179 1180 1181 1182 1183
	return ret;
}
EXPORT_SYMBOL_GPL(cppc_get_perf_caps);

/**
B
Bjorn Helgaas 已提交
1184
 * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1185 1186 1187 1188 1189 1190 1191 1192
 * @cpunum: CPU from which to read counters.
 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
 *
 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
 */
int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
{
	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1193 1194
	struct cpc_register_resource *delivered_reg, *reference_reg,
		*ref_perf_reg, *ctr_wrap_reg;
1195
	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1196
	struct cppc_pcc_data *pcc_ss_data = NULL;
1197
	u64 delivered, reference, ref_perf, ctr_wrap_time;
1198
	int ret = 0, regs_in_pcc = 0;
1199

1200
	if (!cpc_desc) {
1201 1202 1203 1204 1205 1206
		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
		return -ENODEV;
	}

	delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
	reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1207 1208 1209 1210
	ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
	ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];

	/*
B
Bjorn Helgaas 已提交
1211
	 * If reference perf register is not supported then we should
1212 1213 1214 1215
	 * use the nominal perf value
	 */
	if (!CPC_SUPPORTED(ref_perf_reg))
		ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1216 1217

	/* Are any of the regs PCC ?*/
1218 1219
	if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
		CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1220 1221 1222 1223 1224
		if (pcc_ss_id < 0) {
			pr_debug("Invalid pcc_ss_id\n");
			return -ENODEV;
		}
		pcc_ss_data = pcc_data[pcc_ss_id];
1225
		down_write(&pcc_ss_data->pcc_lock);
1226
		regs_in_pcc = 1;
1227
		/* Ring doorbell once to update PCC subspace */
1228
		if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1229 1230 1231 1232 1233
			ret = -EIO;
			goto out_err;
		}
	}

1234 1235 1236
	cpc_read(cpunum, delivered_reg, &delivered);
	cpc_read(cpunum, reference_reg, &reference);
	cpc_read(cpunum, ref_perf_reg, &ref_perf);
1237 1238 1239 1240 1241 1242 1243 1244

	/*
	 * Per spec, if ctr_wrap_time optional register is unsupported, then the
	 * performance counters are assumed to never wrap during the lifetime of
	 * platform
	 */
	ctr_wrap_time = (u64)(~((u64)0));
	if (CPC_SUPPORTED(ctr_wrap_reg))
1245
		cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1246

1247
	if (!delivered || !reference ||	!ref_perf) {
1248 1249 1250 1251 1252 1253
		ret = -EFAULT;
		goto out_err;
	}

	perf_fb_ctrs->delivered = delivered;
	perf_fb_ctrs->reference = reference;
1254
	perf_fb_ctrs->reference_perf = ref_perf;
1255
	perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1256
out_err:
1257
	if (regs_in_pcc)
1258
		up_write(&pcc_ss_data->pcc_lock);
1259 1260 1261 1262 1263
	return ret;
}
EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);

/**
B
Bjorn Helgaas 已提交
1264
 * cppc_set_perf - Set a CPU's performance controls.
1265 1266 1267 1268 1269 1270 1271 1272 1273
 * @cpu: CPU for which to set performance controls.
 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
 *
 * Return: 0 for success, -ERRNO otherwise.
 */
int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
{
	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
	struct cpc_register_resource *desired_reg;
1274
	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1275
	struct cppc_pcc_data *pcc_ss_data = NULL;
1276 1277
	int ret = 0;

1278
	if (!cpc_desc) {
1279 1280 1281 1282 1283 1284
		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
		return -ENODEV;
	}

	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];

1285 1286 1287 1288 1289 1290 1291 1292
	/*
	 * This is Phase-I where we want to write to CPC registers
	 * -> We want all CPUs to be able to execute this phase in parallel
	 *
	 * Since read_lock can be acquired by multiple CPUs simultaneously we
	 * achieve that goal here
	 */
	if (CPC_IN_PCC(desired_reg)) {
1293 1294 1295 1296 1297
		if (pcc_ss_id < 0) {
			pr_debug("Invalid pcc_ss_id\n");
			return -ENODEV;
		}
		pcc_ss_data = pcc_data[pcc_ss_id];
1298 1299 1300
		down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
		if (pcc_ss_data->platform_owns_pcc) {
			ret = check_pcc_chan(pcc_ss_id, false);
1301
			if (ret) {
1302
				up_read(&pcc_ss_data->pcc_lock);
1303 1304 1305
				return ret;
			}
		}
1306 1307 1308 1309
		/*
		 * Update the pending_write to make sure a PCC CMD_READ will not
		 * arrive and steal the channel during the switch to write lock
		 */
1310 1311
		pcc_ss_data->pending_pcc_write_cmd = true;
		cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1312
		cpc_desc->write_cmd_status = 0;
1313 1314
	}

1315 1316 1317 1318
	/*
	 * Skip writing MIN/MAX until Linux knows how to come up with
	 * useful values.
	 */
1319
	cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1320

1321
	if (CPC_IN_PCC(desired_reg))
1322
		up_read(&pcc_ss_data->pcc_lock);	/* END Phase-I */
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
	/*
	 * This is Phase-II where we transfer the ownership of PCC to Platform
	 *
	 * Short Summary: Basically if we think of a group of cppc_set_perf
	 * requests that happened in short overlapping interval. The last CPU to
	 * come out of Phase-I will enter Phase-II and ring the doorbell.
	 *
	 * We have the following requirements for Phase-II:
	 *     1. We want to execute Phase-II only when there are no CPUs
	 * currently executing in Phase-I
	 *     2. Once we start Phase-II we want to avoid all other CPUs from
	 * entering Phase-I.
	 *     3. We want only one CPU among all those who went through Phase-I
	 * to run phase-II
	 *
	 * If write_trylock fails to get the lock and doesn't transfer the
	 * PCC ownership to the platform, then one of the following will be TRUE
	 *     1. There is at-least one CPU in Phase-I which will later execute
	 * write_trylock, so the CPUs in Phase-I will be responsible for
	 * executing the Phase-II.
	 *     2. Some other CPU has beaten this CPU to successfully execute the
	 * write_trylock and has already acquired the write_lock. We know for a
B
Bjorn Helgaas 已提交
1345
	 * fact it (other CPU acquiring the write_lock) couldn't have happened
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
	 * before this CPU's Phase-I as we held the read_lock.
	 *     3. Some other CPU executing pcc CMD_READ has stolen the
	 * down_write, in which case, send_pcc_cmd will check for pending
	 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
	 * So this CPU can be certain that its request will be delivered
	 *    So in all cases, this CPU knows that its request will be delivered
	 * by another CPU and can return
	 *
	 * After getting the down_write we still need to check for
	 * pending_pcc_write_cmd to take care of the following scenario
	 *    The thread running this code could be scheduled out between
	 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
	 * could have delivered the request to Platform by triggering the
	 * doorbell and transferred the ownership of PCC to platform. So this
	 * avoids triggering an unnecessary doorbell and more importantly before
	 * triggering the doorbell it makes sure that the PCC channel ownership
	 * is still with OSPM.
	 *   pending_pcc_write_cmd can also be cleared by a different CPU, if
	 * there was a pcc CMD_READ waiting on down_write and it steals the lock
	 * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
	 * case during a CMD_READ and if there are pending writes it delivers
	 * the write command before servicing the read command
	 */
	if (CPC_IN_PCC(desired_reg)) {
1370
		if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1371
			/* Update only if there are pending write commands */
1372 1373 1374
			if (pcc_ss_data->pending_pcc_write_cmd)
				send_pcc_cmd(pcc_ss_id, CMD_WRITE);
			up_write(&pcc_ss_data->pcc_lock);	/* END Phase-II */
1375 1376
		} else
			/* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1377 1378
			wait_event(pcc_ss_data->pcc_write_wait_q,
				   cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1379 1380 1381

		/* send_pcc_cmd updates the status in case of failure */
		ret = cpc_desc->write_cmd_status;
1382 1383 1384 1385
	}
	return ret;
}
EXPORT_SYMBOL_GPL(cppc_set_perf);
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410

/**
 * cppc_get_transition_latency - returns frequency transition latency in ns
 *
 * ACPI CPPC does not explicitly specifiy how a platform can specify the
 * transition latency for perfromance change requests. The closest we have
 * is the timing information from the PCCT tables which provides the info
 * on the number and frequency of PCC commands the platform can handle.
 */
unsigned int cppc_get_transition_latency(int cpu_num)
{
	/*
	 * Expected transition latency is based on the PCCT timing values
	 * Below are definition from ACPI spec:
	 * pcc_nominal- Expected latency to process a command, in microseconds
	 * pcc_mpar   - The maximum number of periodic requests that the subspace
	 *              channel can support, reported in commands per minute. 0
	 *              indicates no limitation.
	 * pcc_mrtt   - The minimum amount of time that OSPM must wait after the
	 *              completion of a command before issuing the next command,
	 *              in microseconds.
	 */
	unsigned int latency_ns = 0;
	struct cpc_desc *cpc_desc;
	struct cpc_register_resource *desired_reg;
1411
	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1412
	struct cppc_pcc_data *pcc_ss_data;
1413 1414 1415 1416 1417 1418 1419 1420 1421

	cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
	if (!cpc_desc)
		return CPUFREQ_ETERNAL;

	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
	if (!CPC_IN_PCC(desired_reg))
		return CPUFREQ_ETERNAL;

1422 1423 1424 1425
	if (pcc_ss_id < 0)
		return CPUFREQ_ETERNAL;

	pcc_ss_data = pcc_data[pcc_ss_id];
1426 1427
	if (pcc_ss_data->pcc_mpar)
		latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1428

1429 1430
	latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
	latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1431 1432 1433 1434

	return latency_ns;
}
EXPORT_SYMBOL_GPL(cppc_get_transition_latency);